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1. Introduction, History and Outline 
 
The primary purpose of this PDF Documentation file is provide users of my ICEinfer R-package 
with technical background information about basic statistical and econometric concepts and 
graphical visualizations useful in Incremental Cost-Effectiveness (ICE) analyses.  The tutorial of 
Briggs and Fenn [2] provides a good introduction to and review of the extremely wide variety of 
methodologies that have been proposed to quantify ICE uncertainty. 
 
ICE statistical inference is a complex 2-sample, 2-variable (bivariate) problem.  Specifically, 
ICE inference usually uses data from patients who receive only one of the two treatments that are 
to be compared.  (In other words, a patient does not contribute data to both samples as he/she 
would in a treatment “cross-over” experiment.)  Furthermore, possibly relevant differences 
between treatment groups involve two types of outcomes (cost and effectiveness) that, although 
possibly correlated, are typically considered quite distinct by various health care stake holders.  
Payers are rightfully most interested in the cost dimension, and patients subject to insurance and 
out-of-pocket charges clearly also share some of this concern.  On the other hand, health care 
providers and patients (plus their families) are quite justifiably most concerned about treatment 
differences in effectiveness. 
 
Some History: As an aid to visualization in 2-dimensional, real Euclidean space, Black [1] 
proposed that the incremental difference (new treatment minus standard treatment) in mean 
effectiveness, ∆E, be plotted horizontally while the corresponding difference in mean cost, ∆C, is 
plotted vertically.  Technically, since the effectiveness difference is displayed along the 
horizontal, X-axis, confusion might be reduced of this display were known as the “effectiveness 
versus cost difference” plane.  Traditionally, this particular setup is called the “ICE Plane.” 
 
To depict uncertainty in a (∆E, ∆C) point estimate (a bivariate statistic), its bootstrap distribution 
under resampling of patient outcome pairs both with replacement and within treatment groups is 
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displayed as a scatter of points on the ICE Plane.  See Briggs and Fenn [2, pp 731-734] for a 
summary of ICE bootstrapping methodology. 
 
A (univariate) confidence interval for the unknown true expected value of any scalar valued ICE 
summary statistic can be computed from the bivariate bootstrap distribution of uncertainty in 
(∆E, ∆C) estimates.  Unfortunately, substantial challenges to the use and interpretation of 
confidence intervals for the ICE Ratio, ICER = ∆C/∆E, have been noted [16,11,12].   Although 
closely related to the ICE Ratio, the Net Benefit (NB) approach [4,27,3,15,26] may have avoided 
similar criticism because it attempts to quantify overall preference or utility.  In NB, constant 
preference contours (indifference curves) are straight lines on the ICE plane with positive slope, 
λ.  Within the North East (NE) quadrant, this slope can be interpreted as the willingness-to-pay 
(WTP) a higher cost in return for increased effectiveness; within the South West (SW) quadrant, 
this same slope is interpreted as the willingness-to-accept (WTA) a less effective treatment in 
return for lower cost.  In other words, NB collects outcomes on the ICE plane into linear 
equivalence classes (straight lines of iso-preference) ordered by a single index, the NB. 
 
Section 2 introduces basic notation and demonstrates that all commonly considered 
transformations of the ICE plane, including both treatment re-labelings (new versus standard) 
and axis rescalings (changes in the shadow price of health), are simple linear transformations 
with a fixed point at the ICE origin.  With λ held fixed, treatment differences in outcome are first 
standardized by expressing both (∆E, ∆C) differences in identical units, either both in cost units 
or else both in effectiveness units. 
 
Section 3 covers the theory and application of (nonlinear) ICE Preference Maps.  The 
assumption of uniform slope for iso-preference curves, as in traditional NB, is unrealistic in the 
sense that linear utility has been consistently contradicted in empirical studies [18,30,17].  
O’Brien et al. [17] provide a good introduction to WTP and WTA concepts as well as a highly 
readable summary of relevant literature.   
 
Obenchain [23,24] argues that coherent ICE preferences satisfy four intuitive axioms and 
proposes a 2-parameter family of maps that satisfy these axioms and provide highly realistic 
generalizations of NB.   For example, nonlinear maps do not require that Returns-to-Scale be 
linear (constant) or that willingness-to-pay (WTP) and willingness-to-accept (WTA) be equal to 
the Shadow Price of Health, λ. 
 
Section 4 discusses alternative ways to visualize the effects of transformations within the Linear 
Subgroup on the bootstrap distribution of ICE uncertainty. 
 
Section 5 describes how to use ICE Angle order statistics (around a circle) to form a wedge-
shaped ICE Confidence Region that is “equivariant” (commutative) under the Linear Subgroup. 
 
Section 6 then discusses important distinctions between “ALICE” curves and the traditional, 
linear-frontier VAGR measure of acceptability.   
 
Section 7 illustrates the consequences of equivalence of treatments along the straight line 
through the ICE origin of slope λ within all Economic Preference Maps.  Because such maps 
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tend to reduce dimensionality in ICE inference from 2 dimensions (cost and effectiveness) to 
only 1 “composite” preference dimension (a range of scalar values), some authors have claimed 
that inference is thereby simplified.  We demonstrate the exact opposite!  Economic uncertainty 
about λ can not only swamp the statistical uncertainty in patient level data about the true location 
of (∆E, ∆C) but also can introduce inconsistency. 
 
 
2.  Basic ICE Notation and Terminology 
 
2.1 ICE outcomes 
 
An ICE outcome is represented by a pair of expected treatment differences, usually expressed in 
Cartesian coordinates as (∆E, ∆C).  Here, ∆E is a difference in average treatment effectiveness of 
the form “new” treatment minus “standard” treatment.  The underlying effectiveness 
measurement needs to be defined in such a way that larger (more positive) values of ∆E are 
unambiguously more favorable to the new treatment.  The corresponding difference in average 
per-patient cost, ∆C, must be such that smaller (more negative) values are unambiguously more 
favorable to the new treatment. 
 
2.2 ICE linear subgroup of transformations 
 
Transformations of ICE outcome coordinates occur quite naturally.  For example, interchanging 
the labels (new and standard) on the two treatments being compared would multiply both ∆E and 
∆C by minus one. 
 
Let λ denote society’s fixed “shadow price” for one unit of health care effectiveness.  In other 
words, λ is a strictly positive substitution rate expressed in units of cost per unit of effectiveness. 
 

For any specified value of λ, a cost difference of y = ∆C is re-expressed in effectiveness 
units by dividing it by λ. 
 
Alternatively, the corresponding effectiveness difference of x = ∆E would be expressed 
in cost units by multiplying it by λ. 

 
An arbitrary ICE outcome (∆E, ∆C) thus gets transformed into either (x, y) = (λ∆E, ∆C) in cost 
units or into (x, y) = (∆E, ∆C/λ) in effectiveness units.  Either choice represents a standardized, 
canonical form for expected, overall treatment differences that clearly depends upon choice of a 
fixed, numerical value for λ. 
 
The transformations of interest can be represented using 2×2, diagonal matrices of the form 
 

0
0
αλ

α
⎡ ⎤
⎢ ⎥
⎣ ⎦

            or            
0

0 /
α

α λ
⎡ ⎤
⎢ ⎥
⎣ ⎦

, 

 



Nonlinear ICE Preference Maps  Page 5 

where the α values are either both +1 or else both –1, and λ is a strictly positive and finite.  
Specifically, visualize a 2×1 (column) vector of Cartesian coordinates being multiplied on the 
left by a 2×2 diagonal matrix of the above form, producing a transformed 2×1 vector of 
standardized coordinates, (x, y).   The implied subgroup of transformations is clearly linear, and 
the straight line through the origin defined by ∆E/∆C = λ has been transformed into the x = y line 
with slope plus one. 
 
The above transformations form a linear subgroup much more restrictive than the full group of 
“affine” transformations commonly considered in multivariate analysis (bivariate, in our case.)   
In particular, this linear subgroup not only preserves the ICE origin, (0, 0), as a fixed point by 
excluding additive “translation” vectors but also excludes “rotations” and/or “shears” between 
axes that result from 2×2 transformation matrices that are neither diagonal nor symmetric (or 
possibly have diagonal entries that differ in numerical sign.) 
 
 
3.  ICE Economic Preference Maps 
 
Let P(x, y) denote a real-valued function, called an “ICE preference map,” that determines, as 
explained below, not only which of two treatments is preferred but also the strength of that 
preference.  Specifically, P(x, y) can be visualized as a surface defined over the entire 2-
dimensional Euclidean plane, (x, y), of standardized ICE outcomes. 
 
3.1 Basic Preference Assumptions and Fundamental Axioms 
 
Our three primary interpretation conventions (assumptions) for P(x, y) will be as follows: 
 

P(x, y) = 0 means that the (x, y) pair of treatment differences correspond to no preference 
whatsoever, either for the new treatment over the standard treatment or vice-versa. 
 
P(x, y) > 0 means that the treatment currently called new is preferred over the treatment 
currently called standard.  Strictly positive P(x, y) values are at least ordinal measures of 
strength of preference for the new treatment over the standard treatment. 
 
P(x, y) < 0 means that the treatment currently called standard is preferred over the treatment 
currently called new.  The absolute values of negative P(x, y) values are at least ordinal 
measures of strength of preference for the standard treatment over the new treatment. 

 
Table 1 lists four axiomatic properties of ICE preference maps.  When first examining this table, 
it may be helpful to note that the linear preference map, [27], is NB(x, y) = x − y, which clearly 
satisfies all four of these axioms. 
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Table 1.   Four Axioms of ICE Preference 

 
Indifference and 

Direction of Preference: 
P(x, y) = 0 when x = y, 

P(x, y) > 0 when x > y, and 
P(x, y) < 0 when x < y. 

 
Monotonicity: 

 
P(x, y) ≥ P(xo, yo) for 
all x ≥ xo and y ≤ yo. 

 
Re-labeling: P(x, y) = −P(−x, −y) 

 
Symmetry 

and Anti-Symmetry: 
P(x, y) = P(−y, −x) 

= −P(y, x) 
 

Note that the re-labeling, symmetry and anti-symmetry axioms represent additional restrictions 
on ICE preferences only when x ≠ y.  After all, the P(x, x) = 0 property of the first axiom renders 
the implications of all other axioms moot for all outcomes with x = y. 
 
3.2 Two-parameter ICE preference maps. 
 
To generalize the linear preference map NB(x, y) = x − y, let us now consider the family of ICE 
preference maps of the form 
 

P(x, y)  ∝  (x2 + y2) (β−γ)/2 {x − y}γ ,                                          (1) 
 

where ∝ means “is proportional to,” β and γ are strictly positive “power” parameters, and the 
special notation {z}γ denotes a “signed-power.”  Specifically, {z}γ denotes the product of sign(z) 
[which is +1, 0 or −1] times the absolute value of z raised to the power γ.  Special care has been 
taken here because non-integer powers of negative real numbers are generally imaginary; ICE 
preferences need to be expressible as real numbers even though they may provide only ordinal 
measures of preference strength.   
 
It is straight-forward to verify that all ICE maps of form (1) satisfy axioms 1, 3 and 4 of Table 1.  
Obenchain [23,24] showed that the following range restriction on the ratio of the β and γ power 
parameters,   

1/Ω  ≤  γ/β  ≤  Ω   for  Ω = (1+ 2 )2 ≈ 5.828,                                  (2) 
 

is necessary and sufficient for maps defined by equation (1) to also satisfy axiom 2, ICE 
monotonicity.  The class of two-parameter ICE preference maps satisfying equations (1) and (2) 
constitutes the “signed-power” family. 
 
3.3 ICE Returns-to-Scale Parameter, β 
 
Suppose now that the observed treatment differences in cost, y, and effectiveness, x, are 
somehow both multiplied by a strictly positive and finite real valued factor f.  In other words, the 
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observed effectiveness difference of x becomes f times x, while the observed cost difference of y 
becomes f times y.  The resulting new value of preference in equation (1) is then 
 

P( f x,  f y)   ∝  f (β−γ)+γ [x2+y2](β−γ)/2 {x−y}γ   ∝  f β P(x, y).                         (3) 
 

In other words, for every map in the 2-parameter family, (1), returns-to-scale depend solely upon 
the β power parameter attached to the ICE radius factor.  Specifically, returns-to-scale will be: 
 

decreasing if  0 < β < 1, 
constant (linear) if  β = 1, and 
increasing if  1 < β < +∞. 

 
 
3.4 Willingness-to-Pay, Willingness-to-Accept and Bob O’s “link” function. 
 
WTP or WTA at any point on the ICE plane is assumed here to be determined by the iso-
preference contour that passes through that given point.  In fact, we define a standardized 
“willingness” rate (of WTP/λ within the NE quadrant or WTA/λ within the SW quadrant) as 
being equal to the dy/dx slope of the tangent to the iso-preference contour at the point of interest.  
This is fully consistent with NB analysis in which iso-preference contours are straight lines of 
slope WTP = WTA = λ; note that the standardized value for all three of these quantities is +1 at 
all points in the lower-left panel of Figure 1.  
 
Obenchain[24] showed that the standardized willingness rate at (x, y) for all signed-power ICE 
preference maps of form (1) is 
 

w(x, y) = [βx2 + (γ−β)xy + γy2] / [γx2 + (γ−β)xy + βy2] 
= [1 + (η−1)s + ηs2] / [η + (η−1)s + s2],                            (4) 

 
where s = y/x is the standardized ICE ratio and η = γ/β is the map “power-parameter ratio.”  
Remembering that (x, y) denotes either (λ∆E, ∆C) in cost units or (∆E, ∆C/λ) in effectiveness 
units, it follows that w(x, y) represents either 
 

[a] a non-negative value of WTP/λ when ∆E, x, ∆C and y are all positive 
or else 

[b] a non-negative value of WTA/λ when ∆E, x, ∆C and y are all negative.  
  

Since β and γ are unitless parameters and x and y are both measured here in the same units, it 
follows that η = β/γ, s = y/x and w(x, y) are all unitless quantities. 
 
Within generalized-linear maps (η = 1), note that w(x, y) ≡ 1 is a fixed value at all points (x, y) 
and for all directions s = y/x. 
 
For any fixed value of η different from 1, the standardized willingness rate (4) varies only with s.  
In other words, standardized willingness is then constant everywhere along each straight-line 
trajectory, s, passing through the origin of the ICE plane except at the origin itself.  After all, 
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neither w(0, 0) nor s = y/x are well defined at the ICE origin.  Unlike ICE preferences, P(x, y), 
standardized willingness does not vary with ICE radius, 2 2r x y= + , within the 2-parameter 
maps of equation (1). 
 
The (un-standardized) ICE willingness rate takes on 3 different, simple forms in the following 
special cases: 

Table 3.  Some Willingness values when η ≠ 1. 
W(∆E, ∆C) = λ when s = ±1  (x = y ≠ 0 or  x = −y ≠ 0),  

 = λ/η when s = 0  (y = 0 and x ≠ 0), 
 = λη as s approaches ±∞  (x = 0 and y ≠ 0.) 

 
The single, most important implication of the ICE symmetry axiom appears to be that every well 
matched pair of values for a WTP within the North East ICE Quadrant with a WTA within the 
South West ICE Quadrant must have the property that WTP times WTA equals λ2.  In other 
words, for our signed-power ICE preference maps (or any differentiable ICE preference map 
satisfying the symmetry axiom), the following key relationship will always hold: 
 

    WTP WTAλ = ×  .                                                (5) 
 

Equation (5) states that the shadow price of health is the geometric mean of all well-matched 
pairs of strictly positive WTP and WTA values.  In other words, equation (5) shows that WTP 
and WTA can both vary simultaneously within a fixed, nonlinear ICE preference map 
corresponding to a single fixed value of λ.  [Figure 4 on page 12 illustrates the analytical 
geometry behind equation (5).]  Anyway, relative to choice of λ, choices for the values of the β 
and η (or γ) parameter are clearly less important.  After all, equation (5) holds for all choices of 
β and η.  This “link” function, Obenchain[24], has profound theoretical (and practical) 
implications. 
 
In summary then, only the nonlinear ICE preference maps of form (1) with power parameter 
ratio, η = γ/β, confined to the finite interval of 1 < η ≤ Ω = 3 + 2 2  can be fully realistic.  And 
only the maps with η = Ω allow willingness (standardized or un-standardized) to vary all of the 
way from 0 to +∞.  
 
Preliminary standardization, in which (x, y) represents either (λ∆E, ∆C) in cost units or (∆E, 
∆C/λ) in effectiveness units for a fixed numerical value of λ, is essential to be able to express not 
only standardized directions, s = y/x, but also standardized willingnesses, w, as unitless 
quantities.  In turn, unitless quantities become absolutely essential when reciprocals are to be 
compared.  After all, if the quantities being compared were not unitless, the statistic and its 
reciprocal would be expressed in different units, such as $/QALY and QALY/$, and clearly 
could not then be directly compared! 
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3.5 Visualizing Indifference Curves using ICEepmap( ) and ICEomega( ) 
 
The four subplots of Figure 1, below, depict ICE preference maps using equally spaced 
“indifference curves” (alternatively, called “iso-preference contours” or “level curves”.)  
Whatever was the specified value of λ, what we now wish to visualize is the standardized form 
that results from using that specified λ to either scale both axes in “cost” units or else both in 
“effectiveness” units.  As a result, the true λ must now be visualized as having been transformed 
to λ = +1.  These R-graphics use the contourplot( ) function of the “lattice” package, [28]. 
 
Figure 1.  ICE Economic Preference Maps in “Canonical” Form (λ = 1.) 

  

  
 
 
Rather “round” maps like the one at the top-left of Figure 1 result when γ < β.  Unfortunately, the 
slopes of the indifference curves below the lower-left to upper-right diagonal of the ICE plane, x 
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= y, show that WTA < WTP in these rather “round” maps.  This is quite unrealistic in the sense 
that this ordering has apparently never been observed in empirical studies! 
 
The Linear map with constant Returns-to-Scale, NB(x, y) = x – y, results when γ = β = 1, which 
is the case displayed in the lower-left panel of Figure 1.  
 
The “highly directional” maps on the right-hand side of Figure 1 result when γ > β and tend to be 
much more realistic than those on the left-hand side.  Note that the γ/β ratio of 0.25 for the top-
left map in Figure 1 is well above the 1/Ω ≈ 0.1716 lower limit allowed under restriction (2), 
while γ/β = 4 at the bottom-right of Figure 1 is well below the Ω ≈ 5.828 upper limit for maps 
possessing ICE monotonicity.  The upper-right map of Figure 1 is the ICE-Ω map with constant 
Returns to Scale, β = 1 and η = γ/β = Ω. 
 
3.6 Implications of Using a “Wrong” Numerical Value for λ.  
 
The ICEepmap( ) and ICEomega( ) functions can also be used to visualize the consequences of 
using a “wrong” numerical value for the Shadow Price of Health, λ.  Specifically, consider the 
representation: 

λ = λf  × λo                                   (6) 
 

where λo represents the true value of λ in cost/effectiveness units and λf is a scalar (unitless) 
factor the one can pretend has a known value.  In other words, one is using the “right” numerical 
value for λ when λf = 1 and a “wrong” value when λf > 1 (i.e. λ “too large”) or λf < 1 (i.e. λ “too 
small.”)   Thus, although the “standardization” process supposedly transforms λ to become 1, the 
consequences of using a λf  ≠ 1 are easily visualized using the ICEepmap( ) or ICEomega( ) 
functions.   
 
Curiously, all generalized-linear ICE maps (i.e. maps with γ = β or η = 1) are sufficiently naïve 
and simplistic that nothing “appears” to go wrong when a factor of λf  ≠ 1 is used!  Specifically, 
as depicted in Figure 2, the direction of steepest-ascent and steepest-descent in generalized-linear 
preferences simply rotates to correspond to the direction orthogonal to λf, with slope −(λf)−1. 
 
In other words, generalized-linear maps always remain symmetric (Fourth Axiom) relative to the 
−(λf)−1 direction for all values of λf . 
 
In sharp contrast, as seen in Figure 3, realistic, highly-directional maps (γ > β or η > 1) get 
“twisted” when λf ≠ 1.  Specifically, the direction of steepest-ascent and steepest-descent in 
realistic non-linear preferences tends towards having slope −λf …instead of slope −(λf)−1, 
orthogonal to λf . 
 
The main implication here is that ICE Symmetry (Fourth Axiom) is assured only if λf  = 1  when 
using any truly realistic, non-linear ICE Preference Map.  In fact, this objective property can be 
viewed as the very “definition” for the unknown, true Shadow Price of Health, λ = λo. 
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Figure 2. 

λf = 1.0

Generalized Linear (η = 1.0) but Diminishing Returns (β = 0.5)

λf = 0.4λf = 0.2

λf = 2.5

Note that the directions of steepest ascent and descent remain orthogonal to λ.  
 
 

Figure 3. 

λf=0.5λf=2

Highly Non-Linear: β = 1, γ = η = Ω

“Wrong”λ => No Symmetry!

 
 
Furthermore, the “link” function, WTP WTAλ = × , (5), provides a fully objective way to 
estimate this “symmetrizing” Shadow Price via existing empirical methods of eliciting paired 
“kinked” values of WTP < WTA, [18,30,17]. 
 
For example, assume that λ really is the often quoted value of $50,000/QALY but that 
government authorities or local payers in some region insist that $10,000/QALY is the maximum 
additional cost that they can possibly agree to pay.  This is a simple budget constraint that does 
nothing to change the full, fair shadow price of health, but it does reduce the local WTP to λ/5.  
It is unfair and arbitrary to assume that a budget (extra cost) restriction like this also reduces 
WTA to λ/5.  Instead, WTP WTAλ = ×  implies that the corresponding “fair” value of WTA 
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then becomes 5λ = $250,000/QALY.  Only treatments that reduce cost (by reducing 
effectiveness) by at least $250,000/QALY have preferences to society as high as the clearly 
desirable treatments that increase cost (and increase effectiveness) by less than $10,000/QALY.  
  
 

3.7 Laupacis’ visualization of ICE preferences corresponds to the limit as β approaches 0. 
 
Figure 4 depicts the limit of our signed-power family of ICE preference maps of equation (1) as 
the returns-to-scale parameter, β, approaches zero (while the γ parameter is held fixed at any 
finite value.)  In other words, η then approaches +∞ and the standardized willingness of equation 
(4) becomes w = (s + s2)/(1 + s) = s in this limit. 
 
While failing to possess ICE monotonicity and allowing negative values for w in equation (4) 
within the SE and NW quadrants, this limiting map still has [i] iso-preference curves that 
correspond to pairs of dual rays with reciprocal slopes, and [ii] orders preferences on ICE polar 
angle in the exact same way that they are ordered on all of our β > 0 maps for outcomes at the 
same ICE radius.  
 

Figure 4.  Colored “Pie Chart” graphic depicting the ICE Plane 
as being divided into wedge-shaped regions by Laupacis et al. [16].  

 

y

Highly
Favorable

(A)

Highly 
Unfavorable

(E)

x

.

.

x = y(−yo, −xo)

(xo, yo)

Unfavorable
(D)

Favorable (B)

Gray Area 
(C)

Favorable
(B)

Unfavorable 
(D)

Gray Area 
(C)

 
 
 
Note that Figure 4 also illustrates the symmetry axiom, P(xo, yo) = P(−yo, −xo).  Furthermore, one 
sees that the pair of dual ICE Rays separating the Yellow and Gray wedges have reciprocal 
standardized ICE slopes: yo/xo  in the NE quadrant and (−xo )/(−yo) in the SW quadrant. 
 
On the other hand, this limiting (β = 0, γ > 0) map is not very realistic precisely because it 
implies zero Returns to Scale.  It ignores ICE radius as a potential, partial determinant of 
preference (especially within the SE and NW quadrants!) 
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3.8 The Relationship between the Slope of the ICE Ray through a Point and the Willingness Rate 
at that Point 

 
In realistic, nonlinear ICE preference maps, the willingness rate [slope of the indifference curve] 
through a point (x, y) is generally different from the standardized ICE ratio, s = y/x, of the ICE 
ray passing through that same point.  The analytic geometry of this situation is as illustrated in 
Figure 5, which is a generalization of Figure 4 that allows for realistic, nonlinear preferences. 
 
Figure 5 depicts a pair of standardized “dual rays” in red.  Each ray subtends the same absolute 
ICE polar angle, |θ|, relative to the x = −y diagonal.  Each also contains the same distribution of 
ICE preference strengths (as a function of ICE radius) in the same direction (here “new” over 
“std” because |θ| < 90o.)   And the rays have standardized slopes (s = y/x) and standardized 
willingnesses (w = WTP/λ or WTA/λ) that are numerical reciprocals.   
 
Note that the “link” function, (5), does not actually establish numerical values for WTP, WTA, 
η, w or s but only a relationship between WTP, WTA and the shadow price of health, λ.  In other 
words, WTP = WTA = λ is always one possibility.  Most importantly, WTP WTAλ = ×  
illustrates that WTP and WTA can both vary within a map where λ is held fixed. 

 
Figure 5 The case depicted here corresponds to 0 < s < w < 1 < 1/w 
< 1/s because η = γ/β  > 1. 

 

−θ
+θ

.

slope = s

slope = 1/s

.

WTA/λ

WTP/λ
y

x

x = −y
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4. Transformations of the Bootstrap ICE Uncertainty Distribution within the 
Linear Subgroup 

 
The material in Section §2.2, pages 4 and 5, describes the subgroup of linear transformations that 
arises naturally in ICE statistical inference.  Here we address the question: “What happens to 
individual bivariate bootstrap ICE outcomes (resampled points on the ICE plane) under these 
transformations?”  
 
From the so-called “alias” perspective commonly used in physics and most statistical data 
graphing software, each point is visualized as remaining at a fixed position in space as linear 
transformations occur.  One of the resulting outcome coordinates does change because λ changes 
the scaling along either the x-axis (cost rescaling) or else along the y-axis (effectiveness 
rescaling.)  All points are thus fixed but (partially) renamed (given aliases.) 
 
Mathematicians (and most teachers) view transformations from the perspective in which all 
points literally move (are given alibis) relative to fixed axes with fixed scales (coordinate tick 
marks.)  For example, each point then moves either left or right when λ changes and both ICE 
axes are measured in “cost” units.  Similarly, each point moves either up or down when λ 
changes and both ICE axes are measured in “effectiveness” units. 
 
When alias and alibi perspectives and/or terminology are carelessly intermixed, it is well known 
that confusion and chaos can result. 
 
The two plots displayed in the top row of Figure 6 use an alias perspective to illustrate that the 
Bootstrap distribution of ICE Uncertainty is “equivariant” (commutative) under the ICE linear 
subgroup of transformations.  As λ increases from 0.026 (left side) to 0.26 (right side) in Figure 
6, the bootstrap scatter is depicted as being essentially fixed in space or “unchanged.”  Note that 
the x-axis scaling (tick mark spacing) also increases by (roughly) a factor of 10 from the left-
hand panel to the right-hand panel of Figure 6.  Again, this is the default ICEuncrt( ) “alias” 
plotting perspective (alibi = FALSE). 
 
The correspondence between the left-hand and right-hand plots within Figure 6 would be similar 
(but not “exact” in the above weak sense) if the two scatters resulted from separate (independent) 
invocations of ICEuncrt( ) with different random number seed values.  If either [1] a second 
invocation of ICEuncrt( ) uses the numerical “seed” value stored in the output list generated by 
the first invocation but a different value of “lambda =” or if [2] print.ICEuncrt( ) or 
plot.ICEuncrt( ) is invoked with its “lfact” parameter different from 1 (to simply transform the 
initial R × 2 matrix, t, of bootstrap (x, y) coordinates), the two resulting ICEuncrt( ) scatters will 
appear “identical” except for the scaling along one axis and the slope of the dotted line that 
represents the current choice for λ. 
 
The plots displayed in the second row of Figure 6 illustrate, instead, the “alibi=TRUE” 
perspective.  As λ again increases from 0.026 (left side) to 0.26 (right side), the points in the 
bootstrap scatter really spread out horizontally in these (default) “cost” unit graphics.  There 
really is no vertical movement here in the sense that the vertical range of outcomes within the 
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Figure 6.  ICEuncrt( ) output for the Duloxetine vs Paroxetine example with 25,000 replications.   

 
 

  
 
Incremental Cost-Effectiveness (ICE) 
Bivariate Bootstrap Uncertainty 
 
Shadow Price = Lambda = 0.26 
Bootstrap Replications, R = 25000 
Effectiveness variable Name = idb 
     Cost     variable Name = ru 
  Treatment   factor   Name = dulx 
 
New treatment level is = 1 and Standard 
level is = 0  
 
Cost and Effe Differences are both 
expressed in cost units 
 
Observed  Treatment Diff = 1.6 
Mean Bootstrap Trtm Diff = 1.585  
 
Observed Cost Difference = -2.899 
Mean Bootstrap Cost Diff = -2.919 

 

 
Incremental Cost-Effectiveness (ICE) 
Bivariate Bootstrap Uncertainty 
 
Shadow Price = Lambda = 2.6 
Bootstrap Replications, R = 25000 
Effectiveness variable Name = idb 
     Cost     variable Name = ru 
  Treatment   factor   Name = dulx 
 
New treatment level is = 1 and Standard 
level is = 0  
 
Cost and Effe Differences are both 
expressed in cost units 
 
Observed  Treatment Diff = 15.996 
Mean Bootstrap Trtm Diff = 16.081  
 
Observed Cost Difference = -2.899 
Mean Bootstrap Cost Diff = -2.902 
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scatter is roughly −20 to +10 in both second row plots.  The vertical plotting range increased in 
the right-hand plot simply because its horizontal range was forced to increase …in order to keep 
the scatter within alibi plotting limits.  It is possible, of course, to use an alibi perspective to 
argue that the Bootstrap distribution of ICE uncertainty is “equivariant” (commutative) under the 
linear subgroup.  However, those particular arguments strike me, at least, as being much less 
clear or “obvious” than the alias motivation. 
 
 
5.  A Wedge-Shaped, Equivariant ICE Statistical Confidence Region 
 
The ICEwedge( ) function uses my methodology [19-21] for forming statistical ICE confidence 
regions and is sufficiently robust and reliable for routine use by health services researchers.  The 
ICE confidence (or tolerance) regions of particular interest use bootstrap ICE angle order 
statistics around a circle to form a wedge-shaped region that has the ICE origin, (∆E, ∆C) = (0, 
0), as at most a limit point and use a pair of ICE Rays as their clockwise and counter-clockwise 
limits.  Specifically, my so-called “central” method “counts outwards” the same number of ICE 
Angle Order Statistics, floor(reps*conf/2), both Counter-Clockwise and Clockwise from the 
“center” Order Statistic (nearest the Observed ICE Ratio) to define a pair of ICE Ray endpoints 
at order statistics positions “jlo” and “kup”.  The resulting wedge-shaped region is guaranteed to 
be equivariant under changes in λ …in either its original (singly) unbounded form or when 
truncated at the minimum and maximum ICE radii observed within the confidence wedge. 
 
The key practical implication of equivariance is that, when patient level (x, y) outcomes are 
transformed using alternative values for λ [but the same random number seed is used for 
bootstrap resampling], then every (x, y) point in the ICE uncertainty scatter always remains 
inside, on or outside of the resulting wedge-shaped ICE ray confidence limits.  It is relatively 
easy to see this sort of “invariance” property in default ICEwedge( ) plots as λ changes because 
the plots use the “alias” perspective under which points appear to remain at fixed positions on the 
ICE plane.  The concept still holds from the “alibi” perspective, but the resampled outcomes and 
the confidence wedge then BOTH move as λ changes …making it somewhat more difficult to 
literally “see” that the claim is true. 
 
KEY POINT:  Because bootstrap “count outwards” confidence regions have this equivariance 
property under changes in λ, I contend that they quantify only the statistical uncertainty within 
the two samples of patient level cost and effectiveness data about where the unknown true (∆E, 
∆C) outcome falls on the ICE plane.  No uncertainty about choice of λ can possibly be captured 
by this equivariant region. 
 
Technical Note:  ICE Angles are computed by ICEwedge( ) from the “alibi” perspective in 
which (x, y) standardized differences are both measured in the same units for the current value 
of λ.  Thus, for “cost” units, (x = λ×∆E, y = ∆C).  These numerical values for ICE Angles 
usually look “wrong” on (default) “alias” displays because the x-axis and the y-axis are then 
typically displayed using different scales.  In other words, the 95% confidence regions for λ 
=0.26 and λ=2.6 displayed in Figure 7, below, compute ICE angles quite differently but clearly 
yield the SAME “count outwards” confidence region. 
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My experience with all numerical examples where a Fieller’s theorem confidence interval for the 
ICE Ratio (at a stated confidence level) actually does exist (i.e. has limits that are real rather than 
imaginary), my “count outwards” wedge-shaped region is in quite good agreement with the 
“correct” half of the corresponding Fieller’s bow-tie region. 
 
Figure 7.  Alias visualizations for 2 different λ-scalings of the “high uncertainty” Duloxetine versus 
Paroxetine numerical example.  Both clearly yield the same 95% ICE Statistical Confidence Region. 

 
 

For the “high uncertainty” Duloxetine vs Paroxetine example, bootstrap ICE outcomes within the 
95% confidence ICE statistical wedge subtend an ICE Polar Angle greater than 180o!  Both the 
bootstrap scatter of ICE uncertainty and the statistical wedge will always appear “unchanged” in 
a pair of “alias” plots for different values of λ, like those above,  Note that the x-axis scaling 
(tick mark spacing) always changes by an appropriate factor from the left-hand panel to the 
right-hand panel. 
 
The print.ICEwedge( ) function reports this polar angle to be 260o when λ = 0.26 (“alibi” 
perspective, 72.2% of 360o) and 193o when λ = 2.6 (“alibi” perspective, 53.6% of 360o.)  
Unfortunately, neither of these values for ICE polar angle agrees with what it actually “appears” 
to be for the two “alias” λ-scalings depicted in Figure 7.  An invocation of ICEwedge( ) with 
lfact = 0 causes calculation of the (approximate) value of λ that causes the “alias” and “alibi” 
perspectives to be in agreement (as well as making time consuming calculations and sorting of 
the implied ICE Angles.)  For the dulxparx data, this value is λ = 0.454, and the implied ICE 
Polar Angle is then 240.7o (66.9% of 360o.)   
 
  



Nonlinear ICE Preference Maps  Page 18 

6.  Acceptability:  VAGR and ALICE Curves 
 
The concept of an “acceptability curve” graphic was proposed by Van Hout, Al, Gordon and 
Rutten (VAGR) [29] in 1994 to portray ICE uncertainty.  Given either [i] a parametric, bivariate 
distribution (normal, say) with mean (∆E, ∆C) that has been fitted to some observed patient-level 
data or else [ii] a bootstrap resampling distribution of ICE uncertainty, the VAGR curve depicts 
the estimated “confidence level” associated with the region to the right or below a rotating 
straight line through the ICE origin that starts out horizontal (representing WTP = 0) and rotates 
counter-clockwise by 90o, ending up being vertical (representing WTP = +∞.)  In 2004, Fenwick, 
O’Brien and Briggs (FOB) [7] cataloged 13 somewhat ill-defined “special cases” yielding 
VAGR curves with quite different shapes, ranging from rather flat, to increasing, to decreasing, 
to distinctly non-monotone.  
 
An acceptability curve that is always monotone non-decreasing results from the unpublished 
alternative definition of acceptability independently proposed by me in 2001 and by Professor 
Ken Buckingham of Otago University, New Zealand, in 2003.  My “ICEplane” Windows 
software [20] and my ICEinfer R-package both use Buckingham’s terminology: Acceptability 
Levels In Cost Effectiveness (ALICE) curves.  For any given and fixed positive value of λ, the 
ALICE frontier is defined using a pair of “linked” dual ICE rays (i.e. rays that remain 
symmetric relative to the x = −y diagonal while rotating so that their absolute ICE polar angle, 
|θ|, is constantly increasing, as in Figure 5, page 13.)  Table 3 compares the VAGR and ALICE 
definitions within all four quadrants of the ICE plane. 
 

Table 3.  VAGR and ALICE definitions of Acceptability 
when λ is held fixed while the scalar s varies from 0 to +∞. 

 
ICE quadrant 

 
VAGR 

Definition 

 
ALICE 

Definition 
 

∆C > 0, ∆E > 0 
NE quadrant 

 

Acceptable if 
∆C / ∆E < λs 

 

Acceptable if 
∆C / ∆E < λs = WTP 

∆C < 0, ∆E > 0 
SE quadrant 

 

All outcomes 
are Acceptable 

All outcomes 
are Acceptable 

∆C < 0, ∆E < 0 
SW quadrant 

 

Acceptable if 
∆C / ∆E > λs 

(see Note) 

Acceptable if 
∆C / ∆E > λ/s = WTA 

∆C > 0, ∆E < 0 
NW quadrant 

 

No outcomes 
are Acceptable 

 

No outcomes 
are Acceptable 

Note:  Decision Rule (4), page 176, of O’Brien et al. [17] contains a typographical error; 
the SW quadrant rule is not identical to the NE quadrant rule, ∆C / ∆E < λs. 
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In the notation of Table 3, the standardized ICE slope, s, is a unitless scalar that increases from 0 
towards +∞, while λ denotes a given, fixed value for the shadow price of health.  Within the 
VAGR column of definitions, the product, λ times s, thus denotes a variable quantity 
corresponding to different common values for shadow price = WTP = WTA defining different 
linear VAGR thresholds for acceptability.  Within the ALICE column of definitions, WTP = λs 
increases with s within the NE quadrant while WTA = λ/s simultaneously decreases with s 
within the SW quadrant, defining a range of kinked ALICE thresholds for acceptability, clearly 
satisfying the link equation, (5). 
 
Note that his ALICE definition of acceptability agrees also with the sum of double integrals in 
Willan et al [30], page 3255. 
 
Technically, interest could even be restricted to the finite range 0 ≤ s ≤ 1 for ALICE curves 
because s > 1 corresponds to WTA < λ < WTP, an ordering that has apparently never been 
observed empirically. 
 
Note in Table 3 that the VAGR and ALICE definitions of acceptability differ only within the SW 
quadrant.  VAGR and ALICE curves thus contain the same basic information (displayed using 
different horizontal axes) whenever the ICE uncertainty distribution attributes zero credibility to 
the SW quadrant.  At the other extreme, where 100% credibility is attributed to the SW quadrant, 
the VAGR and ALICE curves are again equivalent, but the VAGR curve would then be 
decreasing while the ALICE curve is increasing, as usual.   In other cases, the VAGR curve will 
usually be non-monotone and biased.  In fact, cases where the ICE uncertainty distribution 
attributes credibility not only to the SE quadrant but also to the most desirable parts of both the 
SW and NE quadrants are actually quite important! 
 
Let us now consider the “dulxparx” numerical example of the above “high uncertainty” type.  
For simplicity, we have assumed that λ = $0.26/Week per unit of idb = Integrated Decrease from 
Baseline in HAMD-17 Score.  Note in the top-right panel of Figure 8 that this example illustrates 
a key situation.  Relative to the standard treatment (paroxetine), the new treatment (duloxetine) 
here could represent what is commonly known (somewhat derisively) as a “me too” treatment for 
MDD.  Specifically, the bootstrap distribution of uncertainty here covers the ICE origin and 
lends considerable credibility to at least 3 of the 4 ICE quadrants, at least when the $/Week 
difference in medication acquisition cost is zero, as assumed here and in [25]. 
 
Our objective in exploring this particular case-study example is to convince you that traditional 
VAGR acceptability curves are biased towards their average value in these critical “high 
uncertainty” cases.  In particular, the all-important lower values of VAGR acceptability are then 
biased upwards. 
 
The top-left panel of Figure 8 displays the non-monotone VAGR acceptability curve for our high 
uncertainty example that corresponds to a relatively wide range (from 0 to 6) for the unknown 
common value of WTP = λs = WTA.  Only one numerical value within this wide range of 
alternative values for λs can correspond to the “true” shadow price of health.  
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It is not clear how VAGR or FOB themselves would interpret the information provided by a plot 
like Figure 8.  Because acceptability is always rather high (> 0.80) over the finite range displayed 
here and the curve is also rather flat (max – min < 0.09), outcomes researchers might conclude 
that [i] choice of λ is relatively unimportant here and/or that [ii] the odds that the new treatment 
is more cost-effective than standard are at least 4:1 because 0.80/0.20 = 4. 
  
The bottom-left panel of Figure 8 displays the corresponding, monotone ALICE curve for this 
high uncertainty example.  By covering the finite range for absolute ICE angles of 45o ≤ |θ| ≤ 
135o, the full infinite range of 0 ≤ s ≤ +∞ is easily visualized here.   While the plot assumes that 
λ  = 0.26 $/Week/idb is the fixed, most relevant value for the true shadow price of health, it also 
allows an overall acceptability level to be determined for all possible budget constraints of the 
form WTP = λs in the NE quadrant with s < 1 plus, by symmetry, WTA = λ/s within the SW 
quadrant. 
 
Using different choices for λ will result in different ALICE curves!!!  On the other hand, all 
alternative ALICE curves for a given set of data have the same starting and ending points at |θ| = 
45o (s = 0) and |θ| = 135o (s = +∞.)  Namely, the smallest ALICE value (0.6441 here) will always 
be the estimated confidence that the new treatment is both “less costly AND more effective” than 
standard, while the largest ALICE value (0.9608 here) will always be the estimated confidence 
that the new treatment is either “less costly OR more effective” than standard.  These limits 
correspond to the two key ICE quadrant confidence levels used to quantify “statistical 
dominance” levels [24]. 
 
Note that WTP = 0.26 $/Week/idb yields the maximum VAGR acceptability (of 0.8870) in the 
left-top panel of Figure 8.  Thus, it follows that no ALICE curve for any alternative value of λ 
(different from 0.26 $/Week/idb) can yield a larger acceptability level than the value (of 0.8870) 
displayed in the upper-right panel of Figure 8 at |θ| = 90o (s = 1).  We are definitely not 
recommending that the numerical value of λ used to define ALICE levels be routinely chosen in 
this particular way.  After all, this specific choice of λ is, in a weak sense, always “most 
favorable” to the new treatment! 
 
Rather, our point here is simply that VARG acceptability curves, by using only alternative linear 
frontiers (WTP = λ = WTA), are badly biased in all high uncertainty cases where the VARG 
curve ends up being rather flat and/or non-monotone.  ALICE curves are then much less biased 
(upwards or downwards) because they use realistic linked frontiers.  Even the ALICE curve that 
is biased upwards as much as possible, as in Figure 8, still suggests that administrative budget 
constraints (that reduce WTP and, when fair, also increase WTA) can drastically decrease the 
overall acceptability level of new over standard.  This reduction is from 0.8870 at |θ| = 90o (s = 
1) to 0.6441 at |θ| = 45o (s = 0) in Figure 8, which is a reduction in confidence of 0.243.  After 
all, for two exactly equivalent treatments, the VAGR acceptability is expected to always be 0.50 
for all values of WTP.  The corresponding ALICE level would then also be expected to equal 
0.50 at s = 1 (|θ| = 90o), but it would be expected to drop to 0.25 at s = 0 (|θ| = 45o) as well as to 
rise to 0.75 at s = +∞ (|θ| = 135o), at least when cost and effectiveness differences are 
uncorrelated. 
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Figure 8.  Acceptability Curves for the “high uncertainty” Duloxetine versus Paroxetine numerical example 
when λ either varies (VAGR formulation) or the Shadow Price of Health is held @ λ = 0.26 (ALICE 
formulation.) 
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ICEalice: Acceptability Curves from 
Bootstrap Uncertainty Distribution... 
 
Shadow Price of Health, lambda = 0.26 
 
ICE Differences in both Cost and 
Effectiveness expressed in cost units. 
 
   ICEangle   WTP    VAGR   WTA   ALICE 
1      45.0 0.000 0.82980   Inf 0.64244 
2      52.5 0.034 0.84648 1.975 0.71576 
3      60.0 0.070 0.86088 0.970 0.76908 
4      67.5 0.108 0.87336 0.628 0.81080 
5      75.0 0.150 0.88136 0.450 0.84372 
6      82.5 0.200 0.88724 0.339 0.86904 
7      90.0 0.260 0.88836 0.260 0.88836 
8      97.5 0.339 0.88788 0.200 0.90608 
9     105.0 0.450 0.88200 0.150 0.91964 
10    112.5 0.628 0.86920 0.108 0.93176 
11    120.0 0.970 0.84948 0.070 0.94128 
12    127.5 1.975 0.82000 0.034 0.95072 
13    135.0   Inf 0.77252 0.000 0.95988 

 
 
In all cases where the ICE uncertainty distribution lends credibility to only one quadrant or to at 
most two adjacent quadrants, the information contained in VAGR and ALICE curves will really 
be equivalent (even when the VAGR curve is decreasing due to increases in WTA.)  In these 
relatively simple (lower uncertainty) cases, VAGR acceptability is not really biased relative to 
the corresponding ALICE level. 
  
ALICE curves always concentrate attention upon the uncertainty within the available data 
supporting an ICE policy decision rather than upon any uncertainty about λ itself.  Whenever a 
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VAGR curve is non-montone, it is actually also depicting additional uncertainty about λ.  When 
a VAGR curve is monotone, Table 3 shows that it can be reinterpreted as corresponding to a 
fixed value of λ.  For example, when a VAGR curve is non-decreasing, it can be reinterpreted as 
displaying the uncertainty associated with values of WTP less than any value of ICE Ratio = λ 
within the plotting range.  When a VAGR curve is non-increasing, it can be reinterpreted as 
displaying the uncertainty associated with values of WTA larger than any value of ICE Ratio = λ 
within the plotting range. 
 
Figure 9.  The VAGR Acceptability Curve is actually equivalent to the ALICE curve for the “fluoxtca” 
numerical example.  Actually, one must examine the lower-right numerical listing to see this; this is really not 
that clear from the plots with very different horizontal axes! 
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ICEalice: Acceptability Curves from Bootstrap 
Uncertainty Distribution... 
 
Shadow Price of Health, lambda = 10000 
 
ICE Differences in both Cost and Effectiveness 
expressed in cost units. 
 
   ICEangle       WTP    VAGR       WTA   ALICE 
1      45.0     0.000 0.57140       Inf 0.57140 
2      52.5  1316.525 0.63012 75957.542 0.63012 
3      60.0  2679.492 0.68692 37320.508 0.68692 
4      67.5  4142.136 0.74456 24142.136 0.74456 
5      75.0  5773.503 0.80180 17320.508 0.80180 
6      82.5  7673.270 0.85444 13032.254 0.85444 
7      90.0 10000.000 0.90272 10000.000 0.90272 
8      97.5 13032.254 0.94408  7673.270 0.94408 
9     105.0 17320.508 0.97524  5773.503 0.97524 
10    112.5 24142.135 0.99336  4142.136 0.99336 
11    120.0 37320.506 0.99880  2679.492 0.99880 
12    127.5 75957.534 0.99996  1316.525 0.99996 
13    135.0       Inf 0.99996     0.000 0.99996 
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7.  Additional Uncertainty due to dependence of Economic Preferences on the 
Shadow Price of Health 

 
To this point, we have concentrated upon the “positive” and “desirable” features of (linear and 
nonlinear) maps that quantify economic preferences.  Again, those properties hold within a fixed 
λ context. 
 
In current ICE practice, λ is given several different names and descriptions but is always said to 
be an unknown constant.  Health services researchers quite rightly interpret use of the “u”-word 
as justification for playing “what-if” scenarios where λ is varied over a relatively wide 
numerical range.  Unfortunately, economic preference maps (linear and nonlinear) have 
undesirable characteristics in this varying λ context. 
 
Here, we show that economic uncertainty [about choice of λ] can not only (i) swamp statistical 
uncertainty [about where the unknown true (∆E, ∆C) outcome might fall on the ICE plane] but 
usually also (ii) encompasses mutually contradictory possibilities (injects inconsistency.)  
While I am definitely not saying that routine sensitivity analyses should not be performed, I do 
think that health services researchers need to be much more aware of the extent of the trauma 
thereby injected into ICE statistical inference …i.e. the conflicting assumptions implied by 
economic uncertainty about λ goes well beyond the uncertainty within observed patient level 
outcome data. 
 
We will explore the dramatic extent of trauma introduced into an equivariant statistical 
confidence region by superimposing alternative economic preference maps corresponding to 
very different numerical values of λ using the ICEcolor( ) function. 
 
Researchers wishing to quantify the overall statistical plus economic uncertainty (including 
choice of λ as well as, possibly, also choice of β and γ or η) should compute a numerical 
economic preference score distribution for only the (x, y) points in the ICE uncertainty scatter 
that fall inside or on the statistical wedge ICE confidence limit rays.  These economic 
preference distributions are displayed as histograms by plot(ICEcolor), as illustrated below. 
 
  [The 95% confidence Fieller’s theorem bow-tie region is imaginary in the “high uncertainty” 
example illustrated here.] 
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Figure 10. Here, the statistical wedges are overlaid with purely Linear economic preference maps 
(Beta = Gamma = Eta = 1) that add variation which cannot be ignored.  Note the resulting pair of 
relatively “contradictory” preference distributions depicted in the two lower panels. 
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Figure 11.  Again for the Duloxetine vs Paroxetine example and the bootstrap ICE outcome 95% 
confidence “Count Outwards” statistical wedge, the top pair of plots illustrate the 
“equivariance” perspective on increasing λ from 0.026 (left side)  to  0.26 (right side.)  Again, the 
bootstrap scatter of ICE uncertainty and the statistical wedge appear “unchanged” because the 
x-axis scaling (tick mark spacing) again increases by a factor of 10 from the top left panel to the 
top right panel.  Here, the statistical wedges are overlaid with highly-directional nonlinear 
economic preference maps (Beta = 1, Gamma = Eta = 5.828) that again add variation which 
cannot be ignored.  The corresponding pair of relatively “contradictory” preference 
distributions are depicted in the two lower panels. 
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The above figures clearly illustrate that combining economic uncertainty (about choice of λ) 
with statistical uncertainty [about the true location of (∆E, ∆C) within the ICE plane] can not 
only increase overall uncertainty but also embrace contradictions …all due to imposition of 
systematic biases. 
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Figure 12.  Here are the plot(ICEcolor) graphics for the “fluoxpin” and “fluoxtca” datasets. The 
statistical wedges are overlaid with linear economic preference maps (Beta = Gamma = Eta = 1), 
and the corresponding pair of preference distributions are depicted in the two lower panels.  As 
in Figures 10 and 11, drastic changes in Lambda would also inject non-ignorable and self-
contradictory information into these “less-uncertain” cases. 
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Some Final Remarks: No two really different values of λ can possibly both produce 
symmetric, nonlinear standardized outcomes.  Two rather close values may possibly be both 
approximately correct.  But any two really distant values are mutually exclusive and 
contradictory. 
 
Health economists have apparently believed for years that “preferences are nonlinear” [13], and 
our nonlinear maps illustrate that WTP and WTA can both vary with λ held fixed via the 
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relationship WTP WTAλ = × .  Furthermore, no single nonlinear map (i.e. specific choices for 
our β < γ parameters) needs to be singled out because all symmetric, differentiable maps 
necessarily satisfy the same geometric-mean relationship, WTP WTAλ = × .   
 
Studies which elicit only WTP, rather than both WTP and WTA, have the potential to seriously 
bias λ downwards by assuming that λ = WTP.  While unrealistically low values of λ are unduly 
restrictive within the NE quadrant, really serious damage can then result within the SW 
quadrant.  After all, a decision maker might thereby assume that WTA = WTP and accept an 
unduly large decrease in effectiveness in exchange for a relatively small cost reduction. 
 
Again, our maps encompass the entire ICE plane rather than focus on any particular sub-region.  
We have argued that our ICE preference maps with 1 < η ≤ Ω = 3 + 2 2  are both realistic and 
coherent.  That property alone makes them invaluable to cost-effectiveness practitioners.  It can 
be quite confusing and counter-productive to, instead, use different basic terminology [14] within 
the NE and SW quadrants.  Similarly, the FOB suggestion [7] to divide the ICE plane up into 
many sub-regions is tedious and distracting. 
 
In the “intervals or surfaces?” terminology of Briggs and Fenn[2], we are firmly of the opinion 
that ICE inference needs to be based upon 2-dimensional confidence regions (surfaces) rather 
than upon an infinite family of confidence intervals for any scalar value of preference as λ varies 
[27,3,26,15].  There is no current consensus about how geometrically simple (easy to define in 
written text) the boundary of an “ideal” ICE confidence region should be.  Further, does this 
region need to be constrained to be finite in overall measure?  Unlike the self-contradictory 
confidence bands generated in linear NB analysis as λ varies, wedge shaped confidence regions 
[1,19-22,5,23] have the potential to focus attention upon meaningful ICE sub-regions and to 
suggest clear preference-based actions.  Most importantly, the “count outwards” wedge-shaped 
ICE confidence regions are defined [20-22] using ICE polar angle order statistics [5] in a way 
that makes them equivariant (commutative) relative to choice of λ.  In other words, one would 
always end up with the very same confidence region for every choice of λ.    
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