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1 Introduction

This note shortly describes how a log-concave density can be estimated and what algorithms are used in the

package logcondens. It is by far not intended to give full reference about the subject, more details can be

found in Rufibach (2006a,b), Dümbgen and Rufibach (2006), and Dümbgen, Hüsler, and Rufibach (2006).

2 Log-concave density estimation

A probability density f on the real line is called log–concave if it may be written as

f(x) = expϕ(x)

for some concave function ϕ : R → [−∞,∞). Let X1, X2, . . . , Xn be independent random variables with

such a log–concave probability density. The normalized log–likelihood function is given by

`(ϕ) := n−1
n∑

i=1

ϕ(Xi).

It may happen that due to rounding errors one observes X̃i in place of Xi. In that case, let x1 < x2 <

· · · < xm be the different elements of {X̃1, X̃2, . . . , X̃n} and define wj := n−1#{i : X̃i = xj}. Then an

appropriate surrogate for the normalized log–likelihood is

`(ϕ) :=
m∑

i=1

wiϕ(xi). (1)

In what follows we consider the functional (1) for arbitrary given points x1 < x2 < · · · < xm and probability

weights w1, w2, . . . , wm > 0, i.e.
∑m

i=1 wi = 1. Suppose that we want to maximize `(ϕ) over all functions

1



ϕ that are concave and induce a probability density. This is equivalent to maximizing

L(ϕ) :=
m∑

i=1

wiϕ(xi)−
∫

expϕ(x) dx

over all concave functions ϕ. From Theorem 3.2.1 in Rufibach (2006a) we know that

ϕ̂m := arg min
ϕ concave

L(ϕ)

is piecewise linear on [x1, xm] with knots only in Ŝm := {x1, . . . , xm} and ϕ̂m = −∞ on R \ [x1, xm].

Therefore, we can restrict our attention to functions of this type and rewrite the log-likelihood function as

L(ϕ) = L(ϕ) :=
m∑

j=1

wjϕj −
m−1∑

k=1

∆xk+1J(ϕk, ϕk+1)

with

J(r, s) :=
∫ 1

0
exp

(
(1− t)r + ts

)
dt

for arbitrary r, s,∈ R where we tacitly introduced the following notation: Any continuous concave function

that is piecewise linear with knots only in Ŝm can be identified with the vector ϕ := (ϕ(xj))m
j=1 = (ϕj)m

j=1 ∈
Rm. Likewise, any vector ϕ ∈ Rm defines a function ϕ via

ϕ(x) :=
(
1− x− xk

∆xk+1

)
ϕk +

x− xk

∆xk+1
ϕk+1 for x ∈ [xk, xk+1], 1 ≤ k < m,

where ∆xk := xk − xk−1. The maximization problem can now be reformulated to

max
ϕ∈Rm

L(ϕ)

under the constraints

∆ϕj

∆xj
− ∆ϕj−1

∆xj−1
≤ 0 for j = 3, . . . , m .

Standard optimization techniques are now suitable to find this maximum.

3 An active set algorithm

This algorithm maximizes L by alternately going into the ordinary Newton direction (only as far as the

constraints allow) and altering the set of constraints. To find the Newton direction, the gradient and the Hesse

matrix of L are needed and are given in Dümbgen, Hüsler, and Rufibach (2006). In the latter paper, the

general framework for active set algorithms is accounted for in Section 3.

This algorithm is implemented in the function activeSetLogCon.
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4 An iterative convex minorant algorithm

To be able to apply such an algorithm, the function L needs to be reparametrized, see Rufibach (2006a,b).

Define

η =
(
ϕ1,

(∆ϕi

∆xi

)m

i=2

)
,

the vector of successive slopes of the piecewise linear concave function ϕ. The back-parametrization is then

ϕ =
(
η1, η1 +

( i∑

j=2

∆xiηi

)m

i=2

)
.

Inserting this new parametrization η into L, the reparametrized log-likelihood function L becomes

L(η) := L(η(ϕ))

= η1

m∑

i=1

wi +
m∑

i=2

ηi

m∑

i=k

wi∆xi − eη1

m∑

i=2

exp
( i−1∑

k=2

∆xkηk

)exp(∆xiηi)− 1
ηi

. (2)

The point of the reparametrization is, that the optimization problem now writes

max
η∈Rm

L(η)

under the constraints

ηi−1 ≥ ηi for i = 3, . . . , m .

Now approximate (2) quadratically around a given ηo ∈ Rm by the quadratic function L̃:

L̃(η) = L̃(η|ηo)

= L(ηo) +∇ηL(ηo)
′(η − ηo) + 2−1(η − ηo)

′W (ηo)(η − ηo)

where ∇ηL is the gradient of L and D some positive definite matrix, which we choose to be the diagonal

matrix that equals the Hesse on the diagonal. For ease of notation, introduce g := ∇ηL(ηo) and d =

diag(D(ηo)). Then rewrite L̃(η) as

L̃(η) = L̃(ηo) +
m∑

i=1

gi(ηi − ηo,i) + 2−1
m∑

i=1

di(ηi − ηo,i)2

= L̃(ηo)− 2−1
m∑

i=1

(gi/wi)2 + 2−1
m∑

i=1

di

(
ηi − (ηo,i − gi/di)

)2
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and the maximization problem to solve becomes

max
η2≥···≥ηm

m∑

i=1

di

(
ηi − (ηo,i − gi/di)

)2
.

But this is exactly what a (weighted) pool-adjacent-violaters algorithm delivers (if we set η1 = ηo,1−g1/d1).

Using this, one gets a direction where to go in order to increase the likelihood. Supplemented by a robustifi-

cation procedure and an Hermite interpolation as first described in Dümbgen, Freitag and Jongbloed (2006),

such an iterative algorithm is implemented as the function icmaLogCon.
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