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1 Introduction

The gnm package provides facilities for fittinggeneralized nonlinear models, i.e., regression models in which the link-
transformed mean is described as a sum of predictor terms, some of which may be non-linear in the unknown parameters.
Linear and generalized linear models, as handled by thelm andglm functions inR, are included in the class of generalized
nonlinear models, as the special case in which there is no nonlinear term.

This document gives an extended overview of thegnm package, with some examples of applications. The primary
package documentation in the form of standard help pages, as viewed inR by, for example,?gnm or help(gnm), is
supplemented rather than replaced by the present document.

We begin below with a preliminary note (Section 2) on some ways in which thegnm package extendsR’s facilities
for specifying, fitting and working with generalizedlinear models. Then (Section 3 onwards) the facilities for nonlinear
terms are introduced, explained and exemplified.

The gnm package is installed in the standard way for CRAN packages, for example by usinginstall.packages.
Once installed, the package is loaded into anR session by

> library(gnm)

2 Generalized Linear Models

2.1 Preamble

Central to the facilities provided by thegnm package is the model-fitting functiongnm , which interprets a model formula
and returns a model object. The user interface ofgnm is patterned afterglm (which is included inR’s standardstats
package), and indeedgnm can be viewed as a replacement forglm for specifying and fitting generalized linear models.
In general there is no reason to prefergnm to glm for fitting generalized linear models, except perhaps when the model
involves a large number of incidental parameters which are treatable bygnm ’s eliminatemechanism (see Section 4.4).

While the main purpose of thegnm package is to extend the class of models to include nonlinear terms, some of the
new functions and methods can be used also with the familiarlm andglm model-fitting functions. These are: three new
data-manipulation functionsDiag, Symm andTopo, for setting up structured interactions between factors; a newfamily
function,wedderburn, for modelling a continuous response variable in [0,1] with the variance functionV(µ) = µ2(1−µ)2

as in Wedderburn (1974); and a new generic functiontermPredictors which extracts the contribution of each term to
the predictor from a fitted model object. These functions are briefly introduced here, before we move on to the main
purpose of the package, nonlinear models, in Section 3.

2.2 Diag and Symm

When dealing withhomologousfactors, that is, categorical variables whose levels are the same, statistical models often
involve structured interaction terms which exploit the inherent symmetry. The functionsDiag andSymm facilitate the
specification of such structured interactions.

As a simple example of their use, consider the log-linear models ofquasi-independence, quasi-symmetryandsymmetry
for a square contingency table. Agresti (2002), Section 10.4, gives data on migration between regions of the USA between
1980 and 1985:

> count <- c(11607, 100, 366, 124, 87, 13677, 515, 302, 172, 225,
+ 17819, 270, 63, 176, 286, 10192)
> region <- c("NE", "MW", "S", "W")
> row <- gl(4, 4, labels = region)
> col <- gl(4, 1, length = 16, labels = region)

The comparison of models reported by Agresti can be achieved as follows:

> independence <- glm(count ~ row + col, family = poisson)
> quasi.indep <- glm(count ~ row + col + Diag(row, col), family = poisson)
> symmetry <- glm(count ~ Symm(row, col), family = poisson)
> quasi.symm <- glm(count ~ row + col + Symm(row, col), family = poisson)
> comparison1 <- anova(independence, quasi.indep, quasi.symm)
> print(comparison1, digits = 7)
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Analysis of Deviance Table

Model 1: count ~ row + col
Model 2: count ~ row + col + Diag(row, col)
Model 3: count ~ row + col + Symm(row, col)
Resid. Df Resid. Dev Df Deviance

1 9 125923.29
2 5 69.51 4 125853.78
3 3 2.99 2 66.52

> comparison2 <- anova(symmetry, quasi.symm)
> print(comparison2)

Analysis of Deviance Table

Model 1: count ~ Symm(row, col)
Model 2: count ~ row + col + Symm(row, col)
Resid. Df Resid. Dev Df Deviance

1 6 243.550
2 3 2.986 3 240.564

TheDiag andSymm functions also generalize the notions of diagonal and symmetric interaction to cover situations
involving more than two homologous factors.

2.3 Topo

More general structured interactions than those provided byDiag andSymm can be specified using the functionTopo.
(The name of this function is short for ‘topological interaction’, which is the nomenclature often used in sociology for
factor interactions with structure derived from subject-matter theory.)

TheTopo function operates on any number (k, say) of input factors, and requires an argument namedspec which
must be an array of dimensionL1 × . . . × Lk, whereLi is the number of levels for theith factor. Thespec argument
specifies the interaction level corresponding to every possible combination of the input factors, and the result is a new
factor representing the specified interaction.

As an example, consider fitting the ‘log-multiplicative layer effects’ models described in Xie (1992). The data are 7
by 7 versions of social mobility tables from Erikson et al. (1982):

> data(erikson)
> erikson <- as.data.frame(erikson)
> lvl <- levels(erikson$origin)
> levels(erikson$origin) <- levels(erikson$destination) <- c(rep(paste(lvl[1:2],
+ collapse = " + "), 2), lvl[3], rep(paste(lvl[4:5], collapse = " + "),
+ 2), lvl[6:9])
> erikson <- xtabs(Freq ~ origin + destination + country, data = erikson)

From sociological theory — for which see Erikson et al. (1982) or Xie (1992) — the log-linear interaction between origin
and destination is assumed to have a particular structure:
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> levelMatrix <- matrix(c(2, 3, 4, 6, 5, 6, 6,
+ 3, 3, 4, 6, 4, 5, 6,
+ 4, 4, 2, 5, 5, 5, 5,
+ 6, 6, 5, 1, 6, 5, 2,
+ 4, 4, 5, 6, 3, 4, 5,
+ 5, 4, 5, 5, 3, 3, 5,
+ 6, 6, 5, 3, 5, 4, 1), 7, 7, byrow = TRUE)

The models of table 3 of Xie (1992) can now be fitted as follows:

> ### Fit the levels models given in Table 3 of Xie (1992)
> ## Null association between origin and destination
> nullModel <- gnm(Freq ~ country:origin + country:destination,
+ family = poisson, data = erikson, verbose = FALSE)
>
> ## Interaction specified by levelMatrix, common to all countries
> commonTopo <- update(nullModel, ~ . +
+ Topo(origin, destination, spec = levelMatrix),
+ verbose = FALSE)
>
> ## Interaction specified by levelMatrix, different multiplier for
> ## each country
> multTopo <- update(nullModel, ~ . +
+ Mult(Exp(-1 + country), -1 +
+ Topo(origin, destination, spec = levelMatrix)),
+ verbose = FALSE)
>
> ## Interaction specified by levelMatrix, different effects for
> ## each country
> separateTopo <- update(nullModel, ~ . +
+ country:Topo(origin, destination, spec = levelMatrix),
+ verbose = FALSE)
>
> anova(nullModel, commonTopo, multTopo, separateTopo)

Analysis of Deviance Table

Model 1: Freq ~ country:origin + country:destination
Model 2: Freq ~ Topo(origin, destination, spec = levelMatrix) + country:origin +

country:destination
Model 3: Freq ~ Mult(country, Topo(origin, destination, spec = levelMatrix)) +

country:origin + country:destination
Model 4: Freq ~ country:origin + country:destination + country:Topo(origin,

destination, spec = levelMatrix)
Resid. Df Resid. Dev Df Deviance

1 108 4860.0
2 103 244.3 5 4615.7
3 101 216.4 2 28.0
4 93 208.5 8 7.9

Here we have usedgnm to fit all of these log-link models; the first, second and fourth are log-linear and could equally well
have been fitted usingglm .

2.4 Thewedderburn family

In Wedderburn (1974) it was suggested to represent the mean of a continuous response variable in [0,1] using a quasi-
likelihood model with logit link and the variance functionµ2(1 − µ)2. This is not one of the variance functions made
available as standard inR’s quasi family. Thewedderburn family provides it. As an example, Wedderburn’s analysis
of data on leaf blotch on barley can be reproduced as follows:

> data(barley)
> logitModel <- glm(y ~ site + variety, family = wedderburn, data = barley)
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> fit <- fitted(logitModel)
> print(sum((barley$y - fit)^2/(fit * (1 - fit))^2))

[1] 71.17401

This agrees with the chi-squared value reported on page 331 of McCullagh and Nelder (1989), which differs slightly from
Wedderburn’s own reported value.

2.5 termPredictors

The generic functiontermPredictors extracts a term-by-term decomposition of the predictor function in a linear, gen-
eralized linear or generalized nonlinear model.

As an illustrative example, we can decompose the linear predictor in the above quasi-symmetry model as follows:

> print(temp <- termPredictors(quasi.symm))

(Intercept) row col Symm(row, col)
1 -0.2641848 0.0000000 0.000000 9.62354843
2 -0.2641848 0.0000000 4.918310 -0.09198126
3 -0.2641848 0.0000000 1.539852 4.63901793
4 -0.2641848 0.0000000 5.082641 0.00000000
5 -0.2641848 4.8693457 0.000000 -0.09198126
6 -0.2641848 4.8693457 4.918310 0.00000000
7 -0.2641848 4.8693457 1.539852 0.07295506
8 -0.2641848 4.8693457 5.082641 -3.94766844
9 -0.2641848 0.7465235 0.000000 4.63901793
10 -0.2641848 0.7465235 4.918310 0.07295506
11 -0.2641848 0.7465235 1.539852 7.76583039
12 -0.2641848 0.7465235 5.082641 0.00000000
13 -0.2641848 4.4109017 0.000000 0.00000000
14 -0.2641848 4.4109017 4.918310 -3.94766844
15 -0.2641848 4.4109017 1.539852 0.00000000
16 -0.2641848 4.4109017 5.082641 0.00000000

> rowSums(temp) - quasi.symm$linear.predictors

1 2 3 4 5
0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00

6 7 8 9 10
-1.776357e-15 -8.881784e-16 -8.881784e-16 0.000000e+00 0.000000e+00

11 12 13 14 15
0.000000e+00 0.000000e+00 0.000000e+00 -1.776357e-15 -8.881784e-16

16
0.000000e+00

Such a decomposition might be useful, for example, in assessing the relative contributions of different terms or groups
of terms.

3 Nonlinear Terms

The main purpose of thegnm package is to provide a flexible framework for the specification and estimation of generalized
models with nonlinear terms. Multiplicative interaction terms can be estimated using the in-built capability of thegnm
function and are specified in the model formula using the symbolic functionMult. Other nonlinear terms can be estimated
using plug-in functions forgnm and are specified usingNonlin.

There are two plug-in functions currently made available in thegnm package:MultHomog for fitting multiplicative
interaction terms with homogeneous effects andDref for fitting diagonal reference terms. Users ofgnm can define their
own custom plug-in functions to specify other types of nonlinear term.
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3.1 Multiplicative Interaction Terms using Mult

Multiplicative interaction terms can be included in the formula argument tognm by using the symbolic wrapper function
Mult. Constituent multipliers1 in the interaction are passed as unspecified arguments toMult and are expressed by
symbolic linear formulae. An intercept is automatically added to each constituent multiplier unless otherwise specified.
For example, to fit the row-column association model

logµrc = αr + βc + γrδc,

also known as the Goodman RC model (Goodman, 1979), theformula argument ofgnm would be

mu ~ R + C + Mult(-1 + R, -1 + C)

whereR andC are row and column factors respectively.
TheMult function has one specified argumentmultiplicity, which is1 by default. This argument determines the

number of times that the specified multiplicative structure appears in the model. For example,

mu ~ R + C + Mult(-1 + R, -1 + C, multiplicity = 2)

would give the RC(2) model (Goodman, 1979)

logµrc = αr + βc + γrδc + θrφc.

In some contexts, it may be desirable to constrain one or more of the constituent multipliers so that it is always
nonnegative. This may be achieved by specifying the multiplier as an exponential, as in the following ‘uniform difference’
model (Xie, 1992; Erikson and Goldthorpe, 1992)

logµrct = αrt + βct + eγtδrc.

Exponentiated constituent multipliers are specified ingnmmodels using the symbolic functionExp; for example, the
uniform difference model above would be specified by the formula

mu ~ R:T + C:T + Mult(Exp(-1 + T), R:C)

3.2 Other Nonlinear Terms usingNonlin

Nonlinear terms which can not be specified usingMult may be specified usingNonlin. This symbolic function indicates
a term which requires a plug-in function to estimate the associated parameters.Nonlin takes a single argument, which is
a call to the relevant plug-in function.

For example, in the formula

mu ~ x + A + B + Nonlin(PlugInFunction(A, B, arg1 = x, arg2 = C))

the call toNonlin is used to specify a term that requires the plug-in functionPlugInFunction.
The two plug-in functions already included in thegnm package are described below, followed by a guide to writing

custom plug-in functions.

3.2.1 MultHomog

TheMultHomog function provides the tools required to fit multiplicative interaction terms with one component in which
the constituent multipliers are the effects of two or more factors and the effects of these factors are constrained to be equal
when the factor levels are equal. The arguments ofMultHomog are the factors in the interaction, which are assumed to be
objects of classfactor.

As an example, consider the following association model with homogeneous row-column effects:

logµrc = αr + βc + θr I (r = c) + γrγc.

To fit this model, with response variable namedmu, the formula argument tognm would be

mu ~ R + C + Diag(R, C) + Nonlin(MultHomog(R, C))

If the factors passed toMultHomog do not have exactly the same levels, a common set of levels is obtained by taking
the union of the levels of each factor, sorted into increasing order.

1 A note on terminology: the rather cumbersome phrase ‘constituent multiplier’, or sometimes the abbreviation ‘multiplier’, will be used throughout
this document in preference to the more elegant and standard mathematical term ‘factor’. This will avoid possible confusion with the completely
different meaning of the word ‘factor’ — that is, a categorical variable — inR.
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3.2.2 Dref

The functionDref is a plug-in to fit diagonal reference terms involving two or more factors with a common set of levels.
A diagonal reference term comprises an additive component for each factor. The component for factorf , is given by

wfγl

for an observation with levell of factor f , wherewf is the weight for factorf andγl is the “diagonal effect” for level l.
The weights are constrained to be nonnegative and to sum to one so that a “diagonal effect”, sayγl , is the value of the

diagonal reference term for data points with levell across the factors.Dref constrains the weights by defining them as

wf =
eδ f∑
i eδi

and estimating theδ f .
Factors defining the diagonal reference term are passed as unspecified arguments toDref . For example, the following

diagonal reference model for a contingency table classified by the row factorR and the column factorC,

µrc =
eδ1

eδ1 + eδ2
γr +

eδ2

eδ1 + eδ2
γc,

would be specified by the formula

mu ~ -1 + Nonlin(Dref(R, C))

TheDref function has one specified argument,formula, which is a symbolic description of the dependence ofδ f on
any covariates. For example, the formula

mu ~ -1 + x + Nonlin(Dref(R, C, formula = ~ 1 + x))

specifies the following diagonal reference model

µrc = βXx+
eξ1+β1x

eξ1+β1x + eξ2+β2x
γr +

eξ2+β2x

eξ1+βx + eξ2+β2x
γc.

The default value offormula is ~1, so that constant weights are estimated. The coefficients returned bygnm are those
that are directly estimated, i.e. theδ f or theξ f andβ f , rather than the implied weightswf .

3.2.3 Custom Plug-in Functions

Custom plug-in functions may be written to enablegnm to fit nonlinear terms that can not be specified byMult or through
existing plug-in functions provided by thegnm package.

There are no constraints on the arguments that a plug-in function may take. However it is important thatNonlin,
when given a call to the plug-in function, can determine the variables that are in the term, so that these variables can be
added to the model frame. By default, expressions passed to unspecified arguments of the plug-in function are assumed
to represent the variables in the term.

If the default action ofNonlin will not capture the required variables, a companion function must exist (in the envi-
ronment of the plug-in function), which takes the same arguments as the plug-in function and returns deparsed expressions
representing the necessary variables. The name of this function must be the name of the plug-in function suffixed with
Variables. For example, the (non-visible) companion function forDref is defined as

DrefVariables <- function(..., formula = ~ 1) {
as.character(c(match.call(expand.dots = FALSE)[[2]], formula[[2]]))}

returning the expressions passed to unspecified arguments and the right-hand side of the formula passed toformula, as
character strings. For instance

> gnm:::DrefVariables(A, B, formula = ~1 + C)

[1] "A" "B" "1 + C"
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from whichNonlin will know thatA , B andC need to be added to the model frame.
The call to the plug-in function is evaluated in the environment of the model frame and in the enclosing environment

of the parent frame of the call tognm . This should ensure that variables passed directly to the plug-in function can be
found. However, to evaluate variables within the plug-in function, it may be necessary to access the model frame, which
can be obtained using the functiongetModelFrame.

For example, the factors in aDref term are passed directly to unspecified arguments, so the dummy variables for
these factors can be found as follows:

# get design matrices for Dref factors
designList <- lapply(list(...), class.ind)

But any covariates on which the weights depend are only represented symbolically in theformula argument, so the
design matrix for these variables must be found in the context of the model frame:

## get design matrix for local structure
gnmData <- getModelFrame()
local <- model.matrix(formula, data = gnmData)

The plug-in function should return a list with at least the following three components:

labels a character vector of labels for the parameters (to whichgnm will prefix the call to the plug-in function).

predictor a function which takes a vector of parameter estimates and returns either a vector of fitted values or a matrix
whose columns are additive components of the fitted values.

localDesignFunction a function which takes the specified argumentscoef (a vector of parameter estimates) and
predictor (the result of the predictor function), and returns the local design matrix. If the plug-in function does
not return astart component (see below), thelocalDesignFunction must also take the argumentind , which
specifies the index of a column to be returned instead of the full matrix.

and optionally one further component,

start a vector of default starting values for the parameters.NA may be used to indicate parameters which may be treated
as linear for the purpose of finding starting values, given the non-NA values. See Section 4.2 for details of how
these starting values will be used if provided and the starting procedure for nonlinear parameters that will be used
otherwise.

As an example of astart component,Dref returns

c(runif(nLocal) - 0.5, rep(0.5, nGlobal))

wherenLocal is the number of weight parameters (parameters which are “local” to a specific factor) andnGlobal is the
number of diagonal effects (“global” level effects across factors). The randomness in the starting values for the weight
parameters ensures that arbitrariness of the final parameterization is emphasised.

TheMultHomog function provides a simple example of apredictor component:

predictor <- function(coef) {
do.call("pprod", lapply(designList, "%*%", coef))}

which computes the product of the vectors found by multiplying the design matrix for each factor in the interaction (held in
designList) by the homogeneous coefficients (incoef ). This function takes advantage oflexical scoping: designList
is an object defined inMultHomog, whichpredictor is able to find becausepredictor is also defined inMultHomog
and henceMultHomog is the enclosing environment ofpredictor.

ThelocalDesignFunction created byMultHomog is slightly more complicated:

localDesignFunction <- function(coef, ind = NULL, ...) {
X <- 0
vList <- lapply(designList, "%*%", coef)
for (i in seq(designList)) {

if (is.null(ind))
X <- X + designList[[*]] * drop(do.call("pprod", vList[-i]))

else
X <- X + designList[[]][, ind] *

drop(do.call("pprod", vList[-i]))}
X}

8



Since the result of the predictor function is not needed here, the local design function does not have the specified argument
predictor, but allows such an argument to be passed to the function by the use of the special argument ‘...’. Since
MultHomog does not return astart component, the local design function can optionally return a single column of the
local design matrix as specified byind . This functionality is required by the default starting procedure for nonlinear
parameters.

4 Controlling the Fitting Procedure

Thegnm function has a number of arguments which affect the way a model will be fitted. Basic control parameters can
be set using the argumentstolerance, iterStart anditerMax. Starting values for the parameter estimates can be set
by start and parameters can be constrained to zero by specifying aconstrain argument. Parameters of a stratification
factor can be handled more efficiently by specifying the factor in aneliminate argument. These options are described
in more detail below.

4.1 Basic control parameters

The argumentsiterStart anditerMax control respectively the number of starting iterations (where applicable) and the
number of main iterations used by the fitting algorithm. The progress of these iterations can be followed by setting either
verbose or trace to TRUE. If verbose is TRUE andtrace is FALSE, which is the default setting, progress is indicated
by printing the character “.” at the beginning of each iteration. Iftrace is TRUE, the deviance is printed at the beginning
of each iteration (over-riding the printing of “.” if necessary). Wheneververbose is TRUE, additional messages indicate
each stage of the fitting process and diagnose any errors that cause that cause the algorithm to restart.

The fitting algorithm will terminate before the number of main iterations has reachediterMax if the convergence
criteria have been met, with tolerance specified bytolerance. Convergence is judged by comparing the squared com-
ponents of the score vector with corresponding elements of the diagonal of the Fisher information matrix. If, for all
components of the score vector, the ratio is less thantoleranceˆ2, or the corresponding diagonal element of the Fisher
information matrix is less than 1e-20, the algorithm is deemed to have converged.

4.2 Usingstart

In some contexts, the default starting values may not be appropriate and the algorithm will fail to converge, or perhaps only
converge after a large number of iterations. Alternative starting values may be passed on tognm by specifying astart
argument. This should be a numeric vector of length equal to the number of parameters (or possibly the non-eliminated
parameters, see Section 4.4), however missing starting values (NAs) are allowed.

If there is no user-specified starting value for a parameter, the default value is used. This feature is particularly useful
when adding terms to a model, since the estimates from the original model can be used as starting values, as in this
example:

model1 <- gnm(mu ~ R + C + Mult(-1 + R, -1 + C))
model2 <- gnm(mu ~ R + C + Mult(-1 + R, -1 + C, multiplicity = 2),

start = c(coef(model1), rep(NA, 10))

Thegnm call can be made withmethod = "coefNames" to identify the parameters of a model prior to estimation, to
assist with the specification of arguments such asstart.

The starting procedure used bygnm is as follows

1. Generate starting valuesθi for all parametersi = 1, . . . , p from the Uniform(−0.1, 0.1) distribution. Shift these
values away from zero as follows

θi =

θi − 0.1 if θi < 1

θi + 0.1 otherwise

2. Replace generic starting values with default starting values set by plug-in functions, where applicable.

3. Replace default starting values with any starting values specified by thestart argument ofgnm .

4. Compute theglm estimate of any parameters that may be treated as linear (i.e. those in linear terms or those with
a default starting value ofNA set by a plug-in function), offsetting the contribution to the predictor of any terms
specified bystart or a plug-in function.
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5. Run starting iterations: update one at a time any remaining nonlinear parameters not specified bystart or a plug-in
function, updatingall parameters that may be treated as linear after each round of updates.

Note that no starting iterations (step 5) will be run if all parameters are linear, or if all nonlinear parameters are specified
by start or a plug-in function.

4.3 Usingconstrain

By default,gnm only imposes identifiability constraints according to the general conventions used byR to handle linear
aliasing. Therefore models that have any nonlinear terms will be usually be over-parameterized andgnm will return a
random parameterization for unidentified coefficients.

To illustrate this point, consider the following application ofgnm , discussed later in Section 6.1:

> data(occupationalStatus)
> set.seed(1)
> RChomog1 <- gnm(Freq ~ origin + destination + Diag(origin, destination) +
+ Nonlin(MultHomog(origin, destination)), family = poisson,
+ data = occupationalStatus, verbose = FALSE)

Running the analysis again from a different seed

> set.seed(2)
> RChomog2 <- update(RChomog1)

gives a different representation of the same model:

> compareCoef <- cbind(coef(RChomog1), coef(RChomog2))
> colnames(compareCoef) <- c("RChomog1", "RChomog2")
> round(compareCoef, 4)

RChomog1 RChomog2
(Intercept) -0.1312 0.1844
origin2 0.5367 0.5143
origin3 1.6922 1.6083
origin4 2.0597 1.9158
origin5 0.8418 0.6961
origin6 2.9463 2.7480
origin7 1.6543 1.4132
origin8 1.4128 1.1466
destination2 0.9557 0.9333
destination3 2.0366 1.9527
destination4 2.3482 2.2042
destination5 1.7412 1.5955
destination6 3.2498 3.0514
destination7 2.4059 2.1648
destination8 1.9882 1.7220
Diag(origin, destination)1 1.5267 1.5267
Diag(origin, destination)2 0.4560 0.4560
Diag(origin, destination)3 -0.0160 -0.0160
Diag(origin, destination)4 0.3892 0.3892
Diag(origin, destination)5 0.7385 0.7385
Diag(origin, destination)6 0.1347 0.1347
Diag(origin, destination)7 0.4576 0.4576
Diag(origin, destination)8 0.3885 0.3885
MultHomog(origin, destination).1 -1.5864 -1.4836
MultHomog(origin, destination).2 -1.3681 -1.2653
MultHomog(origin, destination).3 -0.7699 -0.6671
MultHomog(origin, destination).4 -0.1860 -0.0832
MultHomog(origin, destination).5 -0.1689 -0.0661
MultHomog(origin, destination).6 0.3429 0.4457
MultHomog(origin, destination).7 0.7590 0.8618
MultHomog(origin, destination).8 1.0026 1.1054

10



Even though the linear terms are constrained, the parameter estimates for the main effects oforigin anddestination
still change, because these terms are aliased with the higher order multiplicative interaction, which is unconstrained.

Standard errors are only meaningful for identified parameters and hence the output ofsummary.gnm will show clearly
which coefficients are estimable:

> summary(RChomog2)

Call:
gnm(formula = Freq ~ origin + destination + Diag(origin, destination) +

Nonlin(MultHomog(origin, destination)), family = poisson,
data = occupationalStatus, verbose = FALSE)

Deviance Residuals:
Min 1Q Median 3Q Max

-1.659e+00 -4.297e-01 -4.463e-08 3.862e-01 1.721e+00

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 0.18438 NA NA NA
origin2 0.51428 NA NA NA
origin3 1.60827 NA NA NA
origin4 1.91578 NA NA NA
origin5 0.69610 NA NA NA
origin6 2.74796 NA NA NA
origin7 1.41324 NA NA NA
origin8 1.14664 NA NA NA
destination2 0.93329 NA NA NA
destination3 1.95269 NA NA NA
destination4 2.20421 NA NA NA
destination5 1.59552 NA NA NA
destination6 3.05144 NA NA NA
destination7 2.16483 NA NA NA
destination8 1.72202 NA NA NA
Diag(origin, destination)1 1.52667 0.44658 3.419 0.00063 ***
Diag(origin, destination)2 0.45600 0.34595 1.318 0.18747
Diag(origin, destination)3 -0.01598 0.18098 -0.088 0.92965
Diag(origin, destination)4 0.38918 0.12748 3.053 0.00227 **
Diag(origin, destination)5 0.73852 0.23329 3.166 0.00155 **
Diag(origin, destination)6 0.13474 0.07934 1.698 0.08945 .
Diag(origin, destination)7 0.45764 0.15103 3.030 0.00245 **
Diag(origin, destination)8 0.38847 0.22172 1.752 0.07976 .
MultHomog(origin, destination).1 -1.48357 NA NA NA
MultHomog(origin, destination).2 -1.26528 NA NA NA
MultHomog(origin, destination).3 -0.66711 NA NA NA
MultHomog(origin, destination).4 -0.08323 NA NA NA
MultHomog(origin, destination).5 -0.06606 NA NA NA
MultHomog(origin, destination).6 0.44570 NA NA NA
MultHomog(origin, destination).7 0.86184 NA NA NA
MultHomog(origin, destination).8 1.10541 NA NA NA
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for poisson family taken to be 1)

Std. Error is NA where coefficient has been constrained or is unidentified

Residual deviance: 32.561 on 34 degrees of freedom
AIC: 414.9

Number of iterations: 7
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Additional constraints may be specified through theconstrain andconstrainTo arguments ofgnm . These argu-
ments specify respectively parameters that are to be constrained in the fitting process and the values to which they should
be constrained. Parameters may be specified by a regular expression to match against the parameter names, a numeric
vector of indices, a character vector of names, or, ifconstrain = "[?]" they can be selected through aTk dialog. The
values to constrain to should be specified by a numeric vector; ifconstrainTo is missing, constrained parameters will
be set to zero.

In the case above, constraining one level of the homogeneous multiplicative factor is sufficient to make the parameters
of the nonlinear term identifiable, and hence all parameters in the model identifiable. For example, setting the last level of
the homogeneous multiplicative factor to zero,

> multCoef <- coef(RChomog1)[pickCoef(RChomog1, "Mult")]
> set.seed(1)
> RChomogConstrained1 <- update(RChomog1, constrain = 31, start = c(rep(NA,
+ 23), multCoef - multCoef[8]))
> set.seed(2)
> RChomogConstrained2 <- update(RChomogConstrained1)
> identical(coef(RChomogConstrained1), coef(RChomogConstrained2))

[1] TRUE

gives the same results regardless of the random seed set beforehand.
It is not usually so straightforward to constrain all the parameters in a generalized nonlinear model. However use of

constrain in conjunction withconstrainTo is usually sufficient to make coefficients of interest identifiable . The func-
tionscheckEstimable or getContrasts, described in Section 5, may be used to check whether particular combinations
of parameters are estimable.

4.4 Usingeliminate

When a model contains the additive effect of a factor which has a large number of levels, the iterative algorithm by which
maximum likelihood estimates are computed can usually be accelerated by use of theeliminate argument tognm .

The factor to beeliminate-d should be specified by an expression, which is then interpreted as the first term in the
model formula, replacing any intercept term. So, for example, in terms of the structure of the model,

gnm(mu ~ A + B + Mult(A, B), eliminate = strata1:strata2)

is equivalent to

gnm(mu ~ -1 + strata1:strata2 + A + B + Mult(A, B))

However, specifying a factor througheliminate has two advantages over the standard specification. First, the structure of
the eliminated factor is exploited so that computational speed is improved — substantially so if the number of eliminated
parameters is large. Second, unless otherwise specified through theofInterest argument tognm , the ofInterest
component of the returned model object indexes the non-eliminated parameters. Thus eliminated parameters are excluded
from printed model summaries and default selection bygnmmethods. See Section 5.2 for further details on the use of the
ofInterest component.

Theeliminate feature is useful, for example, when multinomial-response models are fitted by using the well known
equivalence between multinomial and (conditional) Poisson likelihoods. In such situations the sufficient statistic involves a
potentially large number of fixed multinomial row totals, and the corresponding parameters are of no substantive interest.
For an application see Section 6.6 below. Here we give an artificial illustration: 1000 randomly-generated trinomial
responses, and a single predictor variable (whose effect on the data generation is null):

> set.seed(1)
> n <- 1000
> x <- rep(rnorm(n), rep(3, n))
> counts <- as.vector(rmultinom(n, 10, c(0.7, 0.1, 0.2)))
> rowID <- gl(n, 3, 3 * n)
> resp <- gl(3, 1, 3 * n)

The logistic model for dependence onx can be fitted as a Poisson log-linear model2, using eitherglm or gnm :

2For this particular example, of course, it would be more economical to fit the model directly usingmultinom (from the recommended package
nnet). But fitting as here via the ‘Poisson trick’ allows the model to be elaborated within thegnm framework usingMult or Nonlin terms.
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> ## Timings on a Pentium M 1.6GHz, under Linux
> system.time(temp.glm <- glm(counts ~ rowID + resp + resp:x,

family = poisson))[1]

[1] 116.8

> system.time(temp.gnm <- gnm(counts ~ resp + resp:x, eliminate = rowID,
family = poisson, verbose = FALSE))[1]

[1] 22.0

> c(deviance(temp.glm), deviance(temp.gnm))

[1] 2462.556 2462.556

Here the use ofeliminate causes thegnm calculations to run more quickly thanglm . The speed advantage3 increases
with the number of eliminated parameters (here 1000). Since the default behaviour has not been over-ridden by an
ofInterest argument, the eliminated parameters do not appear in printed model summaries:

> summary(temp.gnm)

Call:

gnm(formula = counts ~ resp + resp:x, eliminate = rowID, family = poisson,
verbose = FALSE)

Deviance Residuals:
Min 1Q Median 3Q Max

-2.852038 -0.786172 -0.004534 0.645278 2.755013

Coefficients of interest:
Estimate Std. Error z value Pr(>|z|)

resp2 -1.9614483 0.0340074 -57.68 <2e-16
resp3 -1.2558460 0.0253589 -49.52 <2e-16
resp1:x 0.0001049 NA NA NA
resp2:x -0.0155083 NA NA NA
resp3:x 0.0078314 NA NA NA

(Dispersion parameter for poisson family taken to be 1)

Std. Error is NA where coefficient has been constrained or is unidentified

Residual deviance: 2462.6 on 1996 degrees of freedom
AIC: 12028

Number of iterations: 3

As usual,gnm has worked here with an over-parameterized representation of the model. The parameterization used by
glm can be seen from

> coef(temp.glm)[-(1:1000)]

resp2 resp3 resp1:x resp2:x resp3:x
-1.96145 -1.25585 -0.00773 -0.02334 NA

(we will not print the full summary oftemp.glm here, since it gives details of all 1005 parameters!), which easily can be
obtained, if required, by usinggetContrasts:

> getContrasts(temp.gnm, ofInterest(temp.gnm)[5:3])

3In facteliminate is, in principle, capable of much bigger time savings than this: its implementation in the current version ofgnm is really just a
proof of concept, and it has not yet been optimized for speed.
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estimate SE quasiSE quasiVar
resp3:x 0.00000 0.00000 0.02163 0.000468
resp2:x -0.02334 0.03761 0.03077 0.000947
resp1:x -0.00773 0.02452 0.01154 0.000133

Theeliminate feature as implemented ingnm extends the earlier work of Hatzinger and Francis (2004) to a broader
class of models and to over-parameterized model representations.

5 Methods and Accessor functions

5.1 Methods

Thegnm function returns an object of classc("gnm", "glm", "lm"). There are several methods that have been written
for objects of classglm or lm to facilitate inspection of fitted models. Out of the generic functions in thebase, stats and
graphics packages for which methods have been written forglm or lm objects, Figure 1 shows those that can be used to
analysegnmobjects, whilst Figure 2 shows those that are not implemented forgnmobjects.

anova formula profile
case.names hatvalues residuals
coef labels rstandard
cooks.distance logLik summary
confint model.frame variable.names
deviance model.matrix vcov
extractAIC plot weights
family print

Figure 1: Generic functions in thebase, stats andgraphics packages that can be used to analysegnmobjects.

add1 effects
alias influence
dfbeta kappa
dfbetas predict
drop1 proj
dummy.coef

Figure 2: Generic functions in thebase, stats andgraphics packages for which methods have been written forglm or lm
objects, but which arenot implemented forgnmobjects.

In addition to the accessor functions shown in Figure 1, thegnm package provides a new generic function called
termPredictors that has methods for objects of classgnm, glm andlm. This function returns the additive contribution
of each term to the predictor. See Section 2.5 for an example of its use.

Most of the functions listed in Figure 1 can be used as they would be forglm or lm objects, however care must be
taken withvcov.gnm , as the variance-covariance matrix will depend on the parameterization of the model. In particular,
standard errors calculated using the variance-covariance matrix will only be valid for parameters or contrasts that are
estimable!

Similarly, profile.gnm andconfint.gnm are only applicable to estimable parameters. The deviance function of
a generalised nonlinear model can sometimes be far from quadratic andprofile.gnm attempts to detect assymetry or
asymptotic behaviour in order to return a sufficient profile for a given parameter. As an example, consider the following
model, described later in Section 6.3:

data(yaish)
unidiff <- gnm(Freq ~ educ*orig + educ*dest +

Mult(Exp(-1 + educ), -1 + orig:dest),
constrain = "Mult.*educ1", family = poisson, data = yaish,
subset = (dest != 7))

prof <- profile(unidiff, which = 61:65, trace = TRUE)
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If the deviance is quadratic in a given parameter, the profile trace will be linear. We can plot the profile traces as
follows:
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From these plots we can see that the deviance is approximately quadratic inMult1.Factor1.educ2, assymetric in
Mult1.Factor1.educ3 andMult1.Factor1.educ4 and asymptotic inMult1.Factor1.educ5. When the deviance
is approximately quadratic in a given parameter,profile.gnm uses the same stepsize for profiling above and below the
original estimate:

> diff(prof[[2]]$par.vals[, "Mult1.Factor1.educ2"])

[1] 0.1053072 0.1053072 0.1053072 0.1053072 0.1053072 0.1053072 0.1053072
[8] 0.1053072 0.1053072 0.1053072

When the deviance is assymmetric,profile.gnm uses different stepsizes to accommodate the skew:

> diff(prof[[4]]$par.vals[, "Mult1.Factor1.educ4"])

[1] 0.2018393 0.2018393 0.2018393 0.2018393 0.2018393 0.2018393 0.2018393
[8] 0.2018393 0.2018393 0.2243673 0.2243673 0.2243673 0.2243673 0.2243673

Finally, the presence of an asymptote is recorded in the"asymptote" attribute of the returned profile:

> attr(prof[[5]], "asymptote")

[1] TRUE FALSE

This information is used byconfint.gnm to return infinite limits for confidence intervals, as appropriate:

confint(prof)
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5.2 ofInterest and pickCoef

It is quite common for a statistical model to have a large number of parameters, but for only a subset of these parameters
be of interest when it comes to interpreting the model. An example of this has been seen in Section 4.4, where a factor
is required in the model in order to represent a structural aspect of the data, but the estimated factor effects have no
substantive interpretation. Even for models in which all parameters correspond to variables of potential interest, the
substantive focus may still be on a subset of parameters.

TheofInterest argument tognm allows the user to specify a subset of the parameters which are of interest, so that
gnmmethods will focus on these parameters. In particular, printed model summaries will only show the parameters of
interest, whilst methods for which a subset of parameters may be selected will by default select the parameters of interest,
or where this may not be appropriate, provide aTk dialog for selection from the parameters of interest. Parameters may
be specified to theofInterest argument by a regular expression to match against parameter names, by a numeric vector
of indices, by a character vector of names, or, ifofInterest = "[?]" they can be selected through aTk dialog.

The information regarding the parameters of interest is held in theofInterest component ofgnmobjects, which is
a named vector of numeric indices, orNULL if all parameters are of interest. This component may be accessed or replaced
usingofInterest or ofInterest<- respectively.

ThepickCoef function provides a simple way to obtain the indices of coefficients from any model object. It takes the
model object as its first argument and has an optionalregexp argument. If a regular expression is passed toregexp, the
coefficients are selected by matching this regular expression against the coefficient names. Otherwise, coefficients may be
selected via aTk dialog.

So, returning to the example from the last section, if we had setofInterest to index the education multipliers as
follows

ofInterest(unidiff) <- pickCoef(unidiff, "Mult1.*educ")

then it would not have been necessary to specify thewhich argument ofprofile as these parameters would have been
selected by default.

5.3 checkEstimable

ThecheckEstimable function can be used to check the estimability of a linear combination of parameters. For non-
linear combinations the same function can be used to check estimability based on the (local) vector of partial derivatives.
The checkEstimable function provides a numerical version of the sort of algebraic test described in Catchpole and
Morgan (1997).

Consider the following model, that is described later in Section 6.3:

> data(cautres)
> doubleUnidiff <- gnm(Freq ~ election:vote + election:class:religion +
+ Mult(Exp(election - 1), religion:vote - 1) + Mult(Exp(election -
+ 1), class:vote - 1), family = poisson, data = cautres)

Initialising
Running start-up iterations..
Running main iterations..........
Done

The effects of the first constituent multiplier in the first multiplicative interaction are identified when the estimate of one
of these effects is constrained to zero, say for the effect of the first level. The parameters to be estimated are then the
differences between each effect and the effect of the first level. These differences can be represented by a contrast matrix
as follows:

> coefs <- names(coef(doubleUnidiff))
> contrCoefs <- coefs[grep("Mult1.Factor1", coefs)]
> nContr <- length(contrCoefs)
> contrMatrix <- matrix(0, length(coefs), nContr, dimnames = list(coefs,
+ contrCoefs))
> contr <- contr.sum(contrCoefs)
> contr <- rbind(contr[nContr, ], contr[-nContr, ])
> contrMatrix[contrCoefs, 2:nContr] <- contr
> contrMatrix[contrCoefs, 2:nContr]
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Mult1.Factor1.election2 Mult1.Factor1.election3
Mult1.Factor1.election1 -1 -1
Mult1.Factor1.election2 1 0
Mult1.Factor1.election3 0 1
Mult1.Factor1.election4 0 0

Mult1.Factor1.election4
Mult1.Factor1.election1 -1
Mult1.Factor1.election2 0
Mult1.Factor1.election3 0
Mult1.Factor1.election4 1

Then their estimability can be checked usingcheckEstimable

> checkEstimable(doubleUnidiff, contrMatrix)

Mult1.Factor1.election1 Mult1.Factor1.election2 Mult1.Factor1.election3
NA TRUE TRUE

Mult1.Factor1.election4
TRUE

which confirms that the effects for the other three levels are estimable when the parameter for the first level is set to zero.
However, applying the equivalent constraint to the second constituent multiplier in the interaction is not sufficient to

make the parameters in that multiplier estimable:

> coefs <- names(coef(doubleUnidiff))
> contrCoefs <- coefs[grep("Mult1.Factor2", coefs)]
> nContr <- length(contrCoefs)
> contrMatrix <- matrix(0, length(coefs), length(contrCoefs), dimnames = list(coefs,
+ contrCoefs))
> contr <- contr.sum(contrCoefs)
> contrMatrix[contrCoefs, 2:nContr] <- rbind(contr[nContr, ], contr[-nContr,
+ ])
> checkEstimable(doubleUnidiff, contrMatrix)

Mult1.Factor2.religion1:vote1 Mult1.Factor2.religion2:vote1
NA FALSE

Mult1.Factor2.religion3:vote1 Mult1.Factor2.religion4:vote1
FALSE FALSE

Mult1.Factor2.religion1:vote2 Mult1.Factor2.religion2:vote2
FALSE FALSE

Mult1.Factor2.religion3:vote2 Mult1.Factor2.religion4:vote2
FALSE FALSE

5.4 getContrasts, se

To investigate simple “sum to zero” contrasts such as those above, it is easiest to use thegetContrasts function, which
checks the estimability of the contrasts and returns the parameter estimates with their standard errors. Returning to the
example of the first constituent multiplier in the first multiplicative interaction term, the differences between each election
and the first can be obtained as follows:

> myContrasts <- getContrasts(doubleUnidiff, pickCoef(doubleUnidiff,
+ "Mult1.Factor1"))
> myContrasts

estimate SE quasiSE quasiVar
Mult1.Factor1.election1 0.0000000 0.0000000 0.09803075 0.009610029
Mult1.Factor1.election2 -0.0878181 0.1136832 0.05702819 0.003252214
Mult1.Factor1.election3 -0.2615200 0.1184134 0.06812239 0.004640660
Mult1.Factor1.election4 -0.3283459 0.1221302 0.07168290 0.005138439

Visualization of estimated contrasts using ‘quasi standard errors’ (Firth, 2003; Firth and de Menezes, 2004) is achieved
by plotting the resulting object:
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> plot(myContrasts, main = "Relative strength of religion-vote association, log scale",
+ xlab = "Election", levelNames = 1:4)
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For more general linear combinations of parameters than contrasts, the lower-levelse function (which is called inter-
nally bygetContrasts and by thesummary method) can be used directly. Seehelp(se) for details.

5.5 residSVD

Sometimes it is useful to operate on the residuals of a model in order to create informative summaries of residual variation,
or to obtain good starting values for additional parameters in a more elaborate model. The relevant arithmetical operations
are weighted means of the so-calledworking residuals.

TheresidSVD function facilitates one particular residual analysis that is often useful when considering multiplicative
interaction between factors as a model elaboration: in effect,residSVD provides a direct estimate of the parameters of
such an interaction, by performing an appropriately weighted singular value decomposition on the working residuals.

As an illustration, consider the biplot model described in Section 6.5 below. We can proceed by fitting a smaller
model, then useresidSVD to obtain starting values for the parameters in the bilinear term:

> emptyModel <- gnm(y ~ -1, family = wedderburn, data = barley)
> biplotStart <- residSVD(emptyModel, barley$site, barley$variety,
+ d = 2)
> biplotModel <- gnm(y ~ -1 + Mult(-1 + site, -1 + variety, multiplicity = 2),
+ family = wedderburn, data = barley, start = biplotStart)

Running main iterations.........................................................
................................................................................
..
Done

In this instance, the use of purposive (as opposed to the default, random) starting values had little effect: the fairly large
number of iterations needed in this example is caused by a rather flat (quasi-)likelihood surface near the maximum, not by
poor starting values. In other situations, the use ofresidSVD may speed the calculations dramatically (see for example
Section 6.4), or it may be crucial to success in locating the MLE (for example seehelp(House2001), where the number
of multiplicative parameters is in the hundreds).
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TheresidSVD result in this instance provides a crude approximation to the MLE of the enlarged model, as can be
seen in the following plot:
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6 Examples

This section provides some examples of the wide range of models that may be fitted using thegnm package. Sections
6.1, 6.2 and 6.3 consider various models for contingency tables; Section 6.4 considers AMMI and GAMMI models which
are typically used in agricultural applications, and Section 6.6 considers the stereotype model, which is used to model an
ordinal response.

6.1 Row-column Association Models

There are several models that have been proposed for modelling the relationship between the cell means of a contingency
table and the cross-classifying factors. The following examples consider the row-column association models proposed by
Goodman (1979). The examples shown use data from two-way contingency tables, but thegnm package can also be used
to fit the equivalent models for higher order tables.

6.1.1 RC(1) model

The RC(1) model is a row and column association model with the interaction between row and column factors represented
by one component of the multiplicative interaction. If the rows are indexed byr and the columns byc, then the log-
multiplicative form of the RC(1) model for the cell meansµrc is given by

logµrc = αr + βc + γrδc.

We shall fit this model to thementalHealth data set taken from Agresti (2002) page 381, which is a two-way con-
tingency table classified by the child’s mental impairment (MHS) and the parents’ socioeconomic status (SES). Although
both of these factors are ordered, we do not wish to use polynomial contrasts in the model, so we begin by setting the
contrasts attribute of these factors totreatment:
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> set.seed(1)
> data(mentalHealth)
> mentalHealth$MHS <- C(mentalHealth$MHS, treatment)
> mentalHealth$SES <- C(mentalHealth$SES, treatment)

Thegnmmodel is then specified as follows, using the poisson family with a log link function:

> RC1model <- gnm(count ~ SES + MHS + Mult(-1 + SES, -1 + MHS),
+ family = poisson, data = mentalHealth)

Initialising
Running start-up iterations..
Running main iterations........
Done

> RC1model

Call:

gnm(formula = count ~ SES + MHS + Mult(-1 + SES, -1 + MHS), family = poisson,
data = mentalHealth)

Coefficients:
(Intercept) SESB
3.831281 -0.067413

SESC SESD
0.109959 0.404969

SESE SESF
0.025257 -0.200685
MHSmild MHSmoderate
0.712969 0.204987

MHSimpaired Mult1.Factor1.SESA
0.251749 0.340495

Mult1.Factor1.SESB Mult1.Factor1.SESC
0.343267 0.114885

Mult1.Factor1.SESD Mult1.Factor1.SESE
-0.006284 -0.305574

Mult1.Factor1.SESF Mult1.Factor2.MHSwell
-0.551460 0.935600

Mult1.Factor2.MHSmild Mult1.Factor2.MHSmoderate
0.094793 -0.056941

Mult1.Factor2.MHSimpaired
-0.755299

Deviance: 3.570562
Pearson chi-squared: 3.568088
Residual df: 8

The row scores (parameters 10 to 15) and the column scores (parameters 16 to 19) of the multiplicative interaction can be
normalized as in Agresti’s eqn (9.15):

> rowProbs <- with(mentalHealth, tapply(count, SES, sum)/sum(count))
> colProbs <- with(mentalHealth, tapply(count, MHS, sum)/sum(count))
> rowScores <- coef(RC1model)[10:15]
> colScores <- coef(RC1model)[16:19]
> rowScores <- rowScores - sum(rowScores * rowProbs)
> colScores <- colScores - sum(colScores * colProbs)
> beta1 <- sqrt(sum(rowScores^2 * rowProbs))
> beta2 <- sqrt(sum(colScores^2 * colProbs))
> assoc <- list(beta = beta1 * beta2, mu = rowScores/beta1, nu = colScores/beta2)
> assoc
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$beta
[1] 0.1664874

$mu
Mult1.Factor1.SESA Mult1.Factor1.SESB Mult1.Factor1.SESC Mult1.Factor1.SESD

1.11233090 1.12143715 0.37107612 -0.02702946
Mult1.Factor1.SESE Mult1.Factor1.SESF

-1.01036153 -1.81823284

$nu
Mult1.Factor2.MHSwell Mult1.Factor2.MHSmild Mult1.Factor2.MHSmoderate

1.6775144 0.1403989 -0.1369924
Mult1.Factor2.MHSimpaired

-1.4136910

6.1.2 RC(2) model

The RC(1) model can be extended to an RC(m) model withmcomponents of the multiplicative interaction. For example,
the RC(2) model is given by

logµrc = αr + βc + γrδc + θrφc.

Extra instances of the multiplicative interaction can be specified by themultiplicity argument ofMult, so the RC(2)
model can be fitted to thementalHealth data as follows

> RC2model <- gnm(count ~ SES + MHS + Mult(-1 + SES, -1 + MHS,
+ multiplicity = 2), family = poisson, data = mentalHealth)

Initialising
Running start-up iterations..
Running main iterations............
Done

> RC2model

Call:

gnm(formula = count ~ SES + MHS + Mult(-1 + SES, -1 + MHS, multiplicity = 2),
family = poisson, data = mentalHealth)

Coefficients:
(Intercept) SESB

3.85530 -0.06444
SESC SESD

0.11140 0.38457
SESE SESF

0.01081 -0.18462
MHSmild MHSmoderate
0.69860 0.16975

MHSimpaired Mult1.Factor1.SESA
0.22876 0.95047

Mult1.Factor1.SESB Mult1.Factor1.SESC
0.99597 0.33932

Mult1.Factor1.SESD Mult1.Factor1.SESE
-0.17292 -0.91634

Mult1.Factor1.SESF Mult1.Factor2.MHSwell
-1.39376 0.35782

Mult1.Factor2.MHSmild Mult1.Factor2.MHSmoderate
0.03795 -0.02129

Mult1.Factor2.MHSimpaired Mult2.Factor1.SESA
-0.28029 -0.17762

Mult2.Factor1.SESB Mult2.Factor1.SESC
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-0.25156 -0.16614
Mult2.Factor1.SESD Mult2.Factor1.SESE

0.28993 0.22675
Mult2.Factor1.SESF Mult2.Factor2.MHSwell

-0.45554 0.30776
Mult2.Factor2.MHSmild Mult2.Factor2.MHSmoderate

0.09804 -0.25536
Mult2.Factor2.MHSimpaired

0.06769

Deviance: 0.5225353
Pearson chi-squared: 0.523331
Residual df: 3

6.1.3 Homogeneous effects

If the row and column factors have the same levels, or perhaps some levels in common, then the row-column interaction
could be modelled by a multiplicative interaction with homogeneous effects, that is

logµrc = αr + βc + γrγc.

For example, theoccupationalStatus data set from Goodman (1979) is a contingency table classified by the occupa-
tional status of fathers (origin) and their sons (destination). Goodman (1979) fits a row-column association model with
homogeneous effects to these data after deleting the cells on the main diagonal. Equivalently we can account for the
diagonal effects by a separateDiag term:

> data(occupationalStatus)
> RChomog <- gnm(Freq ~ origin + destination + Diag(origin, destination) +
+ Nonlin(MultHomog(origin, destination)), family = poisson,
+ data = occupationalStatus)

Initialising
Running start-up iterations..
Running main iterations........
Done

> RChomog

Call:
gnm(formula = Freq ~ origin + destination + Diag(origin, destination) +

Nonlin(MultHomog(origin, destination)), family = poisson,
data = occupationalStatus)

Coefficients:
(Intercept) origin2
-0.67122 0.57207
origin3 origin4
1.82441 2.28650
origin5 origin6
1.07137 3.25871
origin7 origin8
2.03415 1.83204

destination2 destination3
0.99108 2.16883

destination4 destination5
2.57493 1.97078

destination6 destination7
3.56218 2.78575

destination8 Diag(origin, destination)1
2.40741 1.52667

Diag(origin, destination)2 Diag(origin, destination)3

22



0.45600 -0.01598
Diag(origin, destination)4 Diag(origin, destination)5

0.38918 0.73852
Diag(origin, destination)6 Diag(origin, destination)7

0.13474 0.45764
Diag(origin, destination)8 MultHomog(origin, destination).1

0.38847 -1.74831
MultHomog(origin, destination).2 MultHomog(origin, destination).3

-1.53001 -0.93185
MultHomog(origin, destination).4 MultHomog(origin, destination).5

-0.34797 -0.33080
MultHomog(origin, destination).6 MultHomog(origin, destination).7

0.18096 0.59710
MultHomog(origin, destination).8

0.84068

Deviance: 32.56098
Pearson chi-squared: 31.20716
Residual df: 34

To determine whether it would be better to allow for heterogeneous effects on the association of the fathers’ occupa-
tional status and the sons’ occupational status, we can compare this model to the RC(1) model for these data:

> data(occupationalStatus)
> RCheterog <- gnm(Freq ~ origin + destination + Diag(origin, destination) +
+ Mult(origin, destination), family = poisson, data = occupationalStatus)

Initialising
Running start-up iterations..
Running main iterations...........
Done

> anova(RChomog, RCheterog)

Analysis of Deviance Table

Model 1: Freq ~ origin + destination + Diag(origin, destination) + Nonlin(MultHomog(origin,
destination))

Model 2: Freq ~ origin + destination + Diag(origin, destination) + Mult(origin,
destination)

Resid. Df Resid. Dev Df Deviance
1 34 32.561
2 28 29.149 6 3.412

In this case there is little gain in allowing heterogeneous effects.

6.2 Diagonal Reference Models

Diagonal reference models, proposed by Sobel (1981, 1985), are designed for contingency tables classified by factors
with the same levels. The cell means are modelled as a function of the diagonal effects, i.e., the mean responses of the
‘diagonal’ cells in which the levels of the row and column factors are the same.

Dref example 1: Political consequences of social mobility

To illustrate the use of diagonal reference models we shall use thevoting data from Clifford and Heath (1993). The data
come from the 1987 British general election and are the percentage voting Labour in groups cross-classified by the class
of the head of household (destination) and the class of their father (origin). In order to weight these percentages by
the group size, we first back-transform them to the counts of those voting Labour and those not voting Labour:

> set.seed(1)
> data(voting)
> count <- with(voting, percentage/100 * total)
> yvar <- cbind(count, voting$total - count)
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The grouped percentages may be modelled by a basic diagonal reference model, that is, a weighted sum of the diagonal
effects for the corresponding origin and destination classes. This model may be expressed as

µod =
eδ1

eδ1 + eδ2
γo +

eδ2

eδ1 + eδ2
γd.

See Section 3.2.2 for more detail on the parameterization.
The basic diagonal reference model may be fitted usinggnm as follows

> classMobility <- gnm(yvar ~ Nonlin(Dref(origin, destination)),
+ family = binomial, data = voting)

Initialising
Running main iterations........
Done

> classMobility

Call:

gnm(formula = yvar ~ Nonlin(Dref(origin, destination)), family = binomial,
data = voting)

Coefficients:
(Intercept) Dref(origin, destination).origin
-1.34325 -0.30736

Dref(origin, destination).destination Dref(origin, destination).1
-0.05501 -0.83454

Dref(origin, destination).2 Dref(origin, destination).3
0.21066 -0.61159

Dref(origin, destination).4 Dref(origin, destination).5
0.76500 1.38370

Deviance: 21.22093
Pearson chi-squared: 18.95311
Residual df: 19

and the origin and destination weights can be evaluated as below

> prop.table(exp(coef(classMobility)[2:3]))

Dref(origin, destination).origin Dref(origin, destination).destination
0.4372469 0.5627531

These results are slightly different from those reported by Clifford and Heath (1993). The reason for this is unclear: we
are confident that the above results are correct for the data as given in Clifford and Heath (1993), but have not been able
to confirm that the data as printed in the journal were exactly as used in Clifford and Heath’s analysis.

Clifford and Heath (1993) suggest that movements in and out of the salariat (class 1) should be treated differently
from movements between the lower classes (classes 2 - 5), since the former has a greater effect on social status. Thus they
propose the following model

µod =



eδ1

eδ1 + eδ2
γo +

eδ2

eδ1 + eδ2
γd if o = 1

eδ3

eδ3 + eδ4
γo +

eδ4

eδ3 + eδ4
γd if d = 1

eδ5

eδ5 + eδ6
γo +

eδ6

eδ5 + eδ6
γd if o , 1 andd , 1

To fit this model we define factors indicating movement in (upward) and out (downward) of the salariat
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> upward <- with(voting, origin != 1 & destination == 1)
> downward <- with(voting, origin == 1 & destination != 1)

Then the diagonal reference model with separate weights for socially mobile groups can be estimated as follows

> socialMobility <- gnm(yvar ~ Nonlin(Dref(origin, destination,
+ formula = ~1 + downward + upward)), family = binomial, data = voting)

Initialising
Running main iterations..........
Done

> socialMobility

Call:
gnm(formula = yvar ~ Nonlin(Dref(origin, destination, formula = ~1 +

downward + upward)), family = binomial, data = voting)

Coefficients:
(Intercept)
-1.31739

Dref(origin, destination, formula = ~1 + downward + upward).origin.(Intercept)
-0.39834

Dref(origin, destination, formula = ~1 + downward + upward).origin.downwardTRUE
0.37858

Dref(origin, destination, formula = ~1 + downward + upward).origin.upwardTRUE
0.06225

Dref(origin, destination, formula = ~1 + downward + upward).destination.(Intercept)
-0.01158

Dref(origin, destination, formula = ~1 + downward + upward).destination.downwardTRUE
-0.43218

Dref(origin, destination, formula = ~1 + downward + upward).destination.upwardTRUE
0.12247

Dref(origin, destination, formula = ~1 + downward + upward).1
-0.74021

Dref(origin, destination, formula = ~1 + downward + upward).2
0.20469

Dref(origin, destination, formula = ~1 + downward + upward).3
-0.67740

Dref(origin, destination, formula = ~1 + downward + upward).4
0.74824

Dref(origin, destination, formula = ~1 + downward + upward).5
1.37497

Deviance: 18.97407
Pearson chi-squared: 17.07493
Residual df: 17

The weights for those moving into the salariat, those moving out of the salariat and those in any other group, can be
evaluated as below

> prop.table(exp(coef(socialMobility)[c(4, 7)] + coef(socialMobility)[c(2,
+ 5)]))

Dref(origin, destination, formula = ~1 + downward + upward).origin.upwardTRUE
0.3900792

Dref(origin, destination, formula = ~1 + downward + upward).destination.upwardTRUE
0.6099208

> prop.table(exp(coef(socialMobility)[c(3, 6)] + coef(socialMobility)[c(2,
+ 5)]))
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Dref(origin, destination, formula = ~1 + downward + upward).origin.downwardTRUE
0.6044394

Dref(origin, destination, formula = ~1 + downward + upward).destination.downwardTRUE
0.3955606

> prop.table(exp(coef(socialMobility)[c(2, 5)]))

Dref(origin, destination, formula = ~1 + downward + upward).origin.(Intercept)
0.4044959

Dref(origin, destination, formula = ~1 + downward + upward).destination.(Intercept)
0.5955041

Again, the results differ slightly from those reported by Clifford and Heath (1993), but the essence of the results is the
same: the origin weight is much larger for the downwardly mobile groups than for the other groups. The weights for the
upwardly mobile groups are very similar to the base level weights, so the model may be simplified by only fitting separate
weights for the downwardly mobile groups:

> downwardMobility <- gnm(yvar ~ Nonlin(Dref(origin, destination,
+ formula = ~1 + downward)), family = binomial, data = voting)

Initialising
Running main iterations.........
Done

> downwardMobility

Call:
gnm(formula = yvar ~ Nonlin(Dref(origin, destination, formula = ~1 +

downward)), family = binomial, data = voting)

Coefficients:
(Intercept)
-1.30747

Dref(origin, destination, formula = ~1 + downward).origin.(Intercept)
-0.02851

Dref(origin, destination, formula = ~1 + downward).origin.downwardTRUE
0.39013

Dref(origin, destination, formula = ~1 + downward).destination.(Intercept)
0.38028

Dref(origin, destination, formula = ~1 + downward).destination.downwardTRUE
-0.42061

Dref(origin, destination, formula = ~1 + downward).1
-0.76240

Dref(origin, destination, formula = ~1 + downward).2
0.20095

Dref(origin, destination, formula = ~1 + downward).3
-0.68418

Dref(origin, destination, formula = ~1 + downward).4
0.73440

Dref(origin, destination, formula = ~1 + downward).5
1.36377

Deviance: 18.99389
Pearson chi-squared: 17.09981
Residual df: 18

> prop.table(exp(coef(downwardMobility)[c(3, 5)] + coef(downwardMobility)[c(2,
+ 4)]))

Dref(origin, destination, formula = ~1 + downward).origin.downwardTRUE
0.5991571

Dref(origin, destination, formula = ~1 + downward).destination.downwardTRUE
0.4008429
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> prop.table(exp(coef(downwardMobility)[c(2, 4)]))

Dref(origin, destination, formula = ~1 + downward).origin.(Intercept)
0.3992031

Dref(origin, destination, formula = ~1 + downward).destination.(Intercept)
0.6007969

Dref example 2: Conformity to parental rules

Another application of diagonal reference models is given by van der Slik et al. (2002). The data from this paper are not
publicly available4, but we shall show how the models presented in the paper may be estimated usinggnm .

The data relate to the value parents place on their children conforming to their rules. There are two response variables:
the mother’s conformity score (MCFM) and the father’s conformity score (FCFF). The data are cross-classified by two
factors describing the education level of the mother (MOPLM) and the father (FOPLF), and there are six further covariates
(AGEM, MRMM, FRMF, MWORK, MFCM and FFCF).

In their baseline model for the mother’s conformity score, van der Slik et al. (2002) include five of the six covariates
(leaving out the father’s family conflict score, FCFF) and a diagonal reference term with constant weights based on the
two education factors. This model may be expressed as

µrc = β1x1 + β2x2 + β3x3 + β4x4 + β5x5 +
eδ1

eδ1 + eδ2
γr +

eδ2

eδ1 + eδ2
γc.

The baseline model can be fitted as follows:

> set.seed(1)
> A <- gnm(MCFM ~ -1 + AGEM + MRMM + FRMF + MWORK + MFCM +
+ Nonlin(Dref(MOPLM, FOPLF)), family = gaussian, data = conformity,
+ verbose = FALSE)
> A

Call:
gnm(formula = MCFM ~ -1 + AGEM + MRMM + FRMF + MWORK + MFCM +

Nonlin(Dref(MOPLM, FOPLF)), family = gaussian, data = conformity,
verbose = FALSE)

Coefficients:
AGEM MRMM FRMF

0.06364 -0.32425 -0.25324
MWORK MFCM Dref(MOPLM, FOPLF).MOPLM

-0.06430 -0.06043 -0.33730
Dref(MOPLM, FOPLF).FOPLF Dref(MOPLM, FOPLF).1 Dref(MOPLM, FOPLF).2

-0.02507 4.95123 4.86328
Dref(MOPLM, FOPLF).3 Dref(MOPLM, FOPLF).4 Dref(MOPLM, FOPLF).5

4.86458 4.72343 4.43516
Dref(MOPLM, FOPLF).6 Dref(MOPLM, FOPLF).7

4.18873 4.43379

Deviance: 425.3389
Pearson chi-squared: 425.3389
Residual df: 576

The coefficients of the covariates are not aliased with the parameters of the diagonal reference term and thus the basic
identifiability constraints that have been imposed are sufficient for these parameters to be identified. The diagonal effects
do not need to be constrained as they represent contrasts with the off-diagonal cells. Therefore the only unidentified
parameters in this model are the weight parameters. This is confirmed in the summary of the model:

> summary(A)

4 We thank Frans van der Slik for his kindness in sending us the data.
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Call:
gnm(formula = MCFM ~ -1 + AGEM + MRMM + FRMF + MWORK + MFCM +

Nonlin(Dref(MOPLM, FOPLF)), family = gaussian, data = conformity,
verbose = FALSE)

Deviance Residuals:
Min 1Q Median 3Q Max

-3.63689 -0.50383 0.01714 0.56752 2.25140

Coefficients:
Estimate Std. Error t value Pr(>|t|)

AGEM 0.06364 0.07375 0.863 0.38859
MRMM -0.32425 0.07766 -4.175 3.44e-05
FRMF -0.25324 0.07681 -3.297 0.00104
MWORK -0.06430 0.07431 -0.865 0.38727
MFCM -0.06043 0.07123 -0.848 0.39663
Dref(MOPLM, FOPLF).MOPLM -0.33730 NA NA NA
Dref(MOPLM, FOPLF).FOPLF -0.02507 NA NA NA
Dref(MOPLM, FOPLF).1 4.95123 0.16639 29.757 < 2e-16
Dref(MOPLM, FOPLF).2 4.86328 0.10436 46.601 < 2e-16
Dref(MOPLM, FOPLF).3 4.86458 0.12855 37.842 < 2e-16
Dref(MOPLM, FOPLF).4 4.72343 0.13523 34.928 < 2e-16
Dref(MOPLM, FOPLF).5 4.43516 0.19315 22.963 < 2e-16
Dref(MOPLM, FOPLF).6 4.18873 0.17142 24.435 < 2e-16
Dref(MOPLM, FOPLF).7 4.43379 0.16903 26.231 < 2e-16

(Dispersion parameter for gaussian family taken to be 0.7384355)

Std. Error is NA where coefficient has been constrained or is unidentified

Residual deviance: 425.34 on 576 degrees of freedom
AIC: 1507.8

Number of iterations: 10

The over-parameterization of the weights is immaterial, since the weights have been constrained to sum to one as described
earlier, so the weights themselves are estimable. The weights may be evaluated as follows:

> prop.table(exp(coef(A)[6:7]))

Dref(MOPLM, FOPLF).MOPLM Dref(MOPLM, FOPLF).FOPLF
0.4225701 0.5774299

giving the values reported by van der Slik et al. (2002). All the other coefficients of model A are the same as those
reported by van der Slik et al. (2002) except the coefficients of the mother’s gender role (MRMM) and the father’s gender
role (FRMF). van der Slik et al. (2002) reversed the signs of the coefficients of these factors since they were coded in
the direction of liberal values, unlike the other covariates. However, simply reversing the signs of these coefficients does
not give the same model, since the estimates of the diagonal effects depend on the estimates of these coefficients. For
consistent interpretation of the covariate coefficients, it is better to recode the gender role factors as follows:

> MRMM2 <- as.numeric(!conformity$MRMM)
> FRMF2 <- as.numeric(!conformity$FRMF)
> A <- gnm(MCFM ~ -1 + AGEM + MRMM2 + FRMF2 + MWORK + MFCM +
+ Nonlin(Dref(MOPLM, FOPLF)), family = gaussian, data = conformity,
+ verbose = FALSE)
> A

Call:
gnm(formula = MCFM ~ -1 + AGEM + MRMM2 + FRMF2 + MWORK + MFCM +

Nonlin(Dref(MOPLM, FOPLF)), family = gaussian, data = conformity,
verbose = FALSE)
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Coefficients:
AGEM MRMM2 FRMF2

0.06364 0.32425 0.25324
MWORK MFCM Dref(MOPLM, FOPLF).MOPLM

-0.06430 -0.06043 -0.08270
Dref(MOPLM, FOPLF).FOPLF Dref(MOPLM, FOPLF).1 Dref(MOPLM, FOPLF).2

0.22955 4.37372 4.28579
Dref(MOPLM, FOPLF).3 Dref(MOPLM, FOPLF).4 Dref(MOPLM, FOPLF).5

4.28708 4.14593 3.85766
Dref(MOPLM, FOPLF).6 Dref(MOPLM, FOPLF).7

3.61123 3.85629

Deviance: 425.3389
Pearson chi-squared: 425.3389
Residual df: 576

The coefficients of the covariates are now as reported by van der Slik et al. (2002), but the diagonal effects have been
adjusted appropriately.

van der Slik et al. (2002) compare the baseline model for the mother’s conformity score to several other models in
which the weights in the diagonal reference term are dependent on one of the covariates. One particular model they
consider incorporates an interaction of the weights with the mother’s conflict score as follows:

µrc = β1x1 + β2x2 + β3x3 + β4x4 + β5x5 +
eξ1+β1x

eξ1+β1x + eξ2+β2x
γr +

eξ2+β2x

eξ1+β1x + eξ2+β2x
γc.

This model can be fitted as below, using the original coding for the gender role factors for ease of comparison to the
results reported by van der Slik et al. (2002),

> F <- gnm(MCFM ~ -1 + AGEM + MRMM + FRMF + MWORK + MFCM +
+ Nonlin(Dref(MOPLM, FOPLF, formula = ~ 1 + MFCM)), family = gaussian,
+ data = conformity, verbose = FALSE)
> F

Call:
gnm(formula = MCFM ~ -1 + AGEM + MRMM + FRMF + MWORK + MFCM +

Nonlin(Dref(MOPLM, FOPLF, formula = ~1 + MFCM)), family = gaussian,
data = conformity, verbose = FALSE)

Coefficients:
AGEM

0.05818
MRMM

-0.32701
FRMF

-0.25772
MWORK

-0.07847
MFCM

-0.01694
Dref(MOPLM, FOPLF, formula = ~1 + MFCM).MOPLM.(Intercept)

0.79413
Dref(MOPLM, FOPLF, formula = ~1 + MFCM).MOPLM.MFCM

-2.51751
Dref(MOPLM, FOPLF, formula = ~1 + MFCM).FOPLF.(Intercept)

-0.27618
Dref(MOPLM, FOPLF, formula = ~1 + MFCM).FOPLF.MFCM

2.03673
Dref(MOPLM, FOPLF, formula = ~1 + MFCM).1

4.82477
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Dref(MOPLM, FOPLF, formula = ~1 + MFCM).2
4.88066

Dref(MOPLM, FOPLF, formula = ~1 + MFCM).3
4.83969

Dref(MOPLM, FOPLF, formula = ~1 + MFCM).4
4.74849

Dref(MOPLM, FOPLF, formula = ~1 + MFCM).5
4.42019

Dref(MOPLM, FOPLF, formula = ~1 + MFCM).6
4.17956

Dref(MOPLM, FOPLF, formula = ~1 + MFCM).7
4.40819

Deviance: 420.9022
Pearson chi-squared: 420.9022
Residual df: 575

In this case there are two sets of weights, one for when the mother’s conflict score is less than average (coded as zero) and
one for when the score is greater than average (coded as one). These can be evaluated as follows:

> prop.table(exp(coef(F))[c(6,8)])

Dref(MOPLM, FOPLF, formula = ~1 + MFCM).MOPLM.(Intercept)
0.7446574

Dref(MOPLM, FOPLF, formula = ~1 + MFCM).FOPLF.(Intercept)
0.2553426

> prop.table(exp(coef(F)[c(7,9)] + coef(F)[c(6,8)]))

Dref(MOPLM, FOPLF, formula = ~1 + MFCM).MOPLM.MFCM
0.02977308

Dref(MOPLM, FOPLF, formula = ~1 + MFCM).FOPLF.MFCM
0.97022692

giving the same weights as in Table 4 of van der Slik et al. (2002).

6.3 Uniform Difference (UNIDIFF) Models

Uniform difference models (Xie, 1992; Erikson and Goldthorpe, 1992) use a simplified three-way interaction to provide
an interpretable model of contingency tables classified by three or more variables. For example, the uniform difference
model for a three-way contingency table, also known as the UNIDIFF model, is given by

µi jk = αik + β jk + exp(δk)γi j .

Theγi j represent a pattern of association that varies in strength over the dimension indexed byk, and exp(δk) represents
the relative strength of that association at levelk.

This model can be applied to theyaish data set (Yaish, 1998, 2004), which is a contingency table cross-classified by
father’s social class (orig), son’s social class (dest) and son’s education level (educ). In this case, we can consider the
importance of the association between the social class of father and son across the education levels. We omit the sub-table
which corresponds to level 7 ofdest, because its information content is negligible:

> set.seed(1)
> data(yaish)
> unidiff <- gnm(Freq ~ educ * orig + educ * dest + Mult(Exp(-1 +
+ educ), -1 + orig:dest), ofInterest = "Mult1.Factor1", family = poisson,
+ data = yaish, subset = (dest != 7))

Initialising
Running start-up iterations..
Running main iterations.............................................
Done
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> coef(unidiff)

Coefficients of interest:
Mult1.Factor1.educ1 Mult1.Factor1.educ2 Mult1.Factor1.educ3 Mult1.Factor1.educ4

-0.8242673 -1.0496391 -1.5676909 -1.8632059
Mult1.Factor1.educ5

-3.0737699

TheofInterest component has been set to index the multipliers of the association between the social class of father
and son. We can contrast each multiplier to that of the lowest education level and obtain the standard errors for these
parameters as follows:

> getContrasts(unidiff, ofInterest(unidiff))

estimate SE quasiSE quasiVar
Mult1.Factor1.educ1 0.0000000 0.0000000 0.09757438 0.00952076
Mult1.Factor1.educ2 -0.2253718 0.1611874 0.12885847 0.01660450
Mult1.Factor1.educ3 -0.7434236 0.2335083 0.21182123 0.04486823
Mult1.Factor1.educ4 -1.0389386 0.3434256 0.32609379 0.10633716
Mult1.Factor1.educ5 -2.2495026 0.9453763 0.93560641 0.87535936

Four-way contingency tables may sometimes be described by a “double UNIDIFF” model

µi jkl = αil + β jkl + exp(δl)γi j + exp(φl)θik,

where the strengths of two, two-way associations with a common variable are estimated across the levels of the fourth
variable. Thecautres data set, from Cautres et al. (1998), can be used to illustrate the application of the double UNIDIFF
model. This data set is classified by the variables vote, class, religion and election. Using a double UNIDIFF model, we
can see how the association between class and vote, and the association between religion and vote, differ between the
most recent election and the other elections:

> set.seed(1)
> data(cautres)
> doubleUnidiff <- gnm(Freq ~ election * vote + election * class *
+ religion + Mult(Exp(-1 + election), religion:vote) + Mult(Exp(-1 +
+ election), class:vote), family = poisson, data = cautres)

Initialising
Running start-up iterations..
Running main iterations..........
Done

> getContrasts(doubleUnidiff, rev(pickCoef(doubleUnidiff, "Mult1.Factor1")))

estimate SE quasiSE quasiVar
Mult1.Factor1.election4 0.00000000 0.00000000 0.07168290 0.005138439
Mult1.Factor1.election3 0.06682585 0.09906916 0.06812239 0.004640660
Mult1.Factor1.election2 0.24052778 0.09116479 0.05702819 0.003252214
Mult1.Factor1.election1 0.32834588 0.12213023 0.09803075 0.009610029

> getContrasts(doubleUnidiff, rev(pickCoef(doubleUnidiff, "Mult2.Factor1")))

estimate SE quasiSE quasiVar
Mult2.Factor1.election4 0.00000000 0.0000000 0.10934798 0.011956980
Mult2.Factor1.election3 0.08754435 0.1446833 0.09475938 0.008979340
Mult2.Factor1.election2 0.31990726 0.1320022 0.07395886 0.005469913
Mult2.Factor1.election1 -0.36183013 0.2534754 0.22854400 0.052232362
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6.4 Generalized Additive Main Effects and Multiplicative Interaction (GAMMI) Models

Generalized additive main effects and multiplicative interaction models, or GAMMI models, were motivated by two-way
contingency tables and comprise the row and column main effects plus one or more components of the multiplicative
interaction. The singular value corresponding to each multiplicative component is often factored out, as a measure of the
strength of association between the row and column scores, indicating the importance of the component, or axis.

For cell meansµrc a GAMMI-K model has the form

g(µrc) = αr + βc +

K∑
k=1

σkγkrδkc,

in which g is a link function,αr andβc are the row and column main effects,γkr andδkc are the row and column scores
for multiplicative componentk andσk is the singular value for componentk. The number of multiplicative components,
K, is less than or equal to the rank of the matrix of residuals from the main effects.

The row-column association models discussed in Section 6.1 are examples of GAMMI models, with a log link and
poisson variance. Here we illustrate the use of an AMMI model, which is a GAMMI model with an identity link and a
constant variance.

We shall use thewheat data set taken from Vargas et al. (2001), which gives wheat yields measured over ten years.
First we scale these yields and create a new treatment factor, so that we can reproduce the analysis of Vargas et al. (2001):

> set.seed(1)
> data(wheat)
> yield.scaled <- wheat$yield * sqrt(3/1000)
> treatment <- interaction(wheat$tillage, wheat$summerCrop, wheat$manure,
+ wheat$N, sep = "")

Now we can fit the AMMI-1 model, to the scaled yields using the combined treatment factor and the year factor from
thewheat dataset. We will proceed by first fitting the main effects model, then usingresidSVD (see Section 5.5) for the
parameters of the multiplicative term:

> mainEffects <- gnm(yield.scaled ~ year + treatment, family = gaussian,
+ data = wheat)

Linear predictor - using glm.fit

> svdStart <- residSVD(mainEffects, year, treatment, 3)
> bilinear1 <- update(mainEffects, . ~ . + Mult(year - 1, treatment -
+ 1), start = c(coef(mainEffects), svdStart[, 1]))

Running main iterations
Done

We can compare the AMMI-1 model to the main effects model,

> anova(mainEffects, bilinear1)

Analysis of Deviance Table

Model 1: yield.scaled ~ year + treatment
Model 2: yield.scaled ~ year + treatment + Mult(year - 1, treatment -

1)
Resid. Df Resid. Dev Df Deviance

1 207 279515
2 176 128383 31 151133

giving the same results as in Table 1 of Vargas et al. (2001) (up to error caused by rounding).
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6.5 Biplot Models

Biplots are used to display two-dimensional data transformed into a space spanned by linearly independent vectors, such
as the principal components or singular vectors. The plot represents the levels of the two classifying factors by their scores
on the two axes which show the most information about the data, for example the first two principal components.

A rank-n model is a model based on the firstn components of the decomposition. In the case of a singular value
decomposition, this is equivalent to a model withn components of the multiplicative interaction.

To illustrate the use of biplot models, we shall use thebarley data set which describes the incidence of leaf blotch
over ten varieties of barley grown at nine sites (Wedderburn, 1974; Gabriel, 1998). The biplot model is fitted as follows:

> data(barley)
> set.seed(1)
> biplotModel <- gnm(y ~ -1 + Mult(site, variety, multiplicity = 2),
+ family = wedderburn, data = barley)

Initialising
Running start-up iterations..
Running main iterations.........................................................
..........................................................................
Done

using thewedderburn family function introduced in Section 2. Matrices of the row and column scores for the first two
singular vectors can then be obtained by:

> barleySVD <- svd(matrix(biplotModel$predictors, 10, 9))
> A <- sweep(barleySVD$v, 2, sqrt(barleySVD$d), "*")[, 1:2]
> B <- sweep(barleySVD$u, 2, sqrt(barleySVD$d), "*")[, 1:2]
> A

[,1] [,2]
[1,] 4.1948212 -0.39186806
[2,] 2.7642419 -0.33951298
[3,] 1.4250456 -0.04654256
[4,] 1.8463067 0.33365981
[5,] 1.2704091 0.15776743
[6,] 1.1562916 0.40048225
[7,] 1.0172048 0.72727990
[8,] 0.6451366 1.46162702
[9,] -0.1470898 2.13234195

> B

[,1] [,2]
[1,] -2.0673655 -0.97420449
[2,] -3.0599788 -0.50683009
[3,] -2.9598021 -0.33190618
[4,] -1.8086251 -0.49758487
[5,] -1.5579480 -0.08444513
[6,] -1.8939998 1.08460534
[7,] -1.1790432 0.40687015
[8,] -0.8490092 1.14671353
[9,] -0.9704664 1.26558193
[10,] -0.6036790 1.39655898

These matrices are essentially the same as in Gabriel (1998). From these the biplot can be produced, for sitesA . . . I and
varieties 1. . . 9,X:

> plot(rbind(A, B), pch = c(levels(barley$site), levels(barley$variety)),
+ xlim = c(-4, 4), ylim = c(-4, 4), main = "Biplot for barley data")
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The product of the matricesA andB is unaffected by rotation or reciprocal scaling along either axis, so we can rotate the
data so that the points for the sites are roughly parallel to the horizontal axis and the points for the varieties are roughly
parallel to the vertical axis. In addition, we can scale the data so that points for the sites are about the line one unit about
the horizontal axis, roughly

> a <- pi/5
> rotation <- matrix(c(cos(a), sin(a), -sin(a), cos(a)), 2, 2,
+ byrow = TRUE)
> rA <- (2 * A/3) %*% rotation
> rB <- (3 * B/2) %*% rotation
> plot(rbind(rA, rB), pch = c(levels(barley$site), levels(barley$variety)),
+ xlim = c(-4, 4), ylim = c(-4, 4), main = "Biplot (rotated) for barley data")
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In the original biplot, the co-ordinates for the sites and varieties were given by the rows of A and B respectively, i.e

αT
i =

√
(d)(u1i ,u2i)

βT
j =

√
(d)(v1 j , v2 j)

The rotated and scaled biplot suggests the simpler model

αT
i = (γi ,1)

βT
j = (δ j , τ j)

which implies the following model for the logits of the leaf blotch incidence:

αT
i β j = γiδ j + τ j .

Gabriel (1998) describes this as a double additive model, which we can fit as follows:

> variety.binary <- factor(match(barley$variety, c(2, 3, 6), nomatch = 0) >
+ 0, labels = c("rest", "2,3,6"))
> doubleAdditive <- gnm(y ~ variety + Mult(site, variety.binary),
+ family = wedderburn, data = barley)

Initialising
Running start-up iterations..
Running main iterations...........................
Done

Comparing the chi-squared statistics, we see that the double additive model is an adequate model for the leaf blotch
incidence:

> biplotModChiSq <- sum(residuals(biplotModel, type = "pearson")^2)
> doubleAddChiSq <- sum(residuals(doubleAdditive, type = "pearson")^2)
> c(doubleAddChiSq - biplotModChiSq, doubleAdditive$df.residual -
+ biplotModel$df.residual)

[1] 9.513782 15.000000
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6.6 Stereotype Model

The stereotype model was proposed by Anderson (1984) for ordered categorical data. It is a linear logistic model, in
which there is assumed to be a common relationship between the response and the covariates in the model, but the scale
of this association varies between categories and there is an additional category main effect or category-specific intercept:

logµic = β0c + γc

∑
r

βr xir .

This model can be estimated by re-expressing the categorical data as counts and using agnmmodel with a log link and
poisson variance function. Thegnm package includes the utility functionexpandCategorical to facilitate the required
data processing.

For example, thebackPain data set from Anderson (1984) describes the progress of patients with back pain. The
data set consists of an ordered factor quantifying the progress of each patient, and three prognostic variables. These data
can be re-expressed as follows:

> set.seed(1)
> data(backPain)
> backPain[1:2, ]

x1 x2 x3 pain
1 1 1 1 same
2 1 1 1 marked.improvement

> backPainLong <- expandCategorical(backPain, "pain")
> backPainLong[1:12, ]

x1 x2 x3 pain count id
1 1 1 1 worse 0 1
1.1 1 1 1 same 1 1
1.2 1 1 1 slight.improvement 0 1
1.3 1 1 1 moderate.improvement 0 1
1.4 1 1 1 marked.improvement 0 1
1.5 1 1 1 complete.relief 0 1
2 1 1 1 worse 0 2
2.1 1 1 1 same 0 2
2.2 1 1 1 slight.improvement 0 2
2.3 1 1 1 moderate.improvement 0 2
2.4 1 1 1 marked.improvement 1 2
2.5 1 1 1 complete.relief 0 2

We can now fit the stereotype model to these data:

> oneDimensional <- gnm(count ~ pain + Mult(pain - 1, x1 + x2 +
+ x3 - 1), eliminate = id, family = "poisson", data = backPainLong)

Initialising
Running start-up iterations..
Running main iterations................
Done

> oneDimensional

Call:
gnm(formula = count ~ pain + Mult(pain - 1, x1 + x2 + x3 - 1),

eliminate = id, family = "poisson", data = backPainLong)

Coefficients of interest:
painsame painslight.improvement
16.1578 15.6848

painmoderate.improvement painmarked.improvement
12.4556 19.9140
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paincomplete.relief Mult1.Factor1.painworse
21.6653 -0.3351

Mult1.Factor1.painsame Mult1.Factor1.painslight.improvement
1.9154 1.7941

Mult1.Factor1.painmoderate.improvement Mult1.Factor1.painmarked.improvement
1.2622 2.4625

Mult1.Factor1.paincomplete.relief Mult1.Factor2.x1
2.9238 -1.6484

Mult1.Factor2.x2 Mult1.Factor2.x3
-0.9455 -0.8324

Deviance: 303.1003
Pearson chi-squared: 433.3727
Residual df: 493

specifying theid factor througheliminate so that the 101id effects are estimated more efficiently and are excluded
from printed model summaries by default. This model is one dimensional since it involves only one function ofx =
(x1, x2, x3). We can compare this model to one with category-specific coefficents of thex variables, as may be used for a
qualitative categorical response:

> threeDimensional <- gnm(count ~ pain + pain:(x1 + x2 + x3), eliminate = id,
+ family = "poisson", data = backPainLong)

Initialising
Running main iterations..........
Done

> threeDimensional

Call:
gnm(formula = count ~ pain + pain:(x1 + x2 + x3), eliminate = id,

family = "poisson", data = backPainLong)

Coefficients of interest:
painsame painslight.improvement
36.0994 35.7186

painmoderate.improvement painmarked.improvement
32.6011 39.8017

paincomplete.relief painworse:x1
42.2498 10.6708

painsame:x1 painslight.improvement:x1
-2.8855 -2.5559

painmoderate.improvement:x1 painmarked.improvement:x1
-2.2924 -4.1156

paincomplete.relief:x1 painworse:x2
-4.6275 0.4189

painsame:x2 painslight.improvement:x2
-2.2551 -2.1325

painmoderate.improvement:x2 painmarked.improvement:x2
-1.2531 -2.4249

paincomplete.relief:x2 painworse:x3
-2.8561 -1.7476

painsame:x3 painslight.improvement:x3
-2.9031 -3.0397

painmoderate.improvement:x3 painmarked.improvement:x3
-2.4938 -3.4391

paincomplete.relief:x3
-4.6883

Deviance: 299.0152
Pearson chi-squared: 443.0043
Residual df: 485
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This model has the maximum dimensionality of three (as determined by the number of covariates). To obtain the log-
likelihoods as reported in Anderson (1984) we need to adjust for the extra parameters introduced to formulate the models
as Poisson models. We write a simple function to do this and compare the log-likelihoods of the one dimensional model
and the three dimensional model:

> logLikMultinom <- function(model) {
+ object <- get(model)
+ if (inherits(object, "gnm")) {
+ l <- logLik(object) + object$eliminate
+ c(nParameters = attr(l, "df") - object$eliminate, logLikelihood = l)
+ }
+ else c(nParameters = object$edf, logLikelihood = -deviance(object)/2)
+ }
> t(sapply(c("oneDimensional", "threeDimensional"), logLikMultinom))

nParameters logLikelihood
oneDimensional 12 -151.5501
threeDimensional 20 -149.5076

which show that theoneDimensional model is adequate.
To obtain estimates of the category-specific multipliers in the stereotype model, we need to constrain both the location

and the scale of these parameters. The latter constraint can be imposed by fixing the slope of one of the covariates in the
second multiplier to1, which may be achieved by specifying the covariate as an offset:

> summary(oneDimensional)

Call:
gnm(formula = count ~ pain + Mult(pain - 1, x1 + x2 + x3 - 1),

eliminate = id, family = "poisson", data = backPainLong)

Deviance Residuals:
Min 1Q Median 3Q Max

-0.9708 -0.6506 -0.4438 -0.1448 2.1385

Coefficients of interest:
Estimate Std. Error z value Pr(>|z|)

painsame 16.1578 NA NA NA
painslight.improvement 15.6848 6.5274 2.403 0.01626 *
painmoderate.improvement 12.4556 NA NA NA
painmarked.improvement 19.9140 6.4976 3.065 0.00218 **
paincomplete.relief 21.6653 NA NA NA
Mult1.Factor1.painworse -0.3351 NA NA NA
Mult1.Factor1.painsame 1.9154 NA NA NA
Mult1.Factor1.painslight.improvement 1.7941 NA NA NA
Mult1.Factor1.painmoderate.improvement 1.2622 NA NA NA
Mult1.Factor1.painmarked.improvement 2.4625 NA NA NA
Mult1.Factor1.paincomplete.relief 2.9238 NA NA NA
Mult1.Factor2.x1 -1.6484 NA NA NA
Mult1.Factor2.x2 -0.9455 NA NA NA
Mult1.Factor2.x3 -0.8324 NA NA NA
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for poisson family taken to be 1)

Std. Error is NA where coefficient has been constrained or is unidentified

Residual deviance: 303.1 on 493 degrees of freedom
AIC: 731.1

Number of iterations: 16
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> oneDimensional <- gnm(count ~ pain + Mult(pain - 1, offset(x1) +
+ x2 + x3 - 1), eliminate = id, family = "poisson", data = backPainLong)

Initialising
Running start-up iterations..
Running main iterations..............
Done

> summary(oneDimensional)

Call:
gnm(formula = count ~ pain + Mult(pain - 1, offset(x1) + x2 +

x3 - 1), eliminate = id, family = "poisson", data = backPainLong)

Deviance Residuals:
Min 1Q Median 3Q Max

-0.9708 -0.6506 -0.4438 -0.1448 2.1385

Coefficients of interest:
Estimate Std. Error z value Pr(>|z|)

painsame 16.1578 6.5741 2.458 0.013980 *
painslight.improvement 15.6848 6.5274 2.403 0.016265 *
painmoderate.improvement 12.4555 6.4312 1.937 0.052777 .
painmarked.improvement 19.9140 6.4975 3.065 0.002178 **
paincomplete.relief 21.6653 6.5571 3.304 0.000953 ***
Mult1.Factor1.painworse 1.3694 NA NA NA
Mult1.Factor1.painsame -2.3404 NA NA NA
Mult1.Factor1.painslight.improvement -2.1403 NA NA NA
Mult1.Factor1.painmoderate.improvement -1.2636 NA NA NA
Mult1.Factor1.painmarked.improvement -3.2422 NA NA NA
Mult1.Factor1.paincomplete.relief -4.0025 NA NA NA
Mult1.Factor2.x2 0.5736 0.2178 2.633 0.008451 **
Mult1.Factor2.x3 0.5050 0.2431 2.077 0.037807 *
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for poisson family taken to be 1)

Std. Error is NA where coefficient has been constrained or is unidentified

Residual deviance: 303.1 on 493 degrees of freedom
AIC: 731.1

Number of iterations: 14

The location of the category-specific multipliers can constrained by setting one of the parameters to zero, either through
theconstrain argument ofgnm or with getContrasts:

> getContrasts(oneDimensional, pickCoef(oneDimensional, "Mult.*pain"))

estimate SE quasiSE quasiVar
Mult1.Factor1.painworse 0.000000 0.000000 1.7797287 3.1674342
Mult1.Factor1.painsame -3.709725 1.825561 0.4281331 0.1832980
Mult1.Factor1.painslight.improvement -3.509685 1.791725 0.4024680 0.1619805
Mult1.Factor1.painmoderate.improvement -2.632931 1.669250 0.5518544 0.3045433
Mult1.Factor1.painmarked.improvement -4.611584 1.895233 0.3133219 0.0981706
Mult1.Factor1.paincomplete.relief -5.371842 1.999651 0.4919552 0.2420199

giving the required estimates.
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A User-level Functions

We list here, for easy reference, all of the user-level functions in thegnm package. For full documentation see the package
help pages.

Model Fitting

gnm fit generalized nonlinear models

Model Specification

Diag create factor differentiating diagonal elements
Symm create symmetric interaction of factors
Topo create ‘topological’ interaction factors
Mult specify a multiplicative interaction in agnm formula
Exp specify an exponentiated constituent multiplier in aMult term
Nonlin specify a special nonlinear term in agnm formula
Dref gnm plug-in function to fit diagonal reference terms
MultHomog gnm plug-in function to fit multiplicative interactions with homogeneous effects
wedderburn specify the Wedderburn quasi-likelihood family

Methods and Accessor Functions

confint.gnm compute confidence intervals ofgnmparameters based on the profiled deviance
confint.profile.gnm compute confidence intervals of parameters from aprofile.gnmobject
profile.gnm profile deviance for parameters in agnmmodel
plot.profile.gnm plot profile traces from aprofile.gnmobject
summary.gnm summarizegnmfits
residSVD multiplicative approximation of model residuals
exitInfo print numerical details of last iteration whengnm has not converged
ofInterest extract theofInterest component of agnmobject
ofInterest<- replace theofInterest component of agnmobject
parameters get model parameters from agnm object, including parameters that were con-

strained
pickCoef get indices of model parameters
getContrasts estimate contrasts and their standard errors for parameters in agnmmodel
checkEstimable check whether one or more parameter combinations in agnmmodel is identified
se get standard errors of linear parameter combinations ingnmmodels
termPredictors (generic) extract term contributions to predictor

Auxiliary Functions

asGnm coerce an object of classlm or glm to classgnm
expandCategorical expand a data frame by re-expressing categorical data as counts
getModelFrame get the model frame in use bygnm
MPinv Moore-Penrose pseudoinverse of a real-valued matrix
qrSolve Minimum-length solution of a linear system
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