glm.mids {mice}R Documentation

Generelized Linear Regression on Multiply Imputed Data

Description

Performs repeated glm on a multiply imputed data set

Usage

    glm.mids(formula=formula(data), family=gaussian, data=sys.parent(), weights, 
    subset, na.action, start=eta, control=glm.control(...), method="glm.fit",
    model=FALSE,x=FALSE, y=TRUE, contrasts=NULL, ...)

Arguments

formula a formula expression as for other regression models, of the form response ~ predictors. See the documentation of lm and formula for details.
data An object of type mids, which stands for 'multiply imputed data set', typically created by function mice().
family see glm
weights
subset see glm
na.action see glm
start see glm
control see glm
method see glm
model see glm
x see glm
y see glm
contrasts see glm
... not used.

Details

see glm

Value

An objects of class mira, which stands for 'multiply imputed repeated analysis'. This object contains m glm.objects, plus some descriptive information.

Author(s)

Stef van Buuren, Karin Oudshoorn, 2000

References

Van Buuren, S. & Oudshoorn, C.G.M. (2000). Multivariate Imputation by Chained Equations: MICE V1.0 User's manual. Report PG/VGZ/00.038, TNO Prevention and Health, Leiden.

See Also

glm, mids, mira

Examples

data(nhanes)
imp <- mice(nhanes)     # do default multiple imputation on a numeric matrix
glm.mids((hyp==2)~bmi+chl,data=imp)
    # fit
    # $call:
    # glm.mids(formula = (hyp == 2) ~ bmi + chl, data = imp)
    # 
    # $call1:
    # mice(data = nhanes)
    # 
    # $nmis:
    #  age bmi hyp chl 
    #    0   9   8  10
    # 
    # $analyses:
    # $analyses[[1]]:
    # Call:
    # glm(formula = formula, data = data.i)
    # 
    # Coefficients:
    #  (Intercept)         bmi         chl 
    #   -0.4746337 -0.01565534 0.005417846
    # 
    # Degrees of Freedom: 25 Total; 22 Residual
    # Residual Deviance: 2.323886 
    # 
    # $analyses[[2]]:
    # Call:
    # glm(formula = formula, data = data.i)
    # 
    # Coefficients:
    #  (Intercept)         bmi         chl 
    #   -0.1184695 -0.02885779 0.006090282
    # 
    # Degrees of Freedom: 25 Total; 22 Residual
    # Residual Deviance: 3.647927 
    # 
    # $analyses[[3]]:
    # Call:
    # glm(formula = formula, data = data.i)
    # 
    # Coefficients:
    #  (Intercept)          bmi         chl 
    #   -0.1503616 -0.003002851 0.002130091
    # 
    # Degrees of Freedom: 25 Total; 22 Residual
    # Residual Deviance: 3.799126 
    # 
    # $analyses[[4]]:
    # Call:
    # glm(formula = formula, data = data.i)
    # 
    # Coefficients:
    #  (Intercept)        bmi         chl 
    #  0.009442083 -0.0237619 0.004631881
    # 
    # Degrees of Freedom: 25 Total; 22 Residual
    # Residual Deviance: 3.874522 
    # 
    # $analyses[[5]]:
    # Call:
    # glm(formula = formula, data = data.i)
    # 
    # Coefficients:
    #  (Intercept)         bmi         chl 
    #   0.09932161 -0.02168292 0.003857599
    # 
    # Degrees of Freedom: 25 Total; 22 Residual
    # Residual Deviance: 4.025066 
    # 
    # 
    # > 
    # 


[Package mice version 1.14 Index]