
GenABEL tutorial

Yurii Aulchenko

March 20, 2007

Contents

1 Introduction 2
1.1 Overview . 2
1.2 Loading GenABEL and example data 3

2 Working with gwaa.data-class 3
2.1 General description of gwaa.data-class 3
2.2 Sub-setting vectors and matrices 7
2.3 Working with data frames . 11
2.4 Sub-setting and coercing gwaa.data 13

3 Simple analysis of phenotypic and genotypic data 17
3.1 Exploring binary traits . 17
3.2 Exploring quantitative traits . 17
3.3 Regression analysis . 20

4 Phenotypic and genotypic QC 21
4.1 Exploring genetic data . 21
4.2 Genotypic QC . 23
4.3 Phenotypic QC . 31

5 Analysis of selected region 31
5.1 Exploring linkage disequilibrium 31
5.2 Haplotype analysis . 32
5.3 Analysis of interactions . 32
5.4 Exploring public databses . 32

A GWA analysis protocol 33
A.1 Genetic data descriptives and QC 33
A.2 GWA analysis . 33
A.3 Regional analyses . 34

B Importing data to GenABEL 36

1

C Answers to exercises 37
C.1 Exercise 1: . 37
C.2 Exercise 2: . 37
C.3 Exercise 3: . 39
C.4 Exercise 4: . 39
C.5 Exercise 5: . 39
C.6 Exercise 6: . 40
C.7 Exercise 7: . 41
C.8 Exercise 8: . 43

1 Introduction

1.1 Overview

GenABEL is an R library developed to facilitate Genome-Wide Association (GWA)
analysis of binary and quantitative traits. GenABEL is implemented as an R li-
brary. R is a free, open source language and environment for general-purpose
statistical analysis (available at http://www.r-project.org/). It implements pow-
erful data management and analysis tools. Though it is not strictly necessary
to learn everything about R to run GenABEL, it is highly recommended as this
knowledge will improve flexibility and quality of your analysis.

This tutorial was originally written to serve as a set of exercises for the
”Advances in population-based studies of complex genetic disorders” (GE03)
course of the Netherlands Institute of Health Sciences (Nihes).

If you read this tutorial not as a part of the GE03 course, and you are eager
to start with you GWA analysis without reading all the not-so-strictly-necessary
staff, start directly from the section 4 (”Phenotypic and genotypic QC”).

For the course participants, and the ones who decided to learn all details, be
prepared for long exercise. During this exercise you will cover data structures
used in GenABEL, and R and GenABEL commands, which are helpful in analysis
of GWA data. To make the exercise fast and simple, we will analyse data
on small region spanning about 2.5 Mb and containing 833 single-nucleotide
polymorphisms (SNPs) only. However, the logic of this exercise is extendible to
a whole-genome scan.

Association between several traits (one binary and several quantitative) and
SNPs covering the region will be analysed during the exercise.

First, in the section 2 (”Working with gwaa.data-class”) you will learn about
the gwaa.data-class, which is used to store GWA data in GenaABEL. Next,
you will cover some R basics, such as sub-setting of vectors and matrices (section
2.2, ”Sub-setting vectors and matrices”) and data frames (section 2.3, ”Work-
ing with data frames”). The last subsection (2.4, ”Sub-setting and coercing
gwaa.data”) of section 2 shows how one can do sub-setting of gwaa.data-class
objects. You will need that to manage your data, e.g. select and do some region-
specific analyses or perform analyses in subsets of your study population.

In the next section, 3 (”Simple analysis of phenotypic and genotypic data”),
you will learn how to use R to do simple analyses (tables, testing distributions,
regression...) of your data.

Section 4 (”Phenotypic and genotypic QC”) will exemplify basic phenotypic
and genotypic Quality Control (QC) procedures implemented in GenABEL.

2

Section ?? (”??”) is the core of the tutorial; it shows how GWA analysis is
done using GenABEL.

The last section, 5 (”Analysis of selected region”), is dedicated to analysis of
haplotype association and analysis of SNP interactions.

Appendix A oulines the formal step-by-step protocol for GWA analysis. In-
formation on importing the data from different formats to GenABEL is given in
appendix B. Answers to exercises are provided in appendix C.

Experienced R users may take the following sequence: start with the next
subsection (1.2, ”Loading GenABEL and example data”) and read general descrip-
tion of the gwaa.data-class (subsection 2.1, ”General description of gwaa.data-
class”), then jump to the subsection 2.4 (”Sub-setting and coercing gwaa.data”).
Skip section 3 (”Simple analysis of phenotypic and genotypic data”), and then
continue from section 4 (”Phenotypic and genotypic QC”) on.

1.2 Loading GenABEL and example data

Before you can start with the exercise, you need to start R and load GenABEL
library using command

> library(GenABEL)

Please mind capital and lower case letters – otherwise the library will not
load.

After that, you can load the data with the command

> data(srdta)

If you did everything right, you should be able to inspect the data space
with ls() and see the existing data objects:

> ls()

[1] "srdta"

This output says you that one data object, srdta, was loaded.

Summary:

� GenABEL is loaded using command library(GenABEL).

� You can see loaded data objects using command ls().

2 Working with gwaa.data-class

2.1 General description of gwaa.data-class

The object you have loaded, srdta, belongs to the gwaa.data-class. This is
a special class developed to facilitate GWA analysis.

3

object
gwaa.data-class
All GWA data

object@gtdata
snp.data-class
All genetic data

object@phdata
data.frame-class
Phenotypic data

object@gtdata@nids
integer
of people in study

object@gtdata@male
vector of integer
Sex (1=male, 0=female)

object@gtdata@idnames
vector of character
IDs of study participants

object@gtdata@nsnps
integer
of SNPs in study

object@gtdata@snpnames
vector of character
IDs of study SNPs

object@gtdata@chromosome
vector of character
Chromosome label (1, 2, ... X)

object@gtdata@map
vector of double
SNPs map positions

object@gtdata@gtps
snp.mx-class
Genotypic data in compressed format

Figure 1: Structure of gwaa.data-class. In every box, first line contains the
object and slot names, second line describes the class of this object, and third
line describes what information is contained.

In GWA analysis, different types of data are used. These include the pheno-
typic and genotypic data on the study participants and chromosome and location
of every SNP. One could attempt to store all phenotypes and genotypes together
in a single table, using, e.g. one row per study subject; than the columns will
correspond to study phenotypes and SNPs. For a typical GWA data set, this
would lead to a table of few thousands rows and few hundreds of thousands of
columns. Such a format is generated when one downloads HapMap data for a
region. To store GWA data in such tables internally, within R, proves to be
inefficient. In GenABEL, special data class, gwaa.data-class is used to store
GWA data. The structure of this data class is shown at the figure 1.

An object of some class has ”slots”which may contain actual data or objects
of other classes. The information stored at a particular slot of an object can
be accessed by command object@slot.

4

At the first level, a gwaa.data-class object has slot phdata, which con-
tains all phenotypic information in a data frame (data.frame-class object),
and slot gtdata, which contains all GWA genetic information in an object of
class snp.data-class (figure 1). This class, in turn, has slots nids, contain-
ing the number of study subjects, idnames, containing all ID names of these
subjects, male, containing the sex code for the subjects (1=male, 0=female),
nsnps, containing the number of SNPs typed, snpnames, containing the SNP
names, chromosome, containing the name of the chromosome the SNPs belong
to and slot map with map position of SNPs.

If you would like to know, how many SNPs were included in the study (slot
nsnps of the slot gtdata of srdta), you need to run command

> srdta@gtdata@nsnps

[1] 833

Thus, 833 SNPs were typed in the study. You can access information stored in
any slot in this manner.

Before you start with the exercise, you will need to learn about several useful
functions. First function, length(A), returns the total length (the number of
elements) of vector A. For example, the number of elements in slot snpnames of
the slot gtdata of the object srdta must be 833 (because there are 833 SNPs
described). To get this result, you can run:

> length(srdta@gtdata@snpnames)

[1] 833

Other useful function taking the sum over all elements of a vector A is sum(A).
If there are missing values in A, the sum over non-missing elements may be
computed with sum(A,na.rm=TRUE). For example:

> a <- c(0, 1, 2)

> sum(a)

[1] 3

> b <- c(0, 1, 2, NA)

> sum(b)

[1] NA

> sum(b, na.rm = T)

[1] 3

Function mean(A) returns the mean of the values of A. If there are miss-
ing values in A, the mean over non-missing members may be computed with
mean(A,na.rm=TRUE). For example:

> mean(a)

[1] 1

5

> mean(b)

[1] NA

> mean(b, na.rm = T)

[1] 1

Meanwhile, we have created new data entries a and b. At any time, you can
see all data objects by using ls():

> ls()

[1] "a" "b" "srdta"

A help page on any of the R functions may be accessed via help(function).
For example, to get help on the sum() function, type help(sum). Please check
the help on R functions sum() and mean(). You can also read general man page
on GenABEL using help(GenABEL). To see help on gwaa.data-class, you can
use help("gwaa.data-class") (mind the quotation marks!).

Exercise 1 Explore the content of different slots of srdta.

1. How many people are included in the study?

2. How many of these are males?

3. How many are females?

4. What is male proportion?

Summary:

� An object of some class has ”slots” which may contain actual data or
objects of other classes. The information stored at a particular slot of an
object can be accessed by command object@slot.

� GenABEL uses special data class, gwaa.data-class, to store GWA data.

� Function length(A) returns number of elements in A.

� Function sum(A) returns sum of elements in A. Function
sum(A,na.rm=TRUE) returns sum of measured elements of A.

� Function mean(A) returns mean of A. Function mean(A,na.rm=TRUE) re-
turns mean of A over the measured elements.

6

2.2 Sub-setting vectors and matrices

One of the most important data operations in R is sub-setting. This refers to
operations which help you deriving a subset of data. Let us create a short vector
and play a bit with sub-setting. This vector will contain 5 simple character
strings:

> a <- c("I am element 1", "I am element 2", "I am element 3",

+ "I am element 4", "I am element 5")

> a

[1] "I am element 1" "I am element 2" "I am element 3" "I am element 4"
[5] "I am element 5"

To find out what is the value of the i-th element of this vector, you can
sub-set it by a[i]. For example the 3rd elements is:

> a[3]

[1] "I am element 3"

You can also select bigger sub-sets, e.g. all elements from 2 to 4:

> a[2:4]

[1] "I am element 2" "I am element 3" "I am element 4"

and even get disjoint elements; e.g. if you want to retrieve elements 1, 3, and 5,
you can do

> dje <- c(1, 3, 5)

> dje

[1] 1 3 5

> a[dje]

[1] "I am element 1" "I am element 3" "I am element 5"

Exercise 2 Explore the gtdata slot of the srdta

1. What is the ID and sex of the first person in the data set?

2. Of the 22nd person?

3. How many males are observed among first hundred subjects?

4. How many FEMALES are among 4th hundred?

5. What is the male proportion in first 1000 people?

6. What is the FEMALE proportion in second 1000 (1001:2000) people?

7. What is name, chromosome and map position of 33rd maker?

8. What is distance between markers 25 and 26? You can directly subtract
two numbers in R.

7

One of very attractive features of R data objects is possibility to derive sub-
sets based on some condition. Let us consider two vectors, tmphgt, containing
the height of some subjects, and tmpids, containing their IDs:

> tmphgt <- c(150, 175, 182, 173, 192, 168)

> tmphgt

[1] 150 175 182 173 192 168

> tmpids <- c("fem1", "fem2", "man1", "fem3", "man2", "man3")

> tmpids

[1] "fem1" "fem2" "man1" "fem3" "man2" "man3"

Imagine you want to derive the IDs of people with height over 170 cm. The
way to do it is to combine several steps. First, you can run the logical function
>170 on the height data:

> vec <- (tmphgt > 170)

> vec

[1] FALSE TRUE TRUE TRUE TRUE FALSE

This returns logical vector whose elements are true, when particular element
of tmphgt satisfies the condition >170. Such logical vector, in turn, may be
applied to sub-set any other vector of the same length1, including itself. If you
want to see what are the heights in people taller than 170 cm, you can use

> tmphgt[vec]

[1] 175 182 173 192

or you can get IDs of these people with

> tmpids[vec]

[1] "fem2" "man1" "fem3" "man2"

You can combine more than one logical condition to derive sub-sets. For
example, to see what are the IDs of people taller than 170 but shorter than 190
cm, you ca use

> vec <- (tmphgt > 170 & tmphgt < 190)

> vec

[1] FALSE TRUE TRUE TRUE FALSE FALSE

> tmpids[vec]

[1] "fem2" "man1" "fem3"

1Actually, you can apply it to a longer vector too, and then the logical vector will be
”expanded” to total length by repeating the original vector head-to-tail. However, we will not
use this in our exercises.

8

Other, and easier2 way to do the same is to use which() function. This
function reports which elements pass logical condition. To obtain above results
you can run:

> vec <- which(tmphgt > 170 & tmphgt < 190)

> vec

[1] 2 3 4

> tmpids[vec]

[1] "fem2" "man1" "fem3"

You can remove tmphgt and tmpids variable so they will not interfere with
our future analysis:

> ls()

[1] "a" "b" "dje" "srdta" "tmphgt" "tmpids" "vec"

> rm(tmphgt)

> rm(tmpids)

and check if the removal was successful:

> ls()

[1] "a" "b" "dje" "srdta" "vec"

Exercise 3 Explore slot containing map (map) and slot containing SNP names
(snpnames) of the gtdata slot of srdta.

1. What are names of markers located after 2,490,000 b.p.?

2. Between 1,100,000 and 1,105,000 b.p.?

Sub-setting for 2D objects (matrices) is done in similar manner. Let us
construct a simple matrix and do several sub-setting operations on it:

> a <- matrix(c(11, 12, 13, 21, 22, 23, 31, 32, 33), nrow = 3,

+ ncol = 3)

> a

[,1] [,2] [,3]
[1,] 11 21 31
[2,] 12 22 32
[3,] 13 23 33

2Because it treats NAs for you

9

To obtain the element in the 2nd row and 2nd column

> a[2, 2]

[1] 22

...the second row and third column:

> a[2, 3]

[1] 32

To obtain the 2x2 set of elements contained in upper left corner, you can do

> a[1:2, 1:2]

[,1] [,2]
[1,] 11 21
[2,] 12 22

Or you can even get the variables, which reside in corners:

> a[c(1, 3), c(1, 3)]

[,1] [,2]
[1,] 11 31
[2,] 13 33

If one of the dimensions is not specified, complete list is returned for this
dimension. For example, here we retrieve the first row

> a[1,]

[1] 11 21 31

...and third column

> a[, 3]

[1] 31 32 33

...or columns 1 and 3:

> a[, c(1, 3)]

[,1] [,2]
[1,] 11 31
[2,] 12 32
[3,] 13 33

As well as with vectors, you can sub-set matrices using logical conditions or
indexes. GWA genetic data are stored in matrices, and you can sub-set them
using the methods described above.

For example, if we want to see what elements of a are greater than 21, we
can run

10

> a > 21

[,1] [,2] [,3]
[1,] FALSE FALSE TRUE
[2,] FALSE TRUE TRUE
[3,] FALSE TRUE TRUE

or obtain these elements by

> a[a > 21]

[1] 22 23 31 32 33

Summary:

� It is possible to get sub-sets of vectors and matrices by specifying index
value or a logical condition (of the same length as the vector / matrix)
between square brackets ([,])

� When you obtain an element of a matrix with [i,j], i is the row and j
is the column of the matrix.

� Function which(A) returns index of the elements of A which are ”true”.

2.3 Working with data frames

The phenotypic data are stored in the phdata slot, which is a standard R data
frame. This could be thought of as a matrix, though it has some extra attractive
features. In phenotypic data frame phdata, rows correspond to subjects and
columns correspond to variables.

Exercise 4 Explore phdata slot of srdta.

1. What is the value of the 4th variable for subject number 75?

2. What is the value of variable 1 for person 75? Check what is the value of
this variable for the first ten people. Can you guess what variable 1 is?

3. What is sum of the variable 2? Can you guess what it is?

The nice feature of data frame is that columns carry names for the variables,
and the data stored there can be retrieved by referencing these names. To see
what are the variable names, we can run

11

> names(srdta@phdata)

[1] "id" "sex" "age" "qt1" "qt2" "qt3" "bt"

These variables correspond to personal ID, sex, age, and three quantitative
and one binary traits. A variable from a data frame frame, which has some
name name can be accessed through frame$name. This will return a conventional
vector, which may be further sub-setted.

Let us check what are the ID and sex for person 75:

> srdta@phdata$id[75]

[1] "p75"

> srdta@phdata$sex[75]

[1] 0

We can also easily check how many people are described in the data set

> length(srdta@phdata$sex)

[1] 2500

how many of these are males

> sum(srdta@phdata$sex)

[1] 1275

and what is male sex proportion:

> sum(srdta@phdata$sex)/length(srdta@phdata$sex)

[1] 0.51

You can avoid typing long names by ”attaching” the data frame to the search
path:

> attach(srdta@phdata)

After that, you can access the variables in the data set directly, e.g.

> sum(sex)

[1] 1275

> sum(sex)/length(sex)

[1] 0.51

If you modify a variable in a data frame named say frame, for the
changes to take effect, you will need to detach the data frame by de-

tach(frame) and then re-attach it by attach(frame)

As well as with vectors, it is possible to sub-set elements of a data frame
based on (a combination of) logical conditions. For example, if we want to check
who are the people with qt1 over 2.7, we can run

12

> vec <- which(qt1 > 2.7)

> vec

[1] 44 376 688

> id[vec]

[1] "p44" "p376" "p688"

Exercise 5 Explore phdata slot of srdta

1. How many people has age over 65 years?

2. What is the sex distribution in the people over 65 years old?

Summary:

� A variable with name name from a data frame frame, can be accessed
through frame$name.

� You can attach the data frame to the search path by attach(frame).
Then the variables contained in this data frame may be accessed directly.

2.4 Sub-setting and coercing gwaa.data

It is possible to sub-set the object, which stores the GWA data in the manner
similar to the described above. You may think of an object of class gwaa.data
as a matrix whose rows correspond to study subjects and columns correspond
to SNPs studied (though the actual object is a bit more complicated, as you
will see soon). For example, if we would like to investigate what is the content
of srdta on the first 5 people and 3 SNPs, we can run

> ssubs <- srdta[1:5, 1:3]

> ssubs

id sex age qt1 qt2 qt3 bt
1 p1 1 43.4 -0.58 4.46 1.43 0
2 p2 1 48.2 0.80 6.32 3.90 1
3 p3 0 37.9 -0.52 3.26 5.05 1
4 p4 1 53.8 -1.55 888.00 3.76 1
5 p5 1 47.5 0.25 5.70 2.89 1
@nids = 5

13

@nsnps = 3
@nbytes = 2
@idnames = p1 p2 p3 p4 p5
@snpnames = rs10 rs18 rs29
@chromosome = 1 1 1
@map = 2500 3500 5750
@male = 1 1 0 1 1
@gtps =
40 40 40
40 40 00

As you can see, by sub-setting we obtained a smaller object of gwaa.data-
class, with all its slots. Most of the information is straightforward and does
not need further explanation.

However, the slot gtps, which actually contain the SNP data,is not readable,
because the information is compressed. To get human-readable genotypes, and
object of class snp.data-class (e.g. srdta@gtdata) should be coerced to a
more readable format. For example, function as.character() will convert the
data to character representation:

> as.character(ssubs@gtdata)

rs10 rs18 rs29
p1 "A/A" "A/A" "A/A"
p2 "A/A" "A/A" ""
p3 "A/A" "A/A" ""
p4 "A/A" "A/A" ""
p5 "A/A" "A/B" "A/A"

Other useful coercion is to ”numeric”:

> as.numeric(ssubs@gtdata)

rs10 rs18 rs29
p1 0 0 0
p2 0 0 NA
p3 0 0 NA
p4 0 0 NA
p5 0 1 0

Genotypic data converted to standard R ”numeric” format can be used in
any further analysis. Homozygotes of one type are coded as ”0”, heterozygotes
are coded as ”1” and other type of homozygotes is coded as ”2”. You can think
of this as the number of allele of ”B” type.

Several useful genetic analysis libraries were developed for R. These include
genetics (analysis of linkage disequilibrium and many other useful functions)
and haplo.stats (analysis of association between traits and haplotypes). These
use there own genetic data formats.

One can translate GenABEL genetic data to the format used by ”genetics”
library by as.genotype():

> as.genotype(ssubs@gtdata)

14

rs10 rs18 rs29
1 A/A A/A A/A
2 A/A A/A <NA>
3 A/A A/A <NA>
4 A/A A/A <NA>
5 A/A A/B A/A

To translate GenABEL data to the format used by ”haplo.stats” you can use
function as.hsgeno()

> as.hsgeno(ssubs@gtdata)

rs10.a1 rs10.a2 rs18.a1 rs18.a2 rs29.a1 rs29.a2
p1 1 1 1 1 1 1
p2 1 1 1 1 NA NA
p3 1 1 1 1 NA NA
p4 1 1 1 1 NA NA
p5 1 1 1 2 1 1

Actually, most users will not need the latter function, as GenABEL provides a
functional interface to ”haplo.stats” (such GenABEL functions as scan.haplo()
and scan.haplo.2D()).

It is possible to select sub-sets of gwaa.data-class based not only on index
(e.g. first 10 people and SNP number 33), but also based on names.

For example, if we would like to retrieve phenotypic data on people with IDs
”p141”, ”p147” and ”p2000”, we can use

> srdta[c("p141", "p147", "p2000"),]@phdata

id sex age qt1 qt2 qt3 bt
141 p141 0 47.2 0.51 5.23 2.17 0
147 p147 0 43.2 0.14 4.47 1.73 0
2000 p2000 0 43.1 -1.53 2.78 2.70 1

here, the first part of expression sub-sets srdta on selected IDs, and the sec-
ond tells which part of the retrieved sub-set we want to see. You can try
srdta[c("p141","p147","p2000"),], but be prepared to see long output, as
all information will be reported.

In similar manner, we can also select on SNP name. For example, if we are
interested to see information on SNPs ”rs10” and ”rs29” for above people, we
can run

> srdta[c("p141", "p147", "p2000"), c("rs10", "rs29")]

id sex age qt1 qt2 qt3 bt
141 p141 0 47.2 0.51 5.23 2.17 0
147 p147 0 43.2 0.14 4.47 1.73 0
2000 p2000 0 43.1 -1.53 2.78 2.70 1
@nids = 3
@nsnps = 2
@nbytes = 1
@idnames = p141 p147 p2000

15

@snpnames = rs10 rs29
@chromosome = 1 1
@map = 2500 5750
@male = 0 0 0
@gtps =
40 40

The problem is that you get genotypes in a compressed format. To see the
actual genotypes, use

> as.numeric(srdta[c("p141", "p147", "p2000"), c("rs10", "rs29")]@gtdata)

rs10 rs29
p141 0 0
p147 0 0
p2000 1 1

or

> as.numeric(srdta@gtdata[c("p141", "p147", "p2000"), c("rs10",

+ "rs29")])

rs10 rs29
p141 0 0
p147 0 0
p2000 1 1

Exercise 6 Explore genotypes for SNP ”rs114”.

1. What is the frequency of B allele (coded as ”1”) in total sample?

2. What is the frequency of B allele in male?

3. What is the frequency of B allele in female?

Summary:

� It is possible to obtain subsets of objects of gwaa.data-class and
snp.data-class using standard 2D sub-setting model [i,j], where i
corresponds to study subjects and j corresponds to SNPs.

� It is possible to provide ID and SNP names instead of indexes when sub-
setting an object of class gwaa.data-class.

� Function as.numeric() converts genotypic data from snp.data-class to
regular integer numbers, which can be used in analysis with R.

16

� Function as.character() converts genotypic data from snp.data-class
to character format.

� Function as.genotype() converts genotypic data from snp.data-class
to the format used by library genetics.

� Function as.hsgeno() converts genotypic data from snp.data-class to
the format used by library haplo.stats.

3 Simple analysis of phenotypic and genotypic
data

In section 2 (”Working with gwaa.data-class”) you have already learned about
such useful R functions and length(), sum() and mean(). In this section, we
will first learn about other functions which are useful for analysis of binary and
quantitative traits, and about regression analysis in R.

3.1 Exploring binary traits

3.2 Exploring quantitative traits

The function summary() generates a summary statistics for an object. For
example, to see summary for trait qt1, we can use

> summary(srdta@phdata$qt1)

Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
-4.6000 -0.9500 -0.3100 -0.2981 0.3800 3.2000 3.0000

With R, it is also easy to explore the data graphically. For example, the
histogram for qt1 may be generated by

> hist(srdta@phdata$qt1)

(resulting histogram is shown at figure 2)
In similar manner, scatter-plots may be generated. To see relation between

qt1 and qt3, you can run

> plot(srdta@phdata$qt1, srdta@phdata$qt3)

(resulting plot is shown at figure 3)

Exercise 7 Explore variables in phdata slot of srdta

1. What is the mean, median, minimum and maximum age in the sample?

2. Compare the distribution of qt3 in people younger and older than 65 years.
Use function sd(A) to get standard deviation of A.

3. Produce distributions of different traits. Do you see something special?

17

Histogram of srdta@phdata$qt1

srdta@phdata$qt1

F
re

qu
en

cy

−4 −2 0 2

0
10

0
20

0
30

0
40

0

Figure 2: Histogram of qt1

18

−4 −2 0 2

−
2

0
2

4
6

srdta@phdata$qt1

sr
dt

a@
ph

da
ta

$q
t3

Figure 3: Scatter-plot of qt1 against qt3

19

3.3 Regression analysis

You can do some linear regression to check if trait qt2 has relation with sex and
age by

> summary(glm(srdta@phdata$qt2 ~ srdta@phdata$age + srdta@phdata$sex))

Call:
glm(formula = srdta@phdata$qt2 ~ srdta@phdata$age + srdta@phdata$sex)

Deviance Residuals:
Min 1Q Median 3Q Max

-5.6498 -1.7953 -1.0328 -0.3148 883.0808

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -1.55892 4.41667 -0.353 0.724
srdta@phdata$age 0.14022 0.08668 1.618 0.106
srdta@phdata$sex 1.30377 1.22393 1.065 0.287

(Dispersion parameter for gaussian family taken to be 935.722)

Null deviance: 2340050 on 2499 degrees of freedom
Residual deviance: 2336498 on 2497 degrees of freedom
AIC: 24203

Number of Fisher Scoring iterations: 2

You can see that qt2 is not associated with age or sex.
To make easy access to your data (basically, to avoidtyping srdta@phdata

before every trait name, you may attach the data to the search path:

> attach(srdta@phdata)

The following object(s) are masked from srdta@phdata (position 3) :

age bt id qt1 qt2 qt3 sex

Then,the above expression to run linear regression analysis simpifies to:

> summary(glm(qt2 ~ age + sex))

Call:
glm(formula = qt2 ~ age + sex)

Deviance Residuals:
Min 1Q Median 3Q Max

-5.6498 -1.7953 -1.0328 -0.3148 883.0808

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -1.55892 4.41667 -0.353 0.724

20

age 0.14022 0.08668 1.618 0.106
sex 1.30377 1.22393 1.065 0.287

(Dispersion parameter for gaussian family taken to be 935.722)

Null deviance: 2340050 on 2499 degrees of freedom
Residual deviance: 2336498 on 2497 degrees of freedom
AIC: 24203

Number of Fisher Scoring iterations: 2

with the same results.
To figure out if your binary trait (bt) is associated with sex and age, you

need to tell that this is binary trait:

> summary(glm(bt ~ age + sex, family = binomial()))

Call:
glm(formula = bt ~ age + sex, family = binomial())

Deviance Residuals:
Min 1Q Median 3Q Max

-1.992 -1.091 -0.444 1.094 1.917

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -4.639958 0.330519 -14.038 < 2e-16 ***
age 0.088860 0.006463 13.749 < 2e-16 ***
sex 0.379593 0.084138 4.512 6.44e-06 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 3450.5 on 2488 degrees of freedom
Residual deviance: 3216.5 on 2486 degrees of freedom
(11 observations deleted due to missingness)

AIC: 3222.5

Number of Fisher Scoring iterations: 4

There is strong association between bt and sex and age.

4 Phenotypic and genotypic QC

4.1 Exploring genetic data

Function summary() is the one most useful in genetic data exploration and QC.
This function generates some useful summaries for gwaa.data-class:

> summary(ssubs)

21

$phdata
id sex age qt1

Length:5 Min. :0.0 Min. :37.90 Min. :-1.55
Class :character 1st Qu.:1.0 1st Qu.:43.40 1st Qu.:-0.58
Mode :character Median :1.0 Median :47.50 Median :-0.52

Mean :0.8 Mean :46.16 Mean :-0.32
3rd Qu.:1.0 3rd Qu.:48.20 3rd Qu.: 0.25
Max. :1.0 Max. :53.80 Max. : 0.80

qt2 qt3 bt
Min. : 3.26 Min. :1.430 Min. :0.0
1st Qu.: 4.46 1st Qu.:2.890 1st Qu.:1.0
Median : 5.70 Median :3.760 Median :1.0
Mean :181.55 Mean :3.406 Mean :0.8
3rd Qu.: 6.32 3rd Qu.:3.900 3rd Qu.:1.0
Max. :888.00 Max. :5.050 Max. :1.0

$gtdata
NoMeasured CallRate Q.2 P.11 P.12 P.22 Pexact Chromosome

rs10 5 1.0 0.0 5 0 0 1 1
rs18 5 1.0 0.1 4 1 0 1 1
rs29 2 0.4 0.0 2 0 0 1 1

In the first section, the summary is generated for phenotypic data. In the
second section, summary is generated for genotypic data. Pexact refers to exact
P-value for the test of Hardy-Weinberg equilibrium.

As you’ve seen above, an object of the class gwaa.data-class or snp.data-
class is sub-settable in standard manner: [i,j], where i is an index of a study
subject and j is an index of a SNP. Importantly, i could be a list of indexes:

> vec <- which(age >= 65)

> vec

[1] 64 122 186 206 207 286 385 386 492 514 525 536 545 565 613
[16] 632 649 673 701 779 799 981 1008 1131 1186 1223 1281 1383 1471 1489
[31] 1501 1565 1584 1673 1679 1782 1821 1832 1866 1891 1953 2081 2085 2140 2224
[46] 2268 2291 2384 2420 2453

> summary(srdta@gtdata[vec, 1:3])

NoMeasured CallRate Q.2 P.11 P.12 P.22 Pexact Chromosome
rs10 48 0.96 0.1354167 36 11 1 1.0000000 1
rs18 47 0.94 0.2765957 25 18 4 0.7245853 1
rs29 45 0.90 0.1555556 32 12 1 1.0000000 1

a vector of logical values:

> vec <- (age >= 65)

> summary(srdta@gtdata[vec, 1:3])

NoMeasured CallRate Q.2 P.11 P.12 P.22 Pexact Chromosome
rs10 48 0.96 0.1354167 36 11 1 1.0000000 1
rs18 47 0.94 0.2765957 25 18 4 0.7245853 1
rs29 45 0.90 0.1555556 32 12 1 1.0000000 1

22

a list with IDs of study subjects:

> vec <- (age >= 65)

> vec1 <- srdta@gtdata@idnames[vec]

> vec1

[1] "p64" "p122" "p186" "p206" "p207" "p286" "p385" "p386" "p492"
[10] "p514" "p525" "p536" "p545" "p565" "p613" "p632" "p649" "p673"
[19] "p701" "p779" "p799" "p981" "p1008" "p1131" "p1186" "p1223" "p1281"
[28] "p1383" "p1471" "p1489" "p1501" "p1565" "p1584" "p1673" "p1679" "p1782"
[37] "p1821" "p1832" "p1866" "p1891" "p1953" "p2081" "p2085" "p2140" "p2224"
[46] "p2268" "p2291" "p2384" "p2420" "p2453"

> summary(srdta@gtdata[vec1, 1:3])

NoMeasured CallRate Q.2 P.11 P.12 P.22 Pexact Chromosome
rs10 48 0.96 0.1354167 36 11 1 1.0000000 1
rs18 47 0.94 0.2765957 25 18 4 0.7245853 1
rs29 45 0.90 0.1555556 32 12 1 1.0000000 1

Exercise 8 Test if Hardy-Weinberg equilibrium holds for the first 10 SNPs

1. Total sample

2. In cases (bt is 1)

3. In controls (bt is 0)

Summary:

� When summary() function is applied to an object of snp.data-class, it
return summary statistics, including exact test for Hardy-Weinberg equi-
librium.

� Function summary(A) generates some summary statistics for variable A.

� Function sd(A) returns standard deviation of variable A.

4.2 Genotypic QC

Several pieces of information are critical in accessing quality of genetic data.
These include SNP call rates (per SNP and per person), distribution of mi-
nor allele frequency (MAF) and significance of deviation from Hardy-Weinberg
equilibrium (HWE).

23

Histogram of crate

crate

F
re

qu
en

cy

0.935 0.940 0.945 0.950 0.955 0.960 0.965

0
50

10
0

15
0

Figure 4: Histogram of the call rate

Based on summary() function described in previous subsection, you can gen-
erate distribution of these important characteristics.

Let us analyse the distribution of call rate first. For this, you need to get a
vector of call rates:

> sumgt <- summary(srdta@gtdata)

> crate <- sumgt[, "CallRate"]

At this point, you can produce a histogram of call rates by

> hist(crate)

The resulting histogram is shown at the figure 4.
As next step, you would like to produce a summary table, showing how many

markers had call rate lower than, say, 93%, between 93 and 95%, between 95
and 99% and more than 99%. You can use catable() command for that:

> catable(crate, c(0.93, 0.95, 0.99))

X<=0.93 0.93<X<=0.95 0.95<X<=0.99 X>0.99
No 0 415.000 418.000 0
Prop 0 0.498 0.502 0

Similar procedure may be applied to see deviation from HWE:

24

> hwp <- sumgt[, "Pexact"]

> catable(hwp, c((0.05/srdta@gtdata@nsnps), 0.01, 0.05, 0.1))

X<=6.00240096038415e-05 6.00240096038415e-05<X<=0.01 0.01<X<=0.05
No 2.000 7.000 23.000
Prop 0.002 0.008 0.028

0.05<X<=0.1 X>0.1
No 31.000 770.000
Prop 0.037 0.924

The first cut-off category will detect SNPs which are deviating from HWE
at the Bonferoni-corrected P-level.

However, for these data it will make more sense to table cumulative numbers:

> catable(hwp, c((0.05/srdta@gtdata@nsnps), 0.01, 0.05, 0.1), cum = T)

X<=6.00240096038415e-05 X<=0.01 X<=0.05 X<=0.1 X>0.1
No 2.000 9.000 32.000 63.000 833
Prop 0.002 0.011 0.038 0.076 1

The same logic applies for the MAF distribution. First, derive MAF:

> afr <- sumgt[, "Q.2"]

> maf <- pmin(afr, (1 - afr))

Next, you can generate histograms for frequency and MAF:

> par(mfcol = c(2, 1))

> hist(afr)

> hist(maf)

(shown at the figure 5) and then generate table describing frequency distribution:

> catable(afr, c(0.01, 0.05, 0.1, 0.2, 0.5, 0.8, 0.9, 0.95, 0.99))

X<=0.01 0.01<X<=0.05 0.05<X<=0.1 0.1<X<=0.2 0.2<X<=0.5 0.5<X<=0.8
No 22.000 53.000 99.000 132.000 313.000 187.000
Prop 0.026 0.064 0.119 0.158 0.376 0.224

0.8<X<=0.9 0.9<X<=0.95 0.95<X<=0.99 X>0.99
No 18.000 8.00 1.000 0
Prop 0.022 0.01 0.001 0

> catable(maf, c(0, 0.01, 0.05, 0.1, 0.2), cum = T)

X<=0 X<=0.01 X<=0.05 X<=0.1 X<=0.2 X>0.2
No 0 22.000 76.000 183.00 333.0 833
Prop 0 0.026 0.091 0.22 0.4 1

Note that we used ”0” as the first category – this will give you the number
of monomorhic SNPs which we recommend to exclude from analysis.

The outliers who have increased average heterozygosity may be suggestive
of contaminated DNA samples. For the sake of time, we will demonstrate this
procedure using only 100 people from the data set:

25

Histogram of afr

afr

F
re

qu
en

cy

0.0 0.4 0.8

0
50

10
0

15
0

Histogram of maf

maf

F
re

qu
en

cy

0.0 0.2 0.4

0
20

40
60

80
10

0

Figure 5: Histogram of the call rate

26

> het <- 1 - (hom(srdta, ids = c(1:100)))[, "Hom"]

> mean(het)

[1] 0.3262500

> catable(het, c(0.1, 0.25, 0.3, 0.35, 0.5))

X<=0.1 0.1<X<=0.25 0.25<X<=0.3 0.3<X<=0.35 0.35<X<=0.5 X>0.5
No 1.00 3.00 18.00 47.00 31.00 0
Prop 0.01 0.03 0.18 0.47 0.31 0

Other function for genotypic QC is check.marker().

> gQC <- check.marker(srdta, call = 0.95, maf = 0.01, fdrate = 0.05,

+ ibs.mrk = 0)

RUN 1
833 markers and 2500 people in total
0 (0%) markers excluded as redundant (option = "no")
22 (2.641056%) markers excluded as having low (<1%) minor allele frequency
387 (46.45858%) markers excluded because of low (<95%) call rate
2 (0.2400960%) markers excluded because they are out of HWE (FDR <5%)
962 (38.48%) people excluded because of low (<95%) call rate
0 (0%) people excluded because too high autosomal heterozygosity (FDR <1%)
Mean autosomal HET was 0.3450885 (s.e. 0.04661912)
In total, 437 (52.46098%) markers passed all criteria
In total, 1538 (61.52%) people passed all criteria
RUN 2
437 markers and 1538 people in total
0 (0%) markers excluded as redundant (option = "no")
0 (0%) markers excluded as having low (<1%) minor allele frequency
3 (0.6864989%) markers excluded because of low (<95%) call rate
0 (0%) markers excluded because they are out of HWE (FDR <5%)
0 (0%) people excluded because of low (<95%) call rate
0 (0%) people excluded because too high autosomal heterozygosity (FDR <1%)
Mean autosomal HET was 0.3457474 (s.e. 0.04576022)
In total, 434 (99.3135%) markers passed all criteria
In total, 1538 (100%) people passed all criteria
RUN 3
434 markers and 1538 people in total
0 (0%) markers excluded as redundant (option = "no")
0 (0%) markers excluded as having low (<1%) minor allele frequency
0 (0%) markers excluded because of low (<95%) call rate
0 (0%) markers excluded because they are out of HWE (FDR <5%)
0 (0%) people excluded because of low (<95%) call rate
0 (0%) people excluded because too high autosomal heterozygosity (FDR <1%)
Mean autosomal HET was 0.3457474 (s.e. 0.04576022)
In total, 434 (100%) markers passed all criteria
In total, 1538 (100%) people passed all criteria

> summary(gQC)

27

$`Per-SNP fails statistics`
NoCall NoMAF NoHWE Redundant Xsnpfail

NoCall 375 15 0 0 0
NoMAF NA 7 0 0 0
NoHWE NA NA 2 0 0
Redundant NA NA NA 0 0
Xsnpfail NA NA NA NA 0

$`Per-person fails statistics`
IDnoCall HetFail IBSFail Xidfail

IDnoCall 962 0 0 0
HetFail NA 0 0 0
IBSFail NA NA 0 0
Xidfail NA NA NA 0

> HWE.show(srdta, snps = gQC$nohwe)

HWE summary for rs73 :
A/A A/B B/B

observed 2331.0000000 44.00000 10.0000000
expected 2321.4293501 63.14130 0.4293501
chi2+ 0.0394573 5.80269 213.3395064
Chi2 = 219.1817 ; P = 0; exact P = 1.79247e-12

HWE summary for rs128 :
A/A A/B B/B

observed 2.281000e+03 101.000000 9.000000
expected 2.273481e+03 116.038687 1.480657
chi2+ 2.486959e-02 1.949023 38.186115
Chi2 = 40.16001 ; P = 2.339896e-10; exact P = 9.4086e-06

Or the same with HWE check only in controls:

> gQC <- check.marker(srdta, hweids = (srdta@phdata$bt == 0), call = 0.95,

+ maf = 0.01, fdrate = 0.05, ibs.mrk = 0)

RUN 1
833 markers and 2500 people in total
0 (0%) markers excluded as redundant (option = "no")
22 (2.641056%) markers excluded as having low (<1%) minor allele frequency
387 (46.45858%) markers excluded because of low (<95%) call rate
2 (0.2400960%) markers excluded because they are out of HWE (FDR <5%)
962 (38.48%) people excluded because of low (<95%) call rate
0 (0%) people excluded because too high autosomal heterozygosity (FDR <1%)
Mean autosomal HET was 0.3450885 (s.e. 0.04661912)
In total, 437 (52.46098%) markers passed all criteria
In total, 1538 (61.52%) people passed all criteria
RUN 2
437 markers and 1538 people in total
0 (0%) markers excluded as redundant (option = "no")
0 (0%) markers excluded as having low (<1%) minor allele frequency

28

3 (0.6864989%) markers excluded because of low (<95%) call rate
0 (0%) markers excluded because they are out of HWE (FDR <5%)
0 (0%) people excluded because of low (<95%) call rate
0 (0%) people excluded because too high autosomal heterozygosity (FDR <1%)
Mean autosomal HET was 0.3457474 (s.e. 0.04576022)
In total, 434 (99.3135%) markers passed all criteria
In total, 1538 (100%) people passed all criteria
RUN 3
434 markers and 1538 people in total
0 (0%) markers excluded as redundant (option = "no")
0 (0%) markers excluded as having low (<1%) minor allele frequency
0 (0%) markers excluded because of low (<95%) call rate
0 (0%) markers excluded because they are out of HWE (FDR <5%)
0 (0%) people excluded because of low (<95%) call rate
0 (0%) people excluded because too high autosomal heterozygosity (FDR <1%)
Mean autosomal HET was 0.3457474 (s.e. 0.04576022)
In total, 434 (100%) markers passed all criteria
In total, 1538 (100%) people passed all criteria

> summary(gQC)

$`Per-SNP fails statistics`
NoCall NoMAF NoHWE Redundant Xsnpfail

NoCall 375 15 0 0 0
NoMAF NA 7 0 0 0
NoHWE NA NA 2 0 0
Redundant NA NA NA 0 0
Xsnpfail NA NA NA NA 0

$`Per-person fails statistics`
IDnoCall HetFail IBSFail Xidfail

IDnoCall 962 0 0 0
HetFail NA 0 0 0
IBSFail NA NA 0 0
Xidfail NA NA NA 0

> HWE.show(srdta, snps = gQC$nohwe)

HWE summary for rs73 :
A/A A/B B/B

observed 2331.0000000 44.00000 10.0000000
expected 2321.4293501 63.14130 0.4293501
chi2+ 0.0394573 5.80269 213.3395064
Chi2 = 219.1817 ; P = 0; exact P = 1.79247e-12

HWE summary for rs128 :
A/A A/B B/B

observed 2.281000e+03 101.000000 9.000000
expected 2.273481e+03 116.038687 1.480657
chi2+ 2.486959e-02 1.949023 38.186115
Chi2 = 40.16001 ; P = 2.339896e-10; exact P = 9.4086e-06

29

Recommended minimal minor allele frequency: no power if results rely on 1
or 2 observations.

> gQC <- check.marker(srdta, hweids = (srdta@phdata$bt == 0), call = 0.95,

+ maf = 3/srdta@gtdata@nids, fdrate = 0.05, ibs.mrk = 0)

RUN 1
833 markers and 2500 people in total
0 (0%) markers excluded as redundant (option = "no")
2 (0.2400960%) markers excluded as having low (<0.12%) minor allele frequency
387 (46.45858%) markers excluded because of low (<95%) call rate
2 (0.2400960%) markers excluded because they are out of HWE (FDR <5%)
822 (32.88%) people excluded because of low (<95%) call rate
0 (0%) people excluded because too high autosomal heterozygosity (FDR <1%)
Mean autosomal HET was 0.3405364 (s.e. 0.04598493)
In total, 443 (53.18127%) markers passed all criteria
In total, 1678 (67.12%) people passed all criteria
RUN 2
443 markers and 1678 people in total
0 (0%) markers excluded as redundant (option = "no")
0 (0%) markers excluded as having low (<0.12%) minor allele frequency
5 (1.128668%) markers excluded because of low (<95%) call rate
0 (0%) markers excluded because they are out of HWE (FDR <5%)
140 (8.343266%) people excluded because of low (<95%) call rate
0 (0%) people excluded because too high autosomal heterozygosity (FDR <1%)
Mean autosomal HET was 0.3410669 (s.e. 0.04594979)
In total, 438 (98.87133%) markers passed all criteria
In total, 1538 (91.65673%) people passed all criteria
RUN 3
438 markers and 1538 people in total
0 (0%) markers excluded as redundant (option = "no")
0 (0%) markers excluded as having low (<0.12%) minor allele frequency
1 (0.2283105%) markers excluded because of low (<95%) call rate
0 (0%) markers excluded because they are out of HWE (FDR <5%)
0 (0%) people excluded because of low (<95%) call rate
0 (0%) people excluded because too high autosomal heterozygosity (FDR <1%)
Mean autosomal HET was 0.3412714 (s.e. 0.04568035)
In total, 437 (99.77169%) markers passed all criteria
In total, 1538 (100%) people passed all criteria
RUN 4
437 markers and 1538 people in total
0 (0%) markers excluded as redundant (option = "no")
0 (0%) markers excluded as having low (<0.12%) minor allele frequency
0 (0%) markers excluded because of low (<95%) call rate
0 (0%) markers excluded because they are out of HWE (FDR <5%)
0 (0%) people excluded because of low (<95%) call rate
0 (0%) people excluded because too high autosomal heterozygosity (FDR <1%)
Mean autosomal HET was 0.3412714 (s.e. 0.04568035)
In total, 437 (100%) markers passed all criteria
In total, 1538 (100%) people passed all criteria

30

> summary(gQC)

$`Per-SNP fails statistics`
NoCall NoMAF NoHWE Redundant Xsnpfail

NoCall 392 1 0 0 0
NoMAF NA 1 0 0 0
NoHWE NA NA 2 0 0
Redundant NA NA NA 0 0
Xsnpfail NA NA NA NA 0

$`Per-person fails statistics`
IDnoCall HetFail IBSFail Xidfail

IDnoCall 962 0 0 0
HetFail NA 0 0 0
IBSFail NA NA 0 0
Xidfail NA NA NA 0

Note: We do however suggest that only monomorphic SNPs are dropped
from future analysis. All polymorphic SNPs are recommended to be taken
for further analysis despite of call rate, HWE test, etc. Instead of dropping
SNPs/study participants based on statistics, we would rather suggest this data
is a guidance for the Laboratory.

4.3 Phenotypic QC

Phenotypic QC is an important part of an association study. You should look
if the trait distribution look ”reasonable”

5 Analysis of selected region

COMING SOON

5.1 Exploring linkage disequilibrium

Use

> gtforld <- as.genotype(srdta[, 1:5])

to convert part of your SNPs to genetics format.
Then, you can use

> ld <- LD(gtforld)

to produce LD summary by the LD() function fo the genetics package.
The r2s can be accessed by

> ld$"R^2"

rs10 rs18 rs29 rs65 rs73
rs10 NA 0.3918904 0.9556026 0.05392663 0.001069139
rs18 NA NA 0.4096792 0.13200275 0.001220258
rs29 NA NA NA 0.05638120 0.001151165
rs65 NA NA NA NA 0.012110147
rs73 NA NA NA NA NA

31

etc.

5.2 Haplotype analysis

Use

> gtforld <- as.hsgeno(srdta[, 1:5])

to convert part of your SNPs to haplo.stats format.
You can also use interface function to do sliding widow analysis

> h2 <- scan.haplo("qt1~CRSNP", srdta, snps = c(1:5))

5.3 Analysis of interactions

See help for scan.haplo.2D and scan.glm.2D

5.4 Exploring public databses

See help for show.ncbi

32

A GWA analysis protocol

A.1 Genetic data descriptives and QC

Note: if you working with a data set which is already worked with, the first step
must have been already done. Ask for results.
Step 1. Describe the following distributions:

� Call rate per SNP. First, generate a histogram; second, arrange a summary
table. Decide on cut-off points for the table based on histogram. Suggested
cut-offs (meaningful for Affymetrix) are 0.99, 0.95, 0.93, 0.9.

� Call rate per person. First, generate a histogram; second, arrange a sum-
mary table. Decide on cut-off points for the table based on histogram.

� Minor allele frequency (MAF). Generate histogram and table. MAF cut-
off points: (monomorphic, MAF ≤ 0.01, 0.01 < MAF ≤ 0.05, 0.05 < MAF
≤ 0.1, 0.1 < MAF ≤ 0.2, MAF > 0.2)

� Exact P-value for the test for HWE. Generate QQ-plot and a table. Cut-
off points: (P≤0.1,P≤0.05,P≤0.01,P≤ 0.05/(number of SNPs in study)).

� If you work with a case/control sample, repeat previous analysis for cases
and controls separately.

� Generate average within-person heterozygosity by heteroz(); plot the
histogram, make a table and check for outliers (at FDR=0.01). These
outliers may indicate contaminated DNA samples.

� (not impelemented in GenABEL yet!) Generate genome-wide IBS matrix,
and check for outliers. These may indicate people who belong to a different
genetic population.

Step 2

� Generate a working subset by excluding monomorphic markers and people
with very low call rate

� Pass the list of people with low call rate back to the Lab.

A.2 GWA analysis

Step 1
For binary traits use

� Do case-control GWA analysis using ccfast

� Obtain empirical GW significance using emp.ccfast

For QTs use

� Do QT GWA analysis using qtscore

� Obtain empirical GW significance using emp.qtscore

Step 2

33

� Allow for covariates in your analysis (use qtscore and emp.qtscore)

Step 3

� For each trait and analysis steps 1 and 2, generate plots showing -log10(P-
value), both nominal and empirical. Show tests with 1 d.f. and 2 d.f. on
the same plot using different symbols

� Select SNPs of interest. Total number of SNPs selected will depend on
your results (definitely, all SNPs hitting 5% GW significance should be on
the list, but you may select based on candidate genes or regions, so on.).
In any case, think of at least 10 SNPs.

� Select regions of interest (the ones surrounding SNPs of interest). De-
pending on your population, the regional width should be from 100 Kbp
to 1 Mbp. For ERGO take 200 Kbp. For GRIP take 500 Kbp. For ERF
take 1 Mbp.

A.3 Regional analyses

Give summary characteristics for each SNP of interest

� Call rate

� Total genotypic distribution

� P-value for the test of HWE (total, and for cases and control separately
in case-control design)

� For binary traits: genotypic distributions between cases and controls,
crude and adjusted ORs. Also report 95% CI and P-values.

� For quantitative traits: crude trait means per genotype and adjusted
means (or effects). Also report s.e.m. and P-values.

For each region of interest:

� Perform 2- and 3-SNP sliding window haplotype analysis using scan.haplo.
Do not forget to adjust for covariates if you need to!

� For best slides, generate output with haplo.score. Use simulate=TRUE
to obtain empirical significance.

� Generate a plot showing -log10(P-value) for the allelic and genotypic as-
sociation tests, HWE test -log10(1-MAF) and haplotypic analysis results.

� Analyse association between the trait and haplotypes formed by all pairs
of SNPs in the region, using scan.haplo.2D

� For best slides, generate output with haplo.score. Use simulate=TRUE
to obtain empirical significance.

� Analyse LD in the region using function LD

� Plot heatmap with results from scan.haplo.2D above and LD below the
diagonal.

34

� Analyse association between the trait and all pairs of SNPs, allowing for
interaction (scan.glm.2D).

� Select ”best” pairs based on allelic, genotypic, and interaction test P-
values. For these, report P-values from allelic, genotypic, and interaction
tests. Generate joint genotypic distribution (per case/control), show crude
and adjusted OR (P, CI). or means per joint genotype (crude, adjusted,
P, CI).

� Plot heatmap with results from scan.glm.2D (total significance above and
significance of interaction below the diagonal). Do it for both allelic and
genotypic tests.

35

B Importing data to GenABEL

COMING SOON

36

C Answers to exercises

C.1 Exercise 1:

Number of people:

> srdta@gtdata@nids

[1] 2500

Number of males:

> sum(srdta@gtdata@male)

[1] 1275

Number of females:

> srdta@gtdata@nids - sum(srdta@gtdata@male)

[1] 1225

... or you could get the same answer like this3:

> sum(srdta@gtdata@male == 0)

[1] 1225

The proportion of males can be computed using above results

> sum(srdta@gtdata@male)/srdta@gtdata@nids

[1] 0.51

or by using mean() function:

> mean(srdta@gtdata@male)

[1] 0.51

C.2 Exercise 2:

For the first person id is ”p1” and sex code is 1 (1=male, 2=female)

> srdta@gtdata@idnames[1]

[1] "p1"

> srdta@gtdata@male[1]

p1
1

For the 22nd person id is ”p22” and sex code is 1:
3This is something covered later in the section 2.2 (”Sub-setting vectors and matrices”)

37

> srdta@gtdata@idnames[22]

[1] "p22"

> srdta@gtdata@male[22]

p22
1

Among first 100 subjects, there are 53 males:

> sum(srdta@gtdata@male[1:100])

[1] 53

Among 4th hundred subjects there are 45 females:

> 100 - sum(srdta@gtdata@male[301:400])

[1] 45

Male proportion among first 1000 people is

> mean(srdta@gtdata@male[1:1000])

[1] 0.508

Female proportion among second 1000 people is

> 1 - mean(srdta@gtdata@male[1001:2000])

[1] 0.476

Name, chromosome and map position of the 33rd marker are:

> srdta@gtdata@snpnames[33]

[1] "rs422"

> srdta@gtdata@chromosome[33]

rs422
"1"

> srdta@gtdata@map[33]

rs422
105500

The map positions for and distance between markers 25 and 26 are:

> pos25 <- srdta@gtdata@map[25]

> pos25

rs365
91250

> pos26 <- srdta@gtdata@map[26]

> pos26

rs372
92750

> pos26 - pos25

rs372
1500

38

C.3 Exercise 3:

The names of markers located after 2,490,000 b.p. are

> vec <- (srdta@gtdata@map > 2490000)

> srdta@gtdata@snpnames[vec]

[1] "rs9273" "rs9277" "rs9279" "rs9283"

Between 1,100,000 and 1,105,000 b.p.:

> vec <- (srdta@gtdata@map > 1100000 & srdta@gtdata@map < 1105000)

> srdta@gtdata@snpnames[vec]

[1] "rs4180" "rs4186" "rs4187"

C.4 Exercise 4:

Value of the 4th variable of person 75:

> srdta@phdata[75, 4]

[1] -0.04

Value for the variable 1 is

> srdta@phdata[75, 1]

[1] "p75"

Also, if we check first 10 elements we see

> srdta@phdata[1:10, 1]

[1] "p1" "p2" "p3" "p4" "p5" "p6" "p7" "p8" "p9" "p10"

This is personal ID.
The sum for variable 2 is

> sum(srdta@phdata[, 2])

[1] 1275

This is sex variable.

C.5 Exercise 5:

To obtain the number of people with age >65 y.o., you can use any of the
following

> sum(age > 65)

[1] 48

> vec <- which(age > 65)

> length(vec)

39

[1] 48

To get sex of these people use any of:

> sx65 <- sex[age > 65]

> sx65

[1] 1 1 0 0 0 0 1 1 1 1 0 0 1 1 0 1 1 1 0 0 0 0 1 1 1 0 1 1 1 1 0 1 1 1 0 0 0 0
[39] 1 0 1 0 0 0 0 1 1 1

> sx65 <- sex[vec]

> sx65

[1] 1 1 0 0 0 0 1 1 1 1 0 0 1 1 0 1 1 1 0 0 0 0 1 1 1 0 1 1 1 1 0 1 1 1 0 0 0 0
[39] 1 0 1 0 0 0 0 1 1 1

Thus, number of males is:

> sum(sx65)

[1] 26

To conclude, the proportion of male is 0.541666666666667
Distribution of qt3 in people younger and older than 65 are:

> summary(qt3[vec])

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.730 2.690 3.480 3.499 4.265 5.840

> sd(qt3[vec], na.rm = TRUE)

[1] 1.128701

> young <- which(age < 65)

> summary(qt3[young])

Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
-1.97 1.83 2.58 2.59 3.35 6.34 11.00

> sd(qt3[young], na.rm = TRUE)

[1] 1.093374

C.6 Exercise 6:

To compute frequency of allele B of SNP ”rs114” in total sample, you can go
two ways. First, we can try to take a sum of all rs114 genotypes and divide it
by twice the number of people:

> a <- as.numeric(srdta@gtdata[, "rs114"])

> sum(a)

[1] NA

40

This, however, returns NA, because some of the genotypes are missing. We can
deal with this problem by running sum() with the option na.rm=TRUE:

> sum(a, na.rm = T)

[1] 559

However, now we do not know what was the number of people for whom the
genotype was measured!

An easier way would be to compute mean value of rs114 with the mean(...
,na.rm=TRUE) function and divide it by 2:

> mean(a, na.rm = T)/2

[1] 0.116799

To compute frequency of rs114 allele B in males, you can use

> amale <- as.numeric(srdta@gtdata[sex == 1, "rs114"])

> mean(amale, na.rm = T)/2

[1] 0.1164216

To compute frequency of rs114 allele B in females, you can use

> afemale <- as.numeric(srdta@gtdata[sex == 0, "rs114"])

> mean(afemale, na.rm = T)/2

[1] 0.1171942

Actually, the problem that we do not know how many people are measured,
can be easily dealt with. This can be done by using is.na(A) function which
returns true when some element of A is not measured. Thus, the number of
people with measured genotype for rs114 is

> a <- as.numeric(srdta@gtdata[, "rs114"])

> sum(!is.na(a))

[1] 2393

And the allele frequency estimate is

> sum(a, na.rm = T)/(2 * sum(!is.na(a)))

[1] 0.116799

exactly the same as above.

C.7 Exercise 7:

> summary(srdta@phdata$age)

Min. 1st Qu. Median Mean 3rd Qu. Max.
24.10 45.10 50.00 50.04 54.80 71.60

The histogram for qt2 looks strange: it seems there are few very strong
outliers (figure 6) You can also see that with summary:

> summary(srdta@phdata$qt2)

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.000 4.220 5.045 6.122 5.910 888.000

41

Histogram of srdta@phdata$qt2

srdta@phdata$qt2

F
re

qu
en

cy

0 200 400 600 800

0
50

0
10

00
15

00
20

00
25

00

Figure 6: Histogram of qt2

42

C.8 Exercise 8:

To test for HWE in first 10 SNPs in total sample

> summary(srdta@gtdata[, 1:10])

NoMeasured CallRate Q.2 P.11 P.12 P.22 Pexact Chromosome
rs10 2384 0.9536 0.13255034 1792 552 40 7.897327e-01 1
rs18 2385 0.9540 0.28029350 1232 969 184 7.608230e-01 1
rs29 2374 0.9496 0.13774221 1763 568 43 7.955141e-01 1
rs65 2378 0.9512 0.71972246 182 969 1227 6.475412e-01 1
rs73 2385 0.9540 0.01341719 2331 44 10 1.792470e-12 1
rs114 2393 0.9572 0.11679900 1868 491 34 7.663683e-01 1
rs128 2391 0.9564 0.02488499 2281 101 9 9.408599e-06 1
rs130 2379 0.9516 0.69377890 222 1013 1144 9.615127e-01 1
rs143 2377 0.9508 0.47728229 655 1175 547 6.512540e-01 1
rs150 2369 0.9476 0.65998312 267 1077 1025 5.518478e-01 1

To test it in cases

> summary(srdta@gtdata[srdta@phdata$bt == 1, 1:10])

NoMeasured CallRate Q.2 P.11 P.12 P.22 Pexact Chromosome
rs10 1197 0.9622186 0.13700919 888 290 19 4.635677e-01 1
rs18 1189 0.9557878 0.28511354 605 490 94 7.759191e-01 1
rs29 1176 0.9453376 0.14285714 859 298 19 2.832575e-01 1
rs65 1185 0.9525723 0.72700422 83 481 621 4.647357e-01 1
rs73 1187 0.9541801 0.01053075 1167 15 5 3.988770e-08 1
rs114 1190 0.9565916 0.12184874 918 254 18 8.924018e-01 1
rs128 1183 0.9509646 0.02409129 1129 51 3 2.747904e-02 1
rs130 1188 0.9549839 0.68392256 117 517 554 8.407527e-01 1
rs143 1192 0.9581994 0.48489933 320 588 284 6.848365e-01 1
rs150 1182 0.9501608 0.66624365 127 535 520 5.568363e-01 1

in controls

> summary(srdta@gtdata[srdta@phdata$bt == 0, 1:10])

NoMeasured CallRate Q.2 P.11 P.12 P.22 Pexact Chromosome
rs10 1177 0.9453815 0.12744265 897 260 20 7.933317e-01 1
rs18 1185 0.9518072 0.27426160 623 474 88 9.418133e-01 1
rs29 1188 0.9542169 0.13215488 897 268 23 5.288436e-01 1
rs65 1183 0.9502008 0.71344041 98 482 603 8.871139e-01 1
rs73 1188 0.9542169 0.01641414 1154 29 5 6.941219e-06 1
rs114 1192 0.9574297 0.11157718 941 236 15 8.846527e-01 1
rs128 1197 0.9614458 0.02589808 1141 50 6 7.745807e-05 1
rs130 1181 0.9485944 0.70491109 104 489 588 8.887439e-01 1
rs143 1174 0.9429719 0.46805792 334 581 259 8.604122e-01 1
rs150 1176 0.9445783 0.65306122 139 538 499 7.968462e-01 1

43

