mainSimul {rhosp} | R Documentation |
main simulates nbBed times the first model with the function simul and calculates the risk constant R and CR by solving the renewal equation (*). this renewal equation is only valid if the Xi forms a poisson process. R and CR are defined such that the equivalent survival function is CR * exp(-R*x)
mainSimul(nbBed, nbPatient, disXi, disP, toplot = FALSE, calc = TRUE)
nbBed |
the number of beds |
nbPatient |
the number of patient in each bed |
disXi |
the distribution of the variable Xi : disXi is a 3 elements list : rangen <=> a random positive variable generator ; nbparam <=> number of parameter of this distribution and param <=> a list of parameters |
disP |
the "distribution" of the success probability of Zi : p : disP is a 3 elements list : disfun <=> a distribution function ; nbparam <=> number of parameter of this distribution and param <=> a list of parameters |
toplot |
a logical variable to plot the variable Zi |
calc |
should the risk constants calculate? |
return a list of the following components
Describe the value returned If it is a LIST, use
comp1 |
Description of 'comp1' |
comp2 |
Description of 'comp2' |
...
CJ
arg1Exp<-list(rangen=rexp,nbparam=1,param=list(1/3)); arg1Bin<-list(rangen=rbinom,nbparam=2,param=list(1,1/20)); arg1Unif<-list(rangen=runif,nbparam=2,param=list(0,20)); arg1Lnorm<-list(rangen=rlnorm,nbparam=2,param=list(1/4,1)); arg2Exp<-list(disfun=pexp,nbparam=1,param=list(1/5)); arg2Cst<-list(disfun=pcst<-function(x,p) p ,nbparam=1,param=list(1/3)); arg2Comp<-list(disfun=pcomp<-function(x,mu1,mu2,mu3){1-1/3*exp(-mu1* x)-1/2*exp(-mu2 *x)-1/6*exp(-mu3 *x)} ,nbparam=3,param=list(1/3,1/5,1/10)); arg2Gamma<-list(disfun=pgamma,nbparam=2,param=list(3,1/3)); arg2Lnorm<-list(disfun=plnorm,nbparam=2,param=list(1/20,2)); T<-mainSimul(100,100,arg1Exp,arg2Exp)