
pmg

John Verzani
pmgRgui@gmail.com

February 19, 2007

Abstract:

The pmg package provides a simple GUI for R using the GTK2 toolkit. the pmg GUI
is similar in intent to the more mature RCmdr GUI which uses the tcltk toolkit.
The GTK libraries are accessed through the RGtk2 package of Michael Lawrence.
This package is available for all three major platforms: windows, Mac OS X, and
Unix/X11. the gWidgets interface is used to simplify the development of interactive
GUIS, this in turn requires the gWidgetsRGtk2 package. (In theory, but not practice,
the usage of gWidgets would allow pmg to use a different GUI toolkit, but no other
links between gWidgets and some other toolkit is at present written. 1

1 Installing pmg

If the requisite packages are available on CRAN, then installation can be done with
a single command such as

> install.packages(c("gWidgets","gWidgetsRGtk2","pmg"))

or from the toolbar.
The latest versions may not be on CRAN, but rather the pmg website. In which

case, a command such as

> install.packages("gWidgets", repos="http://www.math.csi.cuny.edu/pmg")

1The gWidgets package uses S4 methods. It is a bit slower than the previous S3 imlementation,
although the new methods package, with R as of 2.4.0, speeds things up. The pmggWidgetsRGtk
package on the pmg website offers a standalone implementation of gwidgets which runs faster,
although this is not being maintained anymore.

1

will install a package. see the webpage http://www.math.csi.cuny.edu/pmg for
additional installation instructions.

The above assumes that both the GTK libraries, the RGtk2 package, and the
cairoDevice package already exist on your system. If not, the home page for RGtk2
has some directions (http://www.ggobi.org/rgtk2).

2 Starting

The GUI uses the gWidgets API. The gWidgets package offers the promise of
a toolkit-independent API for writing interactive GUIs. If more than one toolkit
implementation is installed, a menu for selection will be shown. It is likely that pmg
will only work well using the gWidgetsRGtk2 implementation. 2

The GUI is started as follows.

> library(pmg)

To restart the GUI, the command pmg() can be issued. With the Windows
operating system it is best to minimize the parent R GUI as it covers up the pmg
windows.

3 Using the GUI

The GUI basically consists of a variable browser and a collection of dialogs that are
accessed through a menubar. The values in the variable browser may be dragged
and dropped into the entry areas of the dialogs.

Most of the dialogs have a common format familiar to web users: you enter in
the values in a form and click “OK.” The output is then sent to the console and the
command tab.

Besides the menubar, the GUI has a few key features. From left to right these
are:

Some drop targets on the left hand side These are for editing the dropped ob-
ject, for plotting the dropped object, for summarizing the drop object, or for
deleting the dropped object.

2The gWidgets package may run slowly if the newer methods package is not used. As such,
a stand-alone implementation is available for RGtk2, but this will not be supported in the future.
If you want to use the pmggWidgetsRGtk package don’t install the gWidgets package as that
is tried first.

2

Figure 1: The pmg gui with sample dialog

The workspace browser This shows the variables in the global environment using
a familiar tree interface. The filter tab allows you to display just some desired
types. The definitions of which may not be as inclusive as you would like. The
base objects are refreshed every few seconds. Unfortunately, their subobjects
are not. To refresh the subobjects, close then open the sub display.

These variables may be dragged and dropped. For instance, dropping on the
left sidebar produces the actions described previously.

If the variables are double-clicked a summary of the object appears in a tab in
the dialog notebook on the right.

The dialog notebook This notebook (a widget with tabbed pages) has two per-
manent tabs: a command line and a data frame viewer/editor. Other dialogs
have a close button in the tab that removes that dialog.

The tabs have a drag motion set so that if an object is dragged over the tab,
the corresponding page opens.

The command line The command line has two states: one for editing the current
command, and one for viewing the command with its output. Toggling between
is done with the buttons immediately above the display. The command line

3

processes chunks of R code, in the style of sourcing a .R file. A history of the
last 25 commands issued is available.

Dragging variables to the command line drops their name into the window.

The dataframe viewer/editor The dataframe viewer (Figure 2) allows one to
view and edit data frames. It should look more spreadsheet like, but no such
widget is available in GTK. This implementation allows you to edit single cells
in the table, and edit row and column names.

Editing is a little clunky. Double clicking on a cell should allow you to edit it.
Hitting the enter key, jumps to the next row done and opens the edit area. To
move to another column use the mouse or the arrows and the enter key.

A right-mouse popup menu allows for sorting by column values, applying a
function to a column, or changing the column name.

A right-mouse popup on the notebook tab allows you to save, close, or rename
the sheet.

The sheets with the names *scratch:##* are treated differently. The non-
empty individual columns are saved as data vectors. Otherwise a saved sheet
is saved as a data frame.

Dropping an appropriate variable on the sheet will open a new tab with that
variable’s contents displayed.

Dialogs Most of the menu items create dialogs that are attached as notebook pages
to the right of the data frame viewer/editor.

There are primarily two types of dialogs in pmg: static ones and “dynamic”
ones. The latter have menu items prefaced with an “execute” icon, and appear
in separate windows. These dynamic dialogs were inspired by the Fathom
software package (http://www.keypress.com/fathom/).

Dynamic dialogs respond to drag and drop actions. By dragging variables onto
the appropriate area, the values in the widget get updated. Additionally, the
bold face values in the widget can be clicked to effect changes. Again, the
widget refreshes instantly. These dynamic dialogs give immediate feedback,
but do not show or allow one to edit the R commands that are used.

There are currently 4 main dynamic dialogs: one for exploring graphically (the
Lattice Explorer), one for finding numeric summaries, one for significance tests,
and one for linear models.

4

The static dialogs are illustrated by the sample dialog appearing in Figure 1.
Most, but not all, of the dialogs have the same behavior described below. There
are areas to enter information, and when enough values are specified, the “ok”
button sends the appropriate command to the command area to be evaluated.
Unlike the dynamic dialogs, the value is only updated when the “ok” button is
clicked. Missing values are ignored. Values may need to be quoted.

The evaluated commands can be viewed and edited in the command line area.

This particular dialog in Figure 1 expects a model formula, in this case for
calling the plot() function.

There are some conveniences for editing the information. When a data set
is dropped onto the data= area the names of the data frame are added to the
dropdown values for the response and predictor. Additionally, the“edit”button
opens a dialog for editing the formula. A similar button allows one to subset
the data frame.

The “arguments” section of the dialog has underlined labels. When these are
clicked the appropriate help page section for this argument is looked for and
displayed if found (this involves a grep for the colon following the argument
and may miss). In this dialog, the help page refers to that for plot(), but the
arguments are not found. The “help” button will show the full help page.

When the “ok” button is pressed, the arguments are collected and pasted to-
gether to make a function call. This is then sent to the command area and
evaluated. To see the output, you need to click the command tab. As well, the
command and output is printed into the console.

Dialogs are accessed through the menubar. In addition to several of the “generic”
dialogs described above, there are some that have their own window. For example
to load a data set so that it is visible in the workspace viewer the “Load data set...”
menu item opens up a dialog for this. Other dialogs are available for loading an
installed package, installing a package from CRAN, sourcing a file, saving a file, etc.

The dialog from “Data::Univariate Summaries::quantile” is new as of version 0.9-
24. It is a possible prototype for some student-friendly dialogs along the lines of the
dynamic summaries dialog.

Graphs can be handled by the default device, through the plot notebook (Fig-
ure 3) which is opened when the “plotnotebook” toolbar item is pressed, or using the
Lattice Explorer. The notebook allows one to store several different plots at once.
The currently selected tab, should also be the current device. (Using both the plot

5

Figure 2: The data viewer and editor. The columns may be dropped onto the
dynamic dialogs.

notebook and the Lattice Explorer can lead to confusion, as the current device is
where the new figure is drawn, and this may not be the desired device.)

The“help” toolbar item opens up a help page browser, allowing access to R’s help
system.

4 A few sample tasks

We describe how to perform a few common tasks from an introductory statistics
course.

4.1 Loading a data set and using a boxplot to explore a
variable

Let’s see how to make boxplots of the MPG.highway variable broken up by the number
of Cylinders in the data set Cars93 of the MASS package. The first task is to load
the data set. Of course, you might think:

> library(MASS); boxplot(MPG.highway ~ Cylinders, Cars93)

6

Figure 3: A notebook for holding multiple plot devices

but we are interested in doing this through the GUI.
First we load the MASS package using the “Load package” dialog under the File

menu. Open the dialog, and then double click on MASS until the second column
says TRUE.

Next, we call data on the data set so that it appears in the variable browser.
Open the “Load data set...” dialog under the Data menu. Find the data set and then
double click. The data set should appear in the variable browser shortly.

Now open the Lattice Explorer dialog under the Plots menu. Change the plot
selection to bwplot. Then in order drag the MPG.highway variable and then the
Cylinders variable onto the main explorer area. The appropriate graph should be
drawn. The basic idea is that the first variable is split up by the second, and in this
case a third is possible. (Drop Origin to see.)

To look at new variables clear out the old ones with the clear button. To make a
different graphic with the same variables, you only need to change the graph selection
popup.

7

4.2 Using the subset feature of the data viewer

An alternative approach to using lattice graphics to break up the data by levels of
some factor can be to use the subset= dialog for the data viewer. Changing the
values shown in the data viewer, can dynamically update the graphic.

To illustrate, open the Lattice Explorer as before and change the plot selection
to bwplot. Now drag the variable Cars93 from the variable browser area over the
Data tab of the dialogs area (to open up that tab) and drop the Cars93 variable
onto the area where a data frame is shown. This should cause the data viewer to
open and display the data frame. Now drag the MPG.highway variable name (the
column header) onto the Lattice Explorer dialog and drop it in the graphing area. A
boxplot of the variable is drawn. This boxplot is linked to the values displayed in the
MPG.highway column. Changing a value causes the graphic to be redisplayed taking
into account the new values. We will change the values with the subset= dialog. At
the bottom of the data viewer is an expander group that must be clicked to show
the dialog. After this appears, you can select a variable and a subsetting argument
to filter the displayed values. Figure 4 shows the dialog with only the 3 cylinder cars
shown.

Figure 4: Data viewer showing Cars93 data set subsetted by the number of Cylin-
ders being 3.

8

If you scroll through the levels of Cylinder using the arrow keys, the boxplot in
the Lattice Explorer will be redrawn each time using only the visible data.

Dragging a column header onto a widget only works for the dynamic widgets and
only with gWidgetsRGtk2. There are currently two other dynamic widgets: one for
numeric summaries of a data set and another for linear models.

4.3 Finding numeric summaries of a data set

The Dynamic Summaries dialog found under the Data menu allows one to easily find
some common numeric summaries. The interface is intended to make the simplest
cases easy, if more control over the arguments is needed then the respective functions
have an alternative dialog.

We consider again the Cars93 data set and its MPG.highway variable. To find
the mean of all the data, drag this to the bold-faced area “Drop variable here.” The
mean should be calculated and appear below. To break up the data by the levels
of some other variable drag that to the “group by” area. Figure 5 shows the result
(after resizing the window) of breaking the data up by the Cylinders variable.

Figure 5: A dialog for computing summaries of numeric data

Changing the summary using the popup will compute the new numeric summary.
If the variables need to be changed, one can drag a new variable directly, or if the
size is not compatible, clear the variables first then drag a new variable.

The drop areas can be edited by clicking on the. The variable name can be
directly typed in relative to the global environment. Even simple functions can be
applied. One caveat, if the dropped variable comes from the data frame viewer then
editing won’t work. However, editing the data within the data frame viewer should
have its changes instantly propogate.

9

5 Adding to the GUI

Currently there are only a few ways to add to the GUI.

5.1 Adding a dialog

The pmg.add(widget, label) function is used to add a dialog to the main notebook.
It will add to the third tab. The widget is some gWidget instance. It should not
already be attached to some container. For example, this will add a “hello world”
tab

> pmg.add(glabel("Hello world", "Hi"))

5.2 Creating a dialog to collect a function’s arguments

The pmg.gw(lst,title=NULL) function is used to add a dialog to collect a function’s
argument. The function calls ggenericwidget to create the dialog. The lst argu-
ment can be a list, a function name or a function. In the last two cases the dialog is
formed from looking at the values returned from formals(). The title can be set or
will be guessed if not present.

5.3 Adding to the menubar

The pmg.addMenubar(menulist,...) function can be used to add new top-level
entries to the menu bar. It takes a list that gets passed to gmenu as its argument.

For example, a new entry can be defined as follows

> lst = list()

> lst$MenuEntry$hi$handler = function(h,...) pmg.add(glabel("HelloWorld", "Hi"))

> lst$MenuEntry$mean$handler = function(h,...) pmg.gw("mean")

> pmg.addMenubar(lst)

User-defined menus can be added when the GUI is started. At startup pmg
looks for a variable pmg.user.menu which if present should be a list with named
components, each again a list to sent to the gmenu() of gWidgets.

6 TODO

PMG could be improved in many ways. A few obvious ones are

10

� More ability to customize the GUI. For instance, there is no way to change the
fonts, there is only a primitive way to change the menubar, the direct way of
adding to the main notebooks seems to not work, ...

� The bulk of the dialogs are pretty basic – they just collect arguments to pass
to a function call. Some more dynamic widgets would be useful. The dialog
for quantiles is meant to be a template for some student-friendly dialogs.

� It would be great to have some sort of report writing tool. The new Maple
interface or the Mathematica notebook interface might be a good choice for
interacting with R. At one point there was a very promising project for OS X
but that seems to have been dropped. A simple approach might be using PMG
to construct a document to be processed by Sweave.

11

