
A User’s Guide to the R library ddesolve

Version 0.50 – March, 2007

Alex Couture-Beil, Jon Schnute, and Rowan Haigh

1. Introduction

The R library ddesolve generates numerical solutions for systems of delay differential

equations (DDEs) and ordinary differential equations (ODEs). The numerical routines come

from Simon Wood’s solv95 program (http://www.maths.bath.ac.uk/~sw283/simon/dde.html),

originally written in C for the Microsoft Windows operating systems. With ddesolve, a user can

write the gradient code for a system of DDEs or ODEs in the R language, rather than C. The

code will then run on all platforms supported by R, and the results can be inspected using R’s

extensive graphics capabilities.

 For more information on Simon Wood and his work at the University of Bath, Bath, UK,

see his home page http://www.maths.bath.ac.uk/~sw283/index.html. He has very generously

given us permission to publish ddesolve (including his embedded routines) under the GNU

GENERAL PUBLIC LICENSE Version 2

 We have designed ddesolve to perform similarly to the earlier R library odesolve, written

by R. Woodrow Setzer with Fortran algorithms by Linda R. Petzold and Alan C. Hindmarsh at

the Lawrence Livermore National Laboratory in Livermore, California.

 The demos included with ddesolve are designed to run with PBSmodelling version 1.16.

It is possible to use the numerical routines without PBSmodelling; however, installing

PBSmodelling will provide a greater experience and understanding of ddesolve.

2. Defining DDEs

 To define a system of DDEs, a user supplied R function must be created to calculate the

gradient of each variable in the system with respect to time. This gradient function must have

one of the following two function definitions.

1. yprime <- function(t, y)
2. yprime <- function(t, y, parms)

Where t is the current time of integration; y is a vector of estimated values at time t; and

parms is an optional argument used for passing extra constant parameters.

 If the system of DDEs has multiple variables, then y will be a vector of n variables, and

can be accessed from y[1] to y[n].

 The function must calculate the gradient for each variable in the system of DDEs and

return the values in one of the following two return types.

1. A vector of gradients for each value of y

2. A list whose first element is a vector of gradients for each value of y, and whose second

element is a numerical vector of any additional values required at each time step of

integration.

 Lagged values are accessed with calls to pastvalue() and pastgradient().

Both functions take a single argument, time, and may only be called for times greater or equal to

the start time, and less than the current time of integration. Both functions return a vector of past

y values. Lags should be accessed by calls similar to pastvalue(t - constant). Passing

a constant time value to either function (i.e. pastvalue(constant)) should never be done,

since this will require a very large memory buffer, and defeats the purpose of a ring buffer.

3. Solving DDEs

 Simon Wood’s numerical routines create the core functionality of ddesolve. The function

dde(y, func, parms=NULL, from=0, to=10, by=0.01, tol=1e-8,

dt=0.1, hbsize=10000)

is used to invoke the C routines used to numerically solve systems of DDEs.

 The return value of dde() is a data frame containing a time "t" column for every

solved time point. A column for each variable of the system, named "y1", "y2", ...,

"yn". And if func() returned a list containing additional information, then additional columns

named "extra1", "extra2", ..., "extran".

 If the initial values vector y was named, then the variable columns will use those names

instead of the default "y*" names.

 If func() returned additional information that included a names attribute, then those

names will override the default "extra*" names.

4. Demos

 Three demos are included with ddesolve to illustrate possible uses of ddesolve. These

demos require the R library PBSmodelling which is utilized to create graphical user interfaces

(GUIs) designed to aid the exploration of various models.

 Once PBSmodelling is installed, run the runDemos() function and select ddesolve to

access the included demos. Alternatively, R’s native demo() function may be used in lieu of

runDemos().

4.1 Cooling - Newton’s Law of Cooling (ODE Example)

Figure 1. Newton’s Law of Cooling demonstration.

 The cooling demo illustrates how to setup and solve ODEs with ddesolve by solving the

rather easy ordinary differential equation

dy/dt = -rho * (y - Tenv)

which is known to have the analytical solution

y = Tenv + (Tcup - Tenv) * exp(-rho * t)

4.2 Blowflies – Gurney and Nisbet’s (1981) Model of Nicholson’s
(1954) Blowflies (DDE Example)

Figure 2. Nicholson’s Blowflies Model Demonstration

 This demonstration was included in Simon Wood’s Solv95 User Manual as an example

of solving a DDE.

4.3 Lorenz – The Lorenz Equation (ODE Example)

Figure 3. Lorenz Equation Demonstration

 The Lorenz Equation demonstrates chaotic behaviour in differential equations. This

demonstration includes the ability to evaluate the system of ODEs in either ddesolve, or

odesolve. Selecting either numerical solver should not affect the results of the plot. Both

packages are capable of solving ODEs and have completely different underlying code. This

demonstration illustrates that both solvers return comparable results, and is used as a sanity

check to show ddesolve is working correctly.

5. The Algorithm

 The R library ddesolve provides an interface to Simon Wood's numerical routines found

in solv95. The algorithm used is ddesolve is the same as the one used by solv95.

The method used for integration is an embedded RK2(3) scheme due to Fehlberg,

and reported on page 170 of Hairer et al. (1987). Lagged variables (and gradients)

are stored in a ring buffer at each step of the integrator. Interpolation is required to

estimate values of the lagged variables between storage times. For numerical probity

it is essential that the interpolation of lagged variables is of a higher order of

approximation than the integrator, otherwise the assumptions underlying the error

estimate from the RK pair will not be met. The algorithm used in Solv95 uses cubic

hermite interpolation (e.g. Burden and Faires 1987) to achieve this (which is the

reason that gradients need to be stored along with lagged values). The consequences

of not using consistent interpolation and integration schemes are vividly illustrated in

Highman (1993). Paul (1992) was also influential in the design of the method used

here, and the step size selection is straight out of Press et al. (1992) (method, not

code!). The RK2(3) pair used is not actually optimal - it should be possible to derive

an improved scheme - see Butcher (1987) for an explanation of how to go about it.
1

 The solv95 software requires users to define DDEs as a model in C code. Users then have

to compile solv95 on their own to solve the DDE. If the DDE gradient function ever changed,

solv95 would have to be recompiled. Rather than taking this approach, ddesolve provides a

generic C model to the numerical routines of solv95, which acts as a glue between the numerical

C routines and R. This eliminates the need for the compiling process and by returning the results

to R, the user is able to interpret the results using any of R’s rich libraries and internal functions.

 The numerical routines have been preserved in the files ddeq.c and ddeq.h. The

interface to dde() has been significantly altered and is now in the file ddesolve95.c, which

were originally found in solv95.c. The generic C model, mentioned above, started from a basic

model template from solve95, but now contains many R API calls.

6. References
Burden, R.L. and J.D. Faires (1985) Numerical Analysis. Pridle Weber and Schmidt, Boston.

Butcher, J.C. (1987) The Numerical Analysis of Ordinary Differential

Hairer, E., S.P.Norsett & G.Wanner (1987) Solving Ordinary differential Equations I. Springer-

Verlag Berlin. p170 RKF2(3)B

Highman, D.J. (1993) Appl. Numer. Math. 12:403-414

Paul, C.A.H (1992) Appl. Numer. Math. 9:403-414

Press et al. (1992) Numerical Recipes in C. CUP

1
 From Simon Wood’s User Manual

Schnute, J.T., Couture-Beil, A., and Haigh, R. 2006. PBS Modelling 1: User’s Guide. Can. Tech.

Rep. Fish. Aquat. Sci. 2674: viii + 112 p.

Shampine, L.F. Solving Delay Differential Equations with dde23

URL: http://www.radford.edu/~thompson/webddes/tutorial.html

Wood, S N. Solv95: a numerical solver for systems of delay differential equations with switches

URL: http://www.maths.bath.ac.uk/~sw283/simon/dde.html

