

PBS Modelling 1.61: User’s Guide

Jon T. Schnute, Alex Couture-Beil, and Rowan Haigh

Fisheries and Oceans Canada
Science Branch, Pacific Region
Pacific Biological Station
3190 Hammond Bay Road
Nanaimo, British Columbia
V9T 6N7

2007

User’s Guide Revised from
Canadian Technical Report of
Fisheries and Aquatic Sciences 2674

© Her Majesty the Queen in Right of Canada, 2007

Revised from Cat. No. Fs97-6/2674E ISSN 0706-6457

Last update: Oct 9, 2007

Correct citation for this publication:

Schnute, J.T., Couture-Beil, A., and Haigh, R. 2007. PBS Modelling 1.61: user’s guide revised

from Canadian Technical Report of Fisheries and Aquatic Science 2674: vi + 123 p.
Last updated Oct 9, 2007

 – i –

TABLE OF CONTENTS

Abstract .. iii
Résumé... iii
Preface.. iv
1. Introduction... 1
2. GUI tools for model exploration... 3

2.1. Example: Lissajous curves... 4
2.2. Window description file... 6
2.3. Window support functions... 8
2.4. Internal data for windows .. 11

3. Functions for data exchange ... 13
4. Functions for graphics and analysis.. 14

4.1. Graphics utilities .. 14
4.2. Data management... 15
4.3. Function minimization and maximum likelihood.. 15
4.4. Handy utilities.. 17

5. Examples... 17
5.1. Random variables... 18

5.1.1. RanVars – Random variables... 18
5.1.2. RanProp – Random proportions... 19
5.1.3. SineNorm – Sine normal.. 20
5.1.4. CalcVor – Calculate Voronoi tessellations.. 21

5.2. Statistical analyses ... 22
5.2.1. LinReg – Linear regression .. 22
5.2.2. MarkRec – Mark-recovery.. 23
5.2.3. CCA – Catch-curve analysis.. 24

5.3. Other applications .. 25
5.3.1. FishRes – Fishery reserve ... 25
5.3.2. FishTows – Fishery tows... 26

References... 27
Appendix A. Widget descriptions... 29

Button.. 29
Check .. 30
Data ... 30
Entry.. 32
Grid ... 33
History... 34
Label ... 35
Matrix.. 36
Menu ... 37
MenuItem.. 38
Null ... 38
Object.. 39
Radio ... 40

 – ii –

Slide .. 41
SlidePlus ... 42
Text ... 43
Vector.. 44
Window... 45

Appendix B. Building PBSmodelling and other packages.. 47
B.1. Installing required software... 47
B.2. Building PBSmodelling ... 49
B.3. Creating a new R package... 50
B.4. Embedding C code .. 53

Appendix C. PBS Modelling functions and data .. 57
C.1. Objects in PBS Modelling ... 57
C.2. Function dependencies .. 61
C.3. PBS Modelling manual.. 65

LIST OF TABLES

Table 1. Lissajous project files... 4
Table 2. R source code with GUI definition strings... 9
Table 3. Data file in PBS format .. 12
Table B1. C representations for R data types.. 53
Table B2. .C() example in PBStry .. 54
Table B3. .Call() example adapted from PBStry ... 55

LIST OF FIGURES

Figure 1. Tangled relationships.. 2
Figure 2. GUI organization .. 2
Figure 3. Lissajous GUI ... 5
Figure 4. Lissajous graph ... 5
Figure 5. RanVars GUI and density plot... 18
Figure 6. RanProp GUI and pairs plot for Dirichlet.. 19
Figure 7. SineNorm GUI and plot ... 20
Figure 8. CalcVor GUI and tessellation plot .. 21
Figure 9. LinReg GUI and regression plot .. 22
Figure 10. MarkRec GUI and density plots ... 23
Figure 11. CCA GUI and parameter pairs plot ... 24
Figure 12. FishRes GUI and population time series .. 25
Figure 13. FishTows GUI and simulated tow tracks .. 26

 – iii –

ABSTRACT

Schnute, J.T., Couture-Beil, A., and Haigh, R. 2007. PBS Modelling 1.61: user’s guide revised

from Can. Tech. Rep. Fish. Aquat. 2674: vi + 123 p. Last updated Oct 9, 2007.
This report describes the R package PBS Modelling, which contains software to facilitate the
design, testing, and operation of computer models. The initials PBS refer to the Pacific
Biological Station, a major fisheries laboratory on Canada’s Pacific coast in Nanaimo, British
Columbia. Initially designed for fisheries scientists, this package has broad potential application
in many scientific fields. PBS Modelling focuses particularly on tools that make it easy to
construct and edit a customized graphical user interface (GUI) appropriate for a particular
problem. Although our package depends heavily on the R interface to Tcl/Tk, a user does not
need to know Tcl/Tk. In addition to GUI design tools, PBS Modelling provides utilities to
support data exchange among model components, conduct specialized statistical analyses, and
produce graphs useful in fisheries modelling and data analysis. Examples implement classical
ideas from fishery literature, as well as our own published papers. The examples also provide
templates for designing customized analyses using other R libraries, such as PBS Mapping,
odesolve, and BRugs. Users interested in building new packages can use PBS Modelling and a
simpler enclosed package PBS Try as prototypes. An appendix describes this process completely,
including the use of C code for efficient calculation.

RÉSUMÉ

Schnute, J.T., Couture-Beil, A., and Haigh, R. 2007. PBS Modelling 1.61: guide de l’utilisateur

révisé de Can. Tech. Rep. Fish. Aquat. Sci. 2674: vi + 123 p. Dernier mis à jour Oct 9,
2007.

Le présent rapport décrit la trousse R PBS Modelling qui contient des logiciels permettant de
rendre plus aisés la conception, les essais et l’utilisation des modèles numériques. L’acronyme
PBS fait référence à la Pacific Biological Station (Station biologique du Pacifique), un grand
laboratoire axé sur l’étude des pêches sur la côte canadienne du Pacifique à Nanaimo, en
Colombie-Britannique. Initialement conçue pour les chercheurs travaillant sur les pêches, cette
trousse peut être utilisée dans de nombreux domaines scientifiques. PBS Modelling contient
principalement des outils qui facilitent la construction et la modification d’une interface
graphique (GUI) sur mesure, adaptée à un problème particulier. Bien que cette trousse s’appuie
sur l’interface R pour Tcl/Tk, ses utilisateurs n’ont pas besoin de connaître le langage Tcl/Tk. En
plus d’offrir des outils de conception de GUI, PBS Modelling propose des logiciels permettant
d’échanger plus facilement des données entre les composants de divers modèles, d’effectuer des
analyses statistiques spécialisées et de produire des graphiques utiles pour la modélisation et
l’analyse des données concernant les pêches. Les exemples fournis mettent en application des
idées classiques glanées dans les articles publiés sur les pêches ainsi que dans nos propres
articles publiés. Ces exemples fournissent également des modèles dont l’utilisateur peut
s’inspirer pour concevoir des protocoles d’analyse sur mesure à l’aide d’autres librairies R telles
que PBS Mapping, odesolve et BRugs. Les utilisateurs qui désirent construire de nouvelles
trousses peuvent utiliser PBS Modelling et la trousse simple PBS Try comme prototypes. Ce
procédé est décrit de manière détaillée en annexe, y compris l’utilisation du langage C pour les
calculs.

 – iv –

Preface

 After working with fishery models for more than 30 years, I’ve used a great variety of
computer software and hardware. Currently, the free distribution of R (R Development Core
Team 2006a) provides an excellent platform for software development in an environment
designed to support multiple computers and operating systems. Furthermore, an associated
network of contributed libraries on the Comprehensive R Archive Network (CRAN:
http://cran.r-project.org/) gives access to a wealth of algorithms from many users in various
fields. This disciplined system allows users, like the authors of this package, to distribute
software that extends the utility of R in new directions.

 Previously I’ve used software in Basic (Schnute 1982), Fortran (Mittertreiner and
Schnute 1985), Pascal, C, and C++ to implement ideas in published papers. Usually this software
goes stale in time, due to minimal documentation, changing operating systems, the lack of
portable libraries, and many other factors. Because R includes a rich library of statistical
software that operates on multiple platforms, my colleagues and I can now distribute software
that actually works when other people try it. The user community includes us, because we often
find that we can’t remember how to operate our own software after a few weeks or months, let
alone years. Although writing a good R package requires considerable effort, the result often
pays off in portability, communication, and long term usage.

 PBS Modelling tries to accomplish several goals. First, it anticipates the need for model
exploration with a graphical user interface, a so-called GUI (pronounced gooey). We make this
easy by encapsulating key features of the Tcl/Tk library into convenient tools fully documented
here. A user need not learn Tcl/Tk to use this package. Everything required appears in
Appendix A. You might want to start by running the function testWidgets(). Co-author
Rowan Haigh likes the subtitle: “modelling the world with gooey substances.”

 Second, we want to demonstrate interesting analyses related to our work in fishery
management and other fields. The function runExamples() illustrates some of these, as
described further in Section 5. The code for all of them appears in the R library directory
PBSmodelling\Examples. We demonstrate the power of other R libraries, such as BRugs
(to perform Bayesian posterior sample with the application WinBUGS), odesolve (to solve
differential equations numerically), ddesolve (to solve delay differential equations), and
PBSmapping (to draw maps and perform spatial analyses).

 Third, PBS Modelling serves as a prototype for building a new R package, as summarized
in Appendix B. We illustrate two methods of calling C code (.C and .Call), and discuss many
other technical issues encountered while building this library.

 Finally, to use R effectively, we’ve found it convenient to devise a number of “helper”
functions that facilitate data exchange, graphics, function minimization, and other analyses. We
include these here for the benefit of our users, who may choose to ignore them. We hope that
PBS Modelling inspires interest in interactive models that demonstrate applications in many
fields.

http://cran.r-project.org/

 – v –

 As with our earlier package PBS Mapping, Rowan and I employed a bright student who
could learn quickly and implement creative ideas. Dr. Jim Uhl (Computing Science) and Dr. Lev
Idels (Mathematics), both from Malaspina University-College (MUC) here in Nanaimo, drew my
attention to the student Alex Couture-Beil, who has strong credentials in both fields. Rowan and
I gave him a few initial specifications, and he quickly got ahead of us by extending our ideas in
new and useful directions. PBS Modelling version 1 represents the result of an evolutionary
process, as we experimented with design concepts that would support our modelling goals. Users
familiar with the earlier version 0.60 (posted on CRAN in August, 2006) may need to revise their
code slightly to make it work with this version.

 Since 1998, I have maintained a formal relationship with the Computing Science
Department at MUC, where I find kindred spirits in developing projects like this one. I
particularly want to thank Dr. Jim Uhl for his suggestions and support on this project.
Conversations with Dr. Peter Walsh have also stimulated my interest in the theory and
application of computing science.

Fishery management depends on models with a great range of complexity, starting from
some fairly simple ideas. Unfortunately from a coding perspective, “industrial strength” models
can’t run exclusively in R. Algorithms with high computational requirements don’t run fast
enough in R for practical application, due to interpretive code and other technical limitations.
Examples in PBS Modelling often illustrate ideas at the simple end of the spectrum, although the
package can certainly be used to manage external software designed to deal with greater
complexity.

Scientifically, I like to work from both ends of the spectrum. The behaviour of a complex
model sometimes mimics a much simpler model, and it helps to become well versed in some of
the simpler cases. I appreciate the motto of Canadian storyteller and humorist Stuart McLean,
who hosts a CBC radio broadcast The Vinyl Cafe (http://www.cbc.ca/vinylcafe/), “We may not
be big, but we’re small.”

Jon Schnute, December 2006

http://www.cbc.ca/vinylcafe/

 – vi –

This page has been left intentionally left blank for printing purposes.

 – 1 –

1. Introduction

 This report describes software to facilitate the design, testing, and operation of computer
models. The package PBS Modelling is distributed as a freely available library for the popular
statistical program R (R Development Core Team 2006a). The initials PBS refer to the Pacific
Biological Station, a major fisheries laboratory on Canada’s Pacific coast in Nanaimo, British
Columbia. Previously, we produced the R library PBS Mapping (Schnute et al. 2004), which
draws maps and performs various spatial operations. Although both packages (which can run
separately or together) include examples relevant to fishery models and data analysis, they have
broad potential application in many scientific fields.

 Computer models allow us to speculate about reality, based on mathematical assumptions
and available data. The full implications of a model usually require numerous runs with varying
parameter values, data sets, and hypotheses. A customized graphical user interface (or GUI,
pronounced “gooey”) facilitates this exploratory process. PBS Modelling focuses particularly on
tools that make it easy to construct and edit a GUI appropriate for a particular problem. Some
users may wish to use this package only for that purpose. Other users may want to explore the
examples included, which demonstrate applications of likelihood inference, Bayesian analysis,
differential equations, computational geometry, and other modern technologies. In constructing
these examples, we take advantage of the diversity of algorithms available in other R libraries.

 In addition to GUI design tools, PBS Modelling provides utilities to support data
exchange among model components, conduct specialized statistical analyses, and produce graphs
useful in fisheries modelling and data analysis. Examples implement classical ideas from fishery
literature, as well as our own published papers. The examples also provide templates for
designing customized analyses using the R libraries discussed here. In part, PBS Modelling
provides a (very incomplete) guide to the variety of analyses possible with the R framework. We
anticipate many revisions of our library, as we find time to include more examples.

 PBS Modelling depends heavily on Peter Dalgaard’s (2001, 2002) R interface to the
Tcl/Tk package (Ousterhout 1994). This combines a scripting language (Tcl) with an associated
GUI toolkit (Tk). In our library, we simplify GUI design with the aid of a “window description
file” that specifies the layout of all GUI components and their relationship with variables in R.
We support only a subset of the possibilities available in Tcl/Tk, but we customize them in ways
intended specifically for model design and exploration (Appendix A). A user of PBS Modelling
does not need to know Tcl/Tk.

 Computer models typically involve a variety of components, such as code, data,
documentation, and a user interface. Figure 1 illustrates the tangled relationships that sometimes
accompany computer model design. PBS Modelling allows the GUI to become a device for
organizing components, as well as running and testing software (Figure 2). The project might
involve other applications, as well as R itself. In addition to its interactive role, the GUI becomes
an archival tool that reminds the developer how components, functions, and data tie together.
Consequently, it facilitates the process of restarting a project at a future date, when details of the
design may have been forgotten.

 – 2 –

Figure 1. Tangled relationships among computer model components.

Figure 2. Computer model components organized with a graphical user interface (GUI).

 In PBS Modelling, project design normally begins with a text file that describes the GUI.
Additional files may contain code for R and other applications, which sometimes require
languages other than R. For example, the R BRugs library (to perform Bayesian inference using
Gibbs sampling) requires a file with the intended statistical model, written in the language of a
separate program WinBUGS. In other contexts, a user might write C code to get acceptable
performance from model components that require extensive computer calculations. This code
might be compiled as a separate program or linked directly into a customized R package.

 Section 2 of this report describes the process of designing a GUI to operate a computer
model. Components can share data through text files in a specialized “PBS format” presented in

 – 3 –

Section 3. These correspond naturally to list objects within R. Section 4 describes additional
tools for customized graphics and data analysis. In Section 5, we highlight briefly some of the
examples in our initial release, although we expect the list to expand in future versions. This
guide explains the context and general purpose of all functions in PBS Modelling. Consult the
help files for complete technical details.

 Appendix A gives the complete syntax for all visual components (called widgets)
available for writing a window description file to construct a customized GUI. Appendix B
describes the process of building PBS Modelling in a Windows environment. A simple enclosed
package PBS Try gives a prototype for building any R package, including the use of C code to
speed calculations. Appendix C shows the help files included with the library.

 To use PBS Modelling, run R and install the package from the R GUI (click “Packages”,
“Install package(s)…, select a mirror, and choose PBSmodelling from the list of packages).
Windows users can also obtain an appropriate compressed file from the authors of this report or
directly from the CRAN web site http://cran.r-project.org/.

 The R GUI normally runs as a Multiple Document Interface (MDI), in which child
windows like the R console and graphics screens all appear within the GUI itself and a menu
item can be used to tile the sub-windows. Unfortunately, in this configuration, windows
generated by Tcl/Tk sometimes disappear mysteriously when an application runs. They can be
recovered by clicking the appropriate “Tk” icon on the taskbar. You can avoid this problem by
using the Single Document Interface (SDI), in which the operating system manages all R
windows (console, graphics, Tcl/Tk, etc.) independently on the desktop. Set this configuration by
running the R GUI, choosing the menu items <Edit> and <GUI Preferences>, and then selecting
and saving the SDI option. Alternatively, go to the master configuration file Rconsole in the
\etc subdirectory of the R installation, and use a text editor to select the option MDI = no.

2. GUI tools for model exploration

 The practical task of writing appropriate code for the R Tcl/Tk package can sometimes
become daunting, particularly if the GUI window requires extensive design and change. For a
restricted set of Tk components (called widgets), PBS Modelling makes it much easier to design
and use GUIs for exploring models in R. A user needs to supply two key parts of a GUI-driven
analysis:
• a window description file (an ordinary text file) that completely specifies the desired layout

of widgets and their relationship with functions and variables in R, and
• R code that defines relevant functions, variables, and data.
This section begins with an example to illustrate the main ideas, and then gives complete details
for constructing window description files that can be used to generate GUIs.

http://cran.r-project.org/

 – 4 –

2.1. Example: Lissajous curves

 A Lissajous curve (http://mathworld.wolfram.com/LissajousCurve.html), named after one
of its inventors Jules-Antoine Lissajous, represents the dynamics of the system

sin(2) , sin[2 ()],x mt y ntπ π φ= = + (1)

where time t varies from 0 to 1. During this time interval, the variables x and y go through m and
n sinusoidal oscillations, respectively. The constant φ , which lies between 0 and 1, represents a
cycle fraction of phase shift in y relative to x. We want to design a GUI that allows us to explore
this model by plotting Lissajous curves (y vs. x) for various choices of the parameters (, ,)m n φ .
We also want to vary the number of time steps k and choose a plot that is either lines or points.

Table 1. Two text files associated with the “Lissajous Curve” project. The first gives a
description of the GUI window used to manage the graphics. The second contains R code to
draw a Lissajous curve.
———————————————————————————————————————

File 1: LissajousCurve.txt
window title="Lissajous Curve"
vector length=4 names="m n phi k" \
 labels="'x cycles' 'y cycles' 'y phase' points" \
 values="2 3 0 1000"
radio name=ptype text=lines value="l" mode=character
radio name=ptype text=points value="p" mode=character
button text=Plot function=drawLiss

File 2: LissajousCurve.r
drawLiss <- function() {
 getWinVal(scope="L");
 tt <- 2*pi*(0:k)/k;
 x <- sin(2*pi*m*tt); y <- sin(2*pi*(n*tt+phi));
 plot(x,y,type=ptype);
 invisible(NULL); }

———————————————————————————————————————

 This analysis can be accomplished with the R code and window description file shown in
Table 1. Assume that these two files reside in the current working directory and that
PBS Modelling has been installed in R. Start an R session from this directory, and type the
following three lines of code in the R command window:
> require(PBSmodelling)
> source("LissajousCurve.r")
> createWin("LissajousCurve.txt")

The first line assures that PBS Modelling is loaded, the second defines the function drawLiss
for drawing Lissajous curves, and the third creates a window that can be used to draw curves
corresponding to any choice of parameters. Figure 3 shows the resulting GUI window interface.
When the <Plot> button is clicked, the curve in Figure 4 appears in the R graphics window. This
corresponds to the default parameter values:

http://mathworld.wolfram.com/LissajousCurve.html

 – 5 –

2, 3, 0, 1000m n kφ= = = = . (2)

The GUI allows different Lissajous figures to be drawn easily. Simply change parameter values
in any of the four entry boxes, and click <Plot>.

Figure 3. GUI generated by the description file LissajousCurve.txt in Table 1. It
contains five widgets: the window titled “Lissajous Curve”, a vector of four entries, two linked
radio buttons (<lines> and <points>), and a <Plot> button.

-1.0 -0.5 0.0 0.5 1.0

-1
.0

-0
.5

0.
0

0.
5

1.
0

x

y

Figure 4. Default graph for the “Lissajous Curve” project, obtained by clicking the <Plot>
button in Figure 3. The x variable goes through two cycles while the y variable goes through 3
cycles. A line graph is drawn through 1000 points generated by the algorithm (1).

 – 6 –

 The description file (Table 1) specifies a window titled “Lissajous Curve” with a
vector of four entries. These correspond to quantities with the R variable names m, n, phi,
and k. The corresponding window (Figure 3) will contain four entry boxes that allow these
quantities to be changed. A label for each quantity emphasizes its conceptual role: the number of
cycles for x or y, the phase shift for y, and the number of points plotted. Initial values correspond
to those listed in (2). The backslash (\) character indicates that a widget description (in this case,
a vector) continues on the next line. A pair of radio buttons, both corresponding to an R
variable named ptype, allow selection between “lines” and “points” when drawing the plot.
The graph (Figure 4) is actually drawn (i.e., the R function drawLiss is called) when the user
presses a button that contains the text “Plot”. In general, we use the symbols <…> to designate
a button or keystroke, such as the <Plot> button or the radio buttons <lines> and <points>.

 The file of R code (Table 1) implements the algorithm (1) for computing k points on a
Lissajous curve. The function drawLiss has no arguments, but gets values of the R variables
m, n, phi, k, and ptype from the GUI window via a call to the PBS Modelling function
getWinVal. The argument scope="L" implies that these variables have local scope within
this function only. (Another choice scope="G" would give the variables global scope by
writing them to the user’s global environment .GlobalEnv.)

2.2. Window description file

A window description file currently supports the following 18 widgets:

1. window – an entire new window;
2. menu – a menu grouping;
3. menuitem – an item in a menu;
4. grid – a rectangular block for placing widgets;
5. label – a text label;
6. button – a button linked to an R function that runs a particular analysis and generates a

desired output, perhaps including graphics;
7. check – a check box used to turn a variable on or off, with corresponding values TRUE or

FALSE;
8. radio – one of a set of mutually exclusive radio buttons for making a particular choice;
9. null –a blank widget that can occupy an empty space in a grid;

10. entry – a field in which a scalar variable (number or string) can be altered;
11. text – an entry box that supports multiple lines of text;
12. vector – an aligned set of entry fields for all components of a vector;
13. matrix – an aligned set of entry fields for all components of a matrix;
14. data – an aligned set of entry fields for all components of a data frame, where columns can

have different modes;
15. object – an aligned set of entry fields defined by an existing R-object (vector, matrix, or

data frame);
16. slide – a slide bar that sets the value of a variable;

 – 7 –

17. slideplus – an extended slide bar that also displays a minimum, maximum, and current
value;

18. history – a device for archiving parameter values corresponding to different model
choices, so that a “slide show” of interesting choices can be preserved.

 The description file is an ordinary text file that specifies each widget on a separate line.
However, any one widget description can span multiple lines by using a backslash character (\)
to indicate the end of an incomplete line. For example, the single line:
label text="Hello World!"

is equivalent to:
label \
 text="Hello World!"

Meaningful indentation is highly recommended, but not compulsory. The three-line description
of a vector widget in Table 1 illustrates a readable style.

 Each widget has named arguments that control its behaviour, analogous to the named
arguments of a function in R. Some (required) arguments must be specified in the widget
description. Others (not required) can take default values. All widgets have a type argument
equal to one of the 18 names above, although the word type can be omitted in the description
file. Appendix A gives an alphabetic list of all these widgets, along with detailed descriptions of
all arguments. As in calls to R functions, argument names can be omitted as long as they
conform to the order specified in the detailed widget descriptions given below. Nevertheless, we
recommend that all argument names be specified, except possibly the name type, which is
always the first argument for each widget. Unlike R functions, where commas separate
arguments, the arguments in a widget description are separated by white space.

 In a description file, all argument values are treated initially as strings. In addition to
specifying a line break, the backslash can be used to indicate five special characters: single quote
\', double quote \", tab \t, newline \n, and backslash \\. If an argument value does not
include spaces or special characters, then quotes around the string are not required. Otherwise,
double quotes must be used to delineate the value of an argument. Single quotes indicate strings
nested within strings. For example, the vector in Table 1 has four labels specified by the string
argument
labels="'x cycles' 'y cycles' 'y phase' points"

 A hash mark (#) that is not within a string begins a comment, where everything on a line
after the hash mark is ignored. As mentioned above, an isolated backslash (not part of a special
character) indicates continuation onto the next line. A break can even occur in the middle of a
string, such as the long label
label text="This long label with spaces \
 spans two lines in the description file"
In this case, leading spaces in the second line are ignored, to allow meaningful formatting in the
description file. Intentional spaces in a long string should appear prior to the backslash on the
first line.

 – 8 –

 Although the type argument (like vector) for a widget can never be abbreviated,
other arguments follow the convention used with named arguments in R function calls. For a
given widget type, the available arguments can be abbreviated, as long as the abbreviations
uniquely identify each argument. For example, the vector in Table 1 could be specified as:
vector len=4 nam="m n phi k" \
 lab="'x cycles' 'y cycles' 'y phase' points" \
 val="2 3 0 1000"

 Unlike variable names in R, widget names and their arguments are not case sensitive.
Some users may prefer to write all type variables in upper case or with an initial capital letter.
For example, the names WINDOW, VECTOR, RADIO, and BUTTON could be used to
emphasize the widgets in Table 1.

2.3. Window support functions

 PBS Modelling includes functions designed to connect R code with GUI windows. Every
window has a name argument (with default name=window), and windows with different
names can coexist. Window names must use only letters and numbers; they cannot contain a
period (dot) or any other punctuation. When running a program with multiple windows, only one
window will be current (i.e., selected by the user) at any particular time. Normally, a user selects
a window by clicking on it, but the function focusWin allows program control of the window
currently in focus. Thus, activity in one window might be used to shift the focus to another.

The function createWin uses a description file to generate one or more windows,
where each window has a distinct name (perhaps the default) taken from the file. If a window
with the specified name already exists, it will be closed before the new window is opened. When
designing and testing a GUI, this feature ensures that a new version automatically replaces the
previous one. The function closeWin, which takes a vector of window names, closes all
windows named in the vector. With no arguments, closeWin() closes all windows that are
currently open.

 Although createWin normally builds a GUI from a description file, it will also accept
a vector of strings equivalent to such a file. Thus, a file of R source code can define a GUI
directly, without the need for a separate description file. illustrates how this can be done in a
simple case. To see the character vectors equivalent to a given description file (say,
winDesc.txt), type the R command:
 scan("winDesc.txt",what=character(),sep="\n")
In particular, if the description file includes a backslash or double quote character, the
corresponding R string must represent it as \\ or \", respectively. Despite this alternative of
embedding window descriptions in R source files, we recommend writing separate files to define
GUIs, except perhaps for very simple models.

 – 9 –

Table 2. A simple file of R source code with character strings that define a GUI. No separate
window description file is required.

File: Simple.r
window description strings
winStr=c(
 "window",
 "entry name=n value=5",
 "button function=myPlot text=\"Plot sinusoid\"");

function to plot a sinusoid
myPlot <- function() {
 getWinVal(scope="L");
 x <- seq(0,500)*2*n*pi/500;
 plot(x,sin(x),type="l"); };

commands to create the window
require(PBSmodelling); createWin(winStr,astext=TRUE)

 Internally, PBS Modelling converts a description file into a list object that is used to
generate the corresponding GUI. The functions compileDescription and
parseWinFile give lists that correspond to description files. Just as createWin can act
directly on a character vector, it can also act on a suitably defined list, rather than a file. This
feature makes it possible to replace a description file with R code that defines the corresponding
list, although we recommend against this practice in most cases.

 R programs need to share data with a GUI window. PBS Modelling provides six
functions that deal with values of R variables named in a description file:
• getWinVal returns values from the current window;
• setWinVal sets values in the current window;
• getWinAct returns all actions (up to a maximum of 50) invoked in the current window;
• setWinAct adds an action to the action vector for the current window;
• getWinFun returns the names of all R functions referenced in the current window;
• clearWinVal clears global values associated with the current window.

 Some models make use of a single parameter vector. In such cases the function
createVector generates a GUI directly, without the need for a corresponding description
file. We also offer a few “choosing” functions – getChoice and chooseWinVal – that
invoke a prompting GUI offering string choices. The latter writes the choice to a variable in a
GUI specified by the user.

 After using createWin to produce a GUI, the functions getWinVal and
getWinFun provide useful summaries of names declared in the current project. Furthermore,
the function getWinAct provides a record of GUI actions taken by the user, starting with the
most recent and working backwards. By default, the action associated with a widget is its
type; for example a button has default action=button. In general, however, the

 – 10 –

description file could give a unique action name to each potential action, so that the vector would
give an unambiguous record of user actions.

Two functions provide support for selecting a file from a GUI:
• promptOpenFile shows the current directory for choosing a file to open;
• promptSaveFile shows the current directory for naming a file to save.

Files can be opened in programs external from R depending on their file extension:
• openFile opens a file using the default program for the file extension;
• setPBSext overrides the default program associated with an extension;
• getPBSext shows the overridden file extension and associated program.

 If a widget invokes the function openFile, the associated action should be the file
name. By definition, openFile has the default argument getWinAct()[1].

 On a Windows platform, the native R function shell.exec (called by openFile)
automatically chooses a default from the registry. For this reason, our distribution specifies an
empty list:
 getPBSext() returns list().
The default can, however, be overwritten by specifying explicit list components, such as:
 setPBSext('html',
 '"c:/Program Files/Mozilla Firefox/firefox.exe" file://%f')
where %f denotes the file name in the string passed to the operating system. On Unix platforms,
it may be essential to specify defaults this way. Future versions of our library may include other
options, such as default width for a data entry field or the maximum number of actions.

 PBS Modelling includes a history widget designed to collect interesting choices of
GUI variables so that they can be redisplayed later, rather like a slide show. This widget has
buttons to add and remove GUI settings from the current collection, to scroll backward and
forward, and to clear all entries from the collection. Other buttons allow entire history files to be
saved or loaded. The history widget defines and uses the list PBS.history in the global
environment to store a saved history.

 Normally, a user would invoke a history widget simply by including a reference to it
in the description file. However, PBS Modelling includes some support functions for customized
applications:
• initHistory initializes data structures for holding a collection of history data;
• addHistory saves the current window settings to the current history record;
• rmHistory removes the current record from the history;
• backHistory and forwHistory move backward and forward between successive

history records;
• firstHistory and lastHistory move to the first and last records in the history;
• jumpHistory moves to a specified record in the history;
• exportHistory and importHistory save and load histories from files;

 – 11 –

• clearHistory removes all records from the current collection.
The help file for initHistory shows an example that uses these functions directly.

2.4. Internal data

 PBS Modelling uses the hidden list variable .PBSmod in the global environment to store
current settings and internal information needed to communicate with the tcl/tk interface.
This variable is intended for exclusive use by PBS Modelling, and users should not alter or delete
it while PBS Modelling is active. We include the material in this section for advanced users and
developers interested in further details about the internal data used to manage GUI windows.

 The list .PBSmod contains a named component for each open window, where the
component name matches the window name. Recall that, if a window is not named explicitly, it
receives the default name=window. In addition to window names, .PBSmod contains two
other named components: $.activeWin and $.options. These names do not conflict with
the window names, because the latter cannot include a dot (.).The $.activeWin component
stores the name of the window that has most recently received user input. The $.options
component currently has only one element $openfile, with information that links programs to
file extensions for the function openFile.

 Any named component of .PBSmod that does not start with a dot stores information
related to the corresponding window. Each window uses a list with the following named
components:
• widgetPtrs

A list containing widget pointers. Each component has a name that matches widget name.
Only widgets with a name argument and a corresponding tk widget will appear in this list.

• widgets
A list containing information from the window description file relevant to each widget. This
list includes every widget that has a name or names argument. Widgets without names will
never be referenced again after the window has been created; consequently, information
about them is not stored for later usage.

• tkwindow
A pointer to the window created by tktoplevel().

• functions
A vector of all function names referenced in the window description.

• actions
A vector containing action strings corresponding to the most recent user actions in the
window, up to a maximum of 50. (The internal constant .maxActionSize sets this upper
limit. See the file defs.R in the distribution source code.)

Users can explore the contents of .PBSmod with the R structure command str. For

example, from the R console, type runExamples() and select the example “CalcVor”. Then
type the command str(.PBSmod,2) to shows the list structure to a depth of 2. This reveals

 – 12 –

all the list components discussed above. Further details appear by exploring the structure to
depths 3, 4, or more. Notice also how the contents change as different examples are selected.

 The functions getWinVal, setWinVal, getWinAct, setWinAct,
getWinFun, getPBSext, and setPBSext (discussed in Section 2.3) provide methods for
manipulating and retrieving variables stored in .PBSmod. Use these, rather than direct access, to
alter the internal data. Future design modifications to PBS Modelling might change the
architecture for storing the data components, but the methods functions will continue to have
their current effect.

Table 3. Sample data file for PBS Modelling. The function readList converts this file to a
list object with six components: a scalar $x, a logical vector $y, two matrices ($z, $a), and
two data frames ($b1, $b2). The matrix $a is read by column, and $b1=$b2.
———————————————————————————————————————
$x
0

$y
T F TRUE FALSE

$z
11.1 12.2 13.3 14.4
15.5 16.6 17.7 1.88e+01

$a

$$matrix ncol=2 byrow=FALSE colnames="a b"

5 1 2 3

$b1

$$data ncol=3 modes="numeric logical character" \

 byrow=TRUE colnames="N L C"

5 T aa

3 F bb

8 T cc

10.5 F dd

$b2

$$data ncol=3 modes="numeric logical character" \

 byrow=FALSE colnames="a b c"

5 3 8 10.5

T F T F

aa bb cc dd

———————————————————————————————————————

 – 13 –

3. Functions for data exchange

 Computer models usually require data exchange between model components. For
example, as described above, the functions getWinVal and setWinVal move data between
an R program and the GUI. Other applications, such as those written separately in C, may have
the ability to write data to files that R can read. In cases like this, it would be convenient to have
variable names in the C code correspond to variables with the same names in R. PBS Modelling
can facilitate this process with the functions readList and writeList, which convert a text
file to an R list and vice-versa. Another function unpackList creates local or global
variables with names that match the list components.

 Table 3 illustrates a data file in PBS format, legible by readList. The file contains
lines with an initial dollar sign (like $x in Table 3) that specify a list component name in R,
followed by one or more lines of data. Data items are separated by white space. A single item of
data corresponds to a scalar in R, multiple items on a single line correspond to a vector, and
multiple lines of data correspond to a matrix with the number of columns determined by the first
line of data. Thus, in Table 3, $x is a scalar, $y is a vector of length 4, and $z is a 2×4 matrix.
The format also supports four possible data type definitions on a line preceded by $$:

$$ vector mode=numeric names=""
$$ matrix mode=numeric ncol rownames="" colnames="" byrow=TRUE
$$ data modes=numeric ncol rownames="" colnames byrow=TRUE
$$ array mode=numeric dim fromright=TRUE

Table 3 illustrates their use in specifying $a, $b1, and $b2. Matrices and data frames can be
read by row or column. This choice determines the order of reading the data, and white space
(including line breaks) merely signifies breaks between data items. Array objects with three or
more dimensions can be read in two ways, with indices varying first from the right or from the
left. For example, data for an array indexed by [i,j,k] are read by varying i first with fixed j
and k if fromright=TRUE. Similarly, k varies first if fromright=FALSE.

 As in widget descriptions, arguments may be omitted in favour of their defaults, and the
$$ line may be continued across multiple lines by using a backslash character \. For a matrix,
the argument ncol is required. Similarly, a data object (i.e., a data frame) must specify ncol
and a vector colnames of length ncol. Also, modes must have length 1 (so that all entries in
the data frame have the same mode) or length ncol. An array must have a complete dim
argument, a vector giving the number of dimensions for each index.

 As indicated earlier, PBS Modelling can use this specialized data format as a convenient
means of capturing data from other programs. For example, to export data from an external C
program, write C code that generates a data file in PBS format, where component names in the
file match the C variable names. Then read the resulting file into an R session with the function
readList, and use unpackList to produce local or global R variables. At this point, both R
and C share data with the same variable names. This method works well with programs written
for AD Model Builder (http://otter-rsch.ca/admodel.htm), a package used extensively in fishery
research and other fields. It uses reverse automatic differentiation (AD; Griewank 2000) for
highly efficient calculation of maximum likelihood estimates.

http://otter-rsch.ca/admodel.htm

 – 14 –

 To considerable extent, R has native support for reading and writing a variety of text
files, including the functions scan, cat, source, dump, dget, dput, read, write,
read.table, and write.table. External programs sometimes utilize R formats for their
input data. For example, the program WinBUGS (Speigelhalter et al., 2004), which implements
Bayesian inference using Gibbs sampling, uses data files written in a list format closely related to
the R syntax produced by the dput function. If the file myData.txt has dput format, then
either of the two R commands
 myData <- dget("myData.txt");
 myData <- eval(parse("myData.txt"));
produces a corresponding R list object named myData.

 We should, however, add a word of caution here. When R saves array data in dput
format, it converts the array to a vector by varying the indices from left to right. For example, a
matrix with indices [i,j] is saved as a vector in which i varies for each fixed j. In effect, the
data are stored by column. This sometimes gives an unnatural visual appearance. In English, the
eye reads naturally from left to right, then down. Matrices are normally displayed by row, with
column index j varying for each fixed i. WinBUGS, supported by the R package BRugs
(Thomas 2004), requires input data formatted in this visually meaningful way. More generally,
WinBUGS reads arrays by varying the indices from right to left. The BRugs function bugsData
writes data in this format, but users must take special care in reading WinBUGS data with the
dget function.

4. Support functions for graphics and analysis

 As mentioned in the preface, we have devised a number of functions that make it easier
for us to work in R. Some of them, such as plotBubbles, relate to techniques discussed in our
published work (e.g., Richards et al. 1997; Schnute and Haigh 2007). Others just provide
convenient utilities. For example, testCol("red") shows all colours in the palette
colors() that contain the string "red". We also provide support for a few analytical
methods, such as function minimization. This section gives a brief description of PBS Modelling
support functions. See the help files for further information.

4.1. Graphics utilities

resetGraph............Reset various graphics parameters to defaults, with mfrow=c(1,1).
expandGraphSet various graphics parameters to make graphs fill out available space.

drawBarsDraw a linear bar plot on the current graph.
genMatrixGenerate a test matrix for use in plotBubbles.
plotACF...................Plot autocorrelation bars (ACF) from a data frame, matrix, or vector.
plotAsp...................Plot a graph with a prescribed aspect ratio, preserving xlim and ylim.
plotBubblesConstruct a bubble plot for a matrix.
plotCsumPlot cumulative sum of a vector, with value added.

 – 15 –

plotDensPlot density curves from a data frame, matrix, or vector.
plotTracePlot trace lines from a data frame, matrix, or vector.

addArrowsCall the arrows function using relative (0:1) coordinates.
addLegendAdd a legend using relative (0:1) coordinates.
addLabelAdd a panel label using relative (0:1) coordinates.

pickCol...................Pick a colour from a complete palette and get the hexadecimal code.
testCol...................Display named colours available based on a set of strings.
testLty...................Display line types available.
testLwd...................Display line widths.
testPch...................Display plotting symbols and backslash characters.

4.2. Data management

clearAllFunction to clear all data in the global environment.
pad0Pad numbers with leading zeroes (string).
show0........................Show decimal places including zeroes (string).
unpackList............Unpack the objects in a list and make them available locally or globally.
viewView the first n rows of a data frame or matrix.

4.3. Function minimization and maximum likelihood

Three functions in the stat library support function minimization in R: nlm, nlminb,
and optim. These tend to perform slowly compared with other software alternatives, due partly
to R’s interpretive function evaluation. Nevertheless, for small problems they offer a convenient
means of analysis, based entirely on code written in R. Our examples illustrate some of the
possibilities. For large problems coded in other software, we still like to write independent code
for a function in R, based only on the model documentation. If both versions of the software
produce the same function values at selected values of the function arguments, then we have
greater confidence that we have represented our model correctly in code. In that context, R
serves as a valuable debugging tool.

PBS Modelling provides a support function calcMin that can use any method available
in the stat library to find the vector 1̂ ˆ(, ,)nx x… of length n that minimizes the function

. In practice, we usually apply this to the negative log likelihood for a statistical
model, where the variables

1(, ,)ny f x x= …

ix are parameters. We define a new class parVec, which is a data
frame with four columns:
• val – the actual value of parameter ix ;
• min – a minimum allowable value of ix ;
• max – a maximum allowable value of ix ; and

 – 16 –

• active – a logical value that determines whether or not the minimization algorithm should
vary the value of ix . If active=F, then ix remains unchanged at the value val.

Internally, calcMin scales active variables x to surrogate variable s in the range [0,1],

where x and s are related by the inverse formulas (Schnute and Richards 1995, p. 2072):

() () 2
min max min min max min

1 cos()
sin

2 2
sx x x x x x xπ− ⎛ ⎟⎜= + − = + − ⎟⎜ ⎟⎝

sπ ⎞
⎠
, (4.3a)

max min min

max min max min

1 2 2
acos asin

x x x x xs
x x xπ π

⎛ ⎞+ − −⎟⎜ ⎟= =⎜ ⎟⎜ ⎟⎜ − −⎝ ⎠ x
. (4.3b)

All these formulas represent equivalent forms of a one-to-one relationship x s↔ , where
min maxx x x≤ ≤ and 0 . Readers may find the second versions of (4.3a) and (4.3b) more

intuitive (with a familiar “arc sine square root” transformation in (4.3b)), but the code uses the
first versions for a possible improvement in computational efficiency by avoiding square and
square root functions. The minimization algorithm works entirely with surrogate variables,
which may have dimension smaller than n if some variables

1s≤ ≤

ix are not active. The function
scalePar scales an object x of class parVec x to a vector s of surrogates via the formula
(4.3b). Similarly, restorePar recovers x from s via (4.3a).

We also provide a convenient function GT0 that restricts a numeric variable x to a
positive value defined by

2

,

(,) 1 , 0
2

, 0
2

ε

ε
ε ε

ε
ε

⎧⎪⎪ ≥⎪⎪⎪⎪ ⎡ ⎤⎛ ⎞⎪⎪ ⎟⎢ ⎥⎜= + < <⎨ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎪ ⎣ ⎦⎪⎪⎪⎪ ≤⎪⎪⎪⎩

GT0

x x

x
x x

x

 . (4.3c)

The notation GT0 denotes “greater than zero”. This function preserves the value of x if x ε≥ ,

and for smaller values x it is always true that (,)
2
ε

ε ≥GT0 x . The function (4.3c) also has a

continuous first derivative that makes sense locally on a small scale of size ε . This property
makes it useful for avoiding unrealistic numbers that might be negative or zero, particularly
when the minimization algorithm uses derivatives of the objective function.

In summary, PBS Modelling has four functions that facilitate function minimization.
calcMin................Calculate the minimum of a user-defined function.
scaleParScale parameters to surrogates in the range [0,1].
restorePar.........Restore actual parameters from surrogate values.
GT0Restrict a numeric variable to a positive value (“Greater Than 0”).

 – 17 –

4.4. Handy utilities

calcFib................Calculate Fibonacci numbers (included only to illustrate the use of C code).
calcGMCalculate the geometric mean of a vector of numbers.
findPat................Find all strings that include any string in a vector of patterns.
pause.....................Pause, typically between graphics displays.
showArgsShow the arguments for a specified widget in Appendix A.
testWidgetsGUI to test all widgets listed in Appendix A.
viewView the first few lines of a (potentially large) matrix or data frame.

5. Examples

 As mentioned in the Preface, PBS Modelling includes a variety of examples that illustrate
applications based on this and other libraries. Generally, each example contains documentation,
R code, a window description file, and (if required) other supporting files. All relevant files
appear in the R library directory PBSmodelling\Examples. An example named xxx
typically has corresponding files xxxDoc.txt or xxxDoc.pdf (documentation), xxx.r
(R code), and xxxWin.txt (a window description). In the GUI for each example, buttons
labelled Docs, R Code, and Window open these files provided that suitable programs have
been associated with the file extensions *.txt, *.pdf, and *.r. In particular, the Acrobat
Reader must be installed for reading *.pdf files, and you may need to associate a text file
editor with *.r. On some systems, it may be necessary to use the function setPBSext to
define these associations, as discussed earlier in Section 2.3.

 Use the function runExamples() to view all examples available in PBS Modelling.
This procedure copies all relevant files to a temporary directory located on the path defined by
the environment variable Temp. It then opens a window in which radio buttons allow you to
select any particular case. Closing the menu window causes the temporary files and related data
to be cleaned up, and returns to the initial working directory.

Alternatively, you can copy all the files from PBSmodelling\Examples to a
directory of your choice and open R in that working directory. To run example xxx, type
source("xxx.r") on the R command line. For instance, source("LissFig.r") creates
a window (from the description file LissFigWin.txt) that can be used to draw the Lissajous
figures described in Section 2.1. The built-in example also includes a history widget for
collecting settings that the user wishes to retain.

 The examples documented here illustrate only some of those available in version 1 of
PBS Modelling. For instance, we also include a TestFuns GUI that we have used as a tool for
debugging various functions in the package. In future versions, we plan to add more examples
that illustrate important modelling concepts and provide convenient supplementary materials for
university courses in fisheries, biology, ecology, statistics, and mathematics. The function

 – 18 –

runExamples() should always represent the complete list currently available, and the Docs
button for each case should link to the appropriate documentation.

The nine examples presented in this section illustrate some of the possibilities available
in PBS Modelling, although the documentation may be somewhat out of date. For example, the
figures in this report may not correctly represent current versions of the GUIs and their
associated graphical output. Use the Docs button to read the most current information for each
example. If this seems rather primitive, please wait for improvements in future versions.

5.1. Random variables

5.1.1. RanVars – Random variables

-2 0 2 4 6 8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

pd
f

Normal
Lognormal
Gamma

Figure 5. RanVars GUI (left) and density plot (right). Simulations are based on 500 random
draws with mean =1 and SD = 1.

 The RanVars example draws samples from three continuous random distributions
(normal, lognormal, and gamma) with a common mean μ and standard deviation . The
documentation (“Docs” button) shows relevant formulas that connect distribution parameters
with the moments

σ

μ and Estimated parameter values from a simulation (invoked by
“Simulate”) are displayed in the GUI alongside the true values (

σ
Figure 5). We use only the

straightforward moment formulas in the documentation, without sample bias correction formulas
like those described by Aitchison and Brown (1969). Three buttons at the bottom of the GUI
portray the data visually as density curves, cumulative proportions, and paired scatter plots.

 – 19 –

5.1.2. RanProp – Random proportions

p1

0.1 0.2 0.3 0.4 0.5 0.6 0.7

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

p2

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.2 0.4 0.6 0.8

0.
2

0.
4

0.
6

0.
8

p3

Figure 6. RanProp GUI (left) and pairs plot (right). Simulations are based on 200 random
draws where n = 10 for the multinomial and Dirichlet distributions and σ = 0.1 for the logistic-
normal distribution. The pairs plot portrays results for the Dirichlet.

 The RanProp example simulates up to five random proportions drawn from one of three
distributions – multinomial, Dirichlet, and logistic-normal. The observed proportion means and
standard deviations are reported in the GUI (Figure 6), and a graphical display renders the points
as a paired scatter plot. After defining options in the GUI, including the vector “pvec” of true
underlying proportions, press “Go”. Schnute and Haigh (2007) provide further technical details
about these three distributions.

 – 20 –

5.1.3. SineNorm – Sine normal

-0.2 0.0 0.2 0.4 0.6 0.8 1.0

-1
.0

-0
.5

0.
0

0.
5

1.
0

x (xm = 0, xs = 0.1)

y

Figure 7. SineNorm GUI (left) and plot (right). Simulations are based on 500 random draws
of sin(2)y xπ= , where x is normal with mean 0μ = and standard deviation . Blue
points portray jittered values of x, and red points show corresponding values of y.

 The SineNorm example illustrates a somewhat unconventional random variable

0.1σ =

sin(2)y xπ= , where x is normal. The GUI allows you to specify the mean μ and standard
x. If deviation σ of 0μ =

al. If σ
orma

 and is small, the transformation is near at y is
tely norm e transformation concentrates y Figure 7

e transf tion when has the moderate value 0.1. Try to see how values
y tend to occur near the peaks and troughs of the sine function, where the slope is relatively flat.

σ
 is large, th

ly linear, so th
 near -1 and 1.

10
approxima
illustrates th σ σ =

 – 21 –

5.1.4. CalcVor – Calculate Voronoi tessellations

-2 -1 0 1 2

2
4

6
8

X

Y

Figure 8. CalcVor GUI (left) and plot (right). Tessellation of random points (red) that are
normally distributed on the x-axis (mean=0, sd=1) and gamma-distributed on the y-axis
(shape=8, rate=2).

 The CalcVor example calls PBS Mapping’s calcVoronoi function, which calculates
the Voronoi (Dirichlet) tessellation for a set of points using the deldir function in the CRAN
package deldir. The GUI accepts two arguments for each random distribution represented on
each axis. The underlying functions and their arguments are:

Distribution Function Argument 1 Argument 2
Uniform runif min max
Normal rnorm mean sd
Gamma rgamma shape rate
Log normal rlnorm meanlog sdlog
Logistic rlogis location scale
Poisson rpois lambda ---

 – 22 –

5.2. Statistical analyses

5.2.1. LinReg – Linear regression

5 10 15 20 25

0
50

10
0

speed

di
st

a = -17.6
b = 3.93

Figure 9. LinReg GUI (left) and regression plot (right). The linear regression uses the cars
dataset (n=50) to predict dist vs. speed. The plot shows observations (green circles), fitted

ne (solid blue line), the 95% confidence limits of the fitted model (solid red lines), the 95% CL

The example LinReg estimates parameters in a linear regression using either

li
of the data (dashed purple lines), and the fits using the Bayes posterior estimates of (a,b) (gold
lines).

y a bx= +
simulated data or data objects that come with the R-package. We compare a classical frequentist
regression with results from Bayesian analysis, using the BRugs library to interface with the
program WinBUGS. After selecting various data options, “Pairs Plot” shows a pairs plot (,x y
and “Classic Regression” adds confidence limits (at “p-level”)

)
 from regression theory. Red and

iolet curves show bounds for a prediction or a new observation, respectively, each conditional
on x. If the dat m lue e cified values a and
b, that must be from t

 A corresponding Bayesian analysis use BUGS hown by pressing
“Model”. Choo s to orm m): the intercept a, the slope b, and
the predictive s eviatio spe e chains for the MCMC
sample, press “ ” to com odel settin pdate” generates samples

 “Length” increm the bottom of the GUI allow you to explore the
MCMC output. Posterior samp correspond to sample lines. The “Regression” button
illustrates these in relationship to confidence limits from a frequentist analysis (Figure 9).

v
a came from si ulation, a b line portrays th truth, with spe
 estimated he data.

s the Win model s
se parameter monitor (n ally all of the
tandard d n σ . After cifying a numb r of sample
Compile pile the m with these gs. “U

in ents. Additional buttons at
les of (,)a b

 – 23 –

5.2.2. MarkRec – Mark-recovery

0 500000 1000000 1500000 2000000 2500000

0.
0

e+
00

1.
5

e-
06

'N'

0.000 0.001 0.002 0.003 0.004

0
20

0
60

0
'p'

Figure 10. MarkRec GUI (left) and density plots (right). A low recovery of marked fish can
lead to fat tails in N due to occasional large spikes in the population estimate.

 The example MarkRec performs a Bayesian analysis of a mark-recovery experiment in
which M

 fish are marked and allowed to disperse randomly in the population. Later, a sample of

ze S is removed from the population and R marks are recovered. Both the total population N si
and the marked proportion p are unknown, where

M Rp
N S

= ≅ .

In one version of the theory, R is binomially distributed with probability p in a sample of size S,
and the above approximation suggests the estimate
ˆ S MN M S

R R

s the
icker.

= = .

When recoveries are low (0R ≈), the posterior distribution of N exhibits a fat tail (Figure 10).

 As in LinReg, “Model” shows the MarkRec model for WinBUGS, which
(deliberately) includes an illegitimate prior that depends on the data. By increasing an initially
small quantity ε , this fake prior allow tail of N values to be arbitrarily clipped. Schnute
(2006) gives some historical perspective to this analysis, in the context of work by W.E. R

 – 24 –

5.2.3. CCA – Catch-curve analysis

Figure 11. CCA GUI (left) and parameter pairs plot (right). Comparison of Bayes posterior
distribution of CCA model parameter estimates from chain 1 (N=100). Symbols indicate means
(blue squares) and modes (red triangles). Diagonal shows parameter estimate distributions.

 The ample CCA illustrates a catch-curve model proposed by Schnute and Haigh (2007).
 incorporates effects of survival, selectivity, and recruitment anomalies on age structure data

(See the last few lines of “Model”.) As in MarkRec, select parameters to monitor, specify a
number of chains, and “Compile” the model. “Update”s may be slow, but eventually they
roduce interesting posterior samples (Figure 11). “Docs” gives details of the deterministic

stribu

 a somew hat can be

e

ex
It
from a single year. After making various model choices, press “Set”, “NLM” (which may take
several seconds), and “Plot” to view the maximum likelihood estimates and their relationship

ith the data. A WinBUGS model (“Model”) allows us to calculate posterior distributions. w

p
model, and the Dirichlet di tion is used to describe error in the observed proportion.

 We include this example to illustrate hat realistic WinBUGS model t
used to estimate parameters for a population dynamics model. We will provide further
information when the paper (Schnute and Haigh 2007) is published. PBS Modelling includes th
data for this example as the matrix CCA.qbr.

 – 25 –

5.3. Other applications

5.3.1. FishRes – Fishery reserve

0 20 40 60 80

0

10

20

30

40

50

N

Reserve Fishery Total

0 20 40 60 80

-15

-10

-5

0

dN
/d

t

0 20 40 60 80

0.0

0.1

0.2

0.3

0.4

0.5

0.6

F

0 20 40 60 80

0

5

10

15

20

25

C

time

Figure 12. FishRes – Recovery of a heavily fished population after establishing a reserve.
The GUI (left) shows all input values (parameters and controls). The selected continuous time
model uses input values common to both models (white background) and values specific to th
continuous model (blue background). Corresponding values are computed for the discrete mo
(yellow background). Output trajectories (right) trace various results (N = population,
dN/dt = instantaneous change in population, F = instantaneous fishing mortality,
C = instantaneous catch) for the reserve and fishery. Fishing mortality follows a sinusoid

ined by F , F , and the cycle length n .

e
del

determ min max

 The example FishRes (Figure 12) models a fish population associated with a marine
reserve in continuous or discrete time (delay differential or difference equations, respectively).
For details see Schnute et al. (2007), which can be viewed by pressing the Docs button in the
GUI. The R libraries akima, ddesolve, and odesolve are required.

 – 26 –

5.3.2. FishTows – Fishery tows

0 20 40 60 80 100
0

20

40

60

80

100

0 20 40 60 80 100
0

20

40

60

80

100

Figure 13. FishTows GUI (left) and simulated tow track (right). Tow track plots show 40
random tows in a square with side length 100. Each tow has width 2, and the rectangle
encompasses 10,000 square units. Top: The individual rectangles, with 160 vertices, have areas
that sum to 4,445 square units. Bottom: The union includes a complex polygon (red) and three
isolated rectangles (blue, green, yellow) that cover only 3,455 square units. The complex

 uniform
of

rs of polygons and holes in the union set of
ws, and the number of vertices in the union. Each of these would also have a variance and an

polygon (red) has 547 vertices and 91 holes.

 The example FishTows provides a simulator of fishery tow tracks using the
PBSmapping library. The example demonstrates the difference between swept area and area
impacted by trawls that often cover the same ground repeatedly. This application can be regarded
an exotic random number generator, where tows initially join two points picked from a
random distribution within a square of a given side length. Three parameters (the number
tows, the tow width, the side length) determine several random variables, including the mean tow
length, the areas swept and impacted, the numbe
to
overall distribution generated by many runs of this example.

 – 27 –

References

Aitchison, J., and Brown, J.A.C. 1969. The lognormal distribution, with special reference to its

uses in economics. Cambridge University Press. Cambridge, UK. xviii+176 p.

Daalgard, P. 2001. A primer on the R Tcl/Tk package. R News 1 (3): 27–31, September 2001.

URL: http://CRAN.R-project.org/doc/Rnews/

Daalgard, P. 2002. Changes to the R Tcl/Tk package. R News 2 (3): 25–27, December 2002.

URL: http://CRAN.R-project.org/doc/Rnews/

Griewank A. (2000) Evaluating derivatives: principles and techniques of algorithmic

differentiation. Frontiers in Applied Mathematics 19. Society for Industrial and Applied
Mathematics

Ligges, U. 2003. R Help Desk: Package Management. R News 3 (3), 37–39. URL:

http://CRAN.R-project.org/doc/Rnews/

Ligges, U, and Murdoch, D. 2005. R Help Desk: Make 'R CMD' work under Windows – an

example. R News 5 (2), 27–28. URL: http://CRAN.R-project.org/doc/Rnews/

Mittertreiner, A., and Schnute, J. 1985. Simplex: a manual and software package for easy

nonlinear parameter estimation and interpretation in fishery research. Canadian Technical
Report of Fisheries Aquatic Sciences 1384: xi+90 p.

usterhout, J.K. 1994. Tcl and the Tk toolkit. Addison-Wesley, Boston, MA. 458 p. O

RDCT: R Development Core Team (2006a). R: A language and environment for statistical

computing. R Foundation for Statistical Computing, Vienna, Austria.
ISBN 3-900051-07-0. URL http://www.R-project.org. (Available in the current R GUI
from “Help”, “Manuals in PDF”, “R Reference Manual”)

DCT: R Development Core Team (2006b). WR riting R extensions. R Foundation for Statistical

Computing, Vienna, Austria. ISBN 3-900051-11-9. URL http://www.R-project.org.

Schnute, J.T. 2006. Curiosity, recruitment, and chaos: a tribute to Bill Ricker’s inquiring mind.
Environmental Biology of Fishes 75: 95-110.

(Available in the current R GUI from “Help”, “Manuals in PDF”, “Writing R
extensions”)

Richards, L.J., Schnute, J.T., and Olsen, N. 1997. Visualizing catch-age analysis: a case study.

Canadian Journal of Fisheries and Aquatic Sciences 54: 1646–1658.

Schnute, J. 1982. A manual for easy nonlinear parameter estimation in fishery research with

interactive microcomputer programs. . Canadian Technical Report of Fisheries and
Aquatic Sciences 1140. xvi+115 pp.

 – 28 –

Schnute, J.T., Boers, N.M., and Haigh, R. 2003. PBS software: maps, spatial analysis, and other

chnute, J.T., Boers, N.M., and Haigh, R. 2004. PBS Mapping 2: user’s guide. Canadian

chnute, J.T., and Haigh, R. 2007. Compositional analysis of catch curve data with an

ontent/vol64/issue2/index.dtl

utilities. Canadian Technical Report of Fisheries and Aquatic Sciences 2496. viii+82 pp.

S
Technical Report of Fisheries and Aquatic Sciences 2549. viii+126 pp.

S
application to Sebastes maliger. ICES Journal of Marine Science 64: 218-233.
Available at http://icesjms.oxfordjournals.org/c , reference
number doi:10.1093/icesjms/fsl024.

Schnut
s. Report on a Collaborative Project between Malaspina University-

College and the Pacific Biological Station. February 2007, 24 pp.

chnute, J.T., and Richards, L.J. 1995. The influence of error on population estimates from

.

piegelhalter, D., Thomas, A., Best, N., and Lunn, D. 2004. WinBUGS User Manual, version

e, J.T., Haigh, R., and Couture-Beil, A. 2007. Mathematical models of fish populations in
marine reserve

(File FishResDoc.pdf available in the package PBSmodelling.)

S
catch-age models. Canadian Journal of Fisheries and Aquatic Sciences, 52: 2063–2077

S
2.0. Available at http://mathstat.helsinki.fi/openbugs/.

s, N. 2004. BRugs User Manual (the R interface to BU

Thoma GS), version 1.0. Available at

http://mathstat.helsinki.fi/openbugs/.

http://cran.r-project.org/doc/Rnews/

 – 29 –

Appendix A. Widget descriptions

clude a description, usage, arguments, and an illustrated example. In specifying a widget, the

pear in
the ord ction.

Butto

This appendix lists PBS Modelling widgets in alphabetical order. Details for each widget

in
user can arrange named arguments in any order. If arguments are not named, they must ap

er specified by the argument list, similar to named arguments in an R fun

n

Descrip

out

Usage
type=button text="Calculate" font="" fg="black" bg="" width=0

Argum

bold italic, underline,

fg
bg.........................background colour for widget
width..................button width, the default 0 will adjust the width to the minimum required
functionR function to call when the button is pushed (i.e., clicked by the mouse)
actionstring value associated whenever this widget is engaged
stickyoption for placing the widget in available space; valid choices are:

N, NE, E, SE, S, SW, W, NW
padxspace used to pad the widget on the left and right
padyspace used to pad the widget on the top and bottom

Example
window title="Widget = button"
button text="Push Me"

tion

A button linked to an R function that runs a particular analysis and generates a desired
put, perhaps including graphics.

function="" action="button" sticky="" padx=0 pady=0

ents

texttext to display on the button
fontfont for labels – specify family (Times, Helvetica, or Courier),

size (as point size), and style (,
overstrike), in any order

.........................colour for label fonts

 – 30 –

Check

Description

A check box to turn a variable off or on, with corresponding values FALSE or TRUE (0 / 1).

Usage
type=check name mode="logical" checked=FALSE text="" font=""

="black" bg="" function="" action="check" sticky=""
dx=0 pady=0

sociated variable, where valid modes are
logical or numeric

.............if TRUE, the box is checked initially and the variable is set to TRUE or 1

fo ier),
size (as point size), and style (bold, italic, underline,

bg.....
functionR function to call when the check bo

 whenever this widget is engaged
 available space; valid choices are:

Exa

fg
pa

Arguments

namename of R variable altered by this check box (required)
modeR mode for the as

checked
textidentifying text placed to the right of this check box
ntfont for labels – specify family (Times, Helvetica, or Cour

overstrike), in any order
fg.........................colour for label fonts

....................background colour for widget
x is changed

actionstring value associated
stickyoption for placing the widget in

N, NE, E, SE, S, SW, W, NW
padxspace used to pad the widget on the left and right
padyspace used to pad the widget on the top and bottom

mple
window title="Widget = check"
check name=junk checked=T text="Check Me"

Data

Description

An aligned set of entry fields for all components of a data frame. The data widget can
accept a variety of modes. The user must keep in mind that rowlabels and collabels

 – 31 –

should
logica

 conform to R naming conventions (no spaces, no special characters, etc.). If mode is
l, fields appear as a set of check boxes that can be turned on or off using mouse clicks.

collabels="" rownames="X" colnames="Y" font="" fg="black"
bg="" entryfont="" entryfg="black" entrybg="white"

Argum

.................number of rows (required)

e the data

aracter
a

collabels labels used to label columns of this

 nrow to name the rows of the data frame
 columns of the data

),
d, italic, underline,

bg.........................background colour for widget
fontfont of entries appearing in input/output boxes

ring in input/output boxes

valuesdefault values (either one value for all data frame components or a set of
nrow*ncol values)

byrow..................if TRUE and nrow*ncol names are used, interpret the names by row;
otherwise by column. Similarly, interpret nrow*ncol initial values.

functionR function to call when any entry in the data frame is changed
..................if TRUE, call the function only after the <Enter> key is pressed

ionstring value associated whenever this widget is engaged
width..................character width to reserve for the each entry in the data frame

...............option for placing the widget in available space; valid choices are:

Usage
type=data nrow ncol names modes="numeric" rowlabels=""

values="" byrow=TRUE function="" enter=TRUE action="data"
width=6 sticky="" padx=0 pady=0

ents

nrow ...
ncolnumber of columns(required)
names..................either one name or a set of nrow*ncol names used to stor

frame in R (required)
modes..................R modes for the data frame, where valid modes are:

numeric, integer, complex, logical, ch
rowlabelseither one label or a vector of nrow labels used to label rows of this dat

frame in the display
.either one label or a vector of ncol
data frame in the display

rownamesstring scalar or vector of length
colnamesstring scalar or vector of length ncol to name the

frame
fontfont for labels – specify family (Times, Helvetica, or Courier

size (as point size), and style (bol
overstrike), in any order

fg.........................colour for label fonts

entry
entryfg.............font colour of entries appea
entrybg.............background colour of input/output boxes

enter
act

sticky
N, NE, E, SE, S, SW, W, NW

padxspace used to pad the widget on the left and right
padyspace used to pad the widget on the top and bottom

 – 32 –

Example

da

zum T T F 80000 600000 50"

window title="Widget = data"
ta nrow=3 ncol=3 names=Census byrow=FALSE \

modes="character logical numeric" width=10 \
rowlabels="Rec1 Rec2 Rec3" collabels="City Smell Popn" \
values="Nanaimo Vancouver Spuz

Entry

Description

Usage
"

entryfont="" entryfg="black" entrybg="white" function=""
enter=TRUE action="entry" mode="numeric" sticky="" padx=0

Arg

d)

 is pressed
ged

....................R mode for the value entered, where valid modes are:
, , , logical, character

A field in which a scalar variable (number or string) can be altered.

type=entry name value="" width=20 label="" font="" fg="" bg="

pady=0

uments

namename of R variable corresponding to this entry (require
.....

.......
valuedefault value to display in the entry
width..................character width to reserve for the entry
label..................text to display above the entry box
fontfont for labels – specify family (Times, Helvetica, or Courier),

size (as point size), and style (bold, italic, underline,
overstrike), in any order

fg....... lour fo..................co r label fonts
..........bgbackground colour for widget

entryfontfont of entries appearing in input/output boxes
fgentryfont colour of entries appearing in input/output boxes

entrybg.............background colour of input/output boxes
functionR function to call when the entry is changed
enter..................if TRUE, call the function only after the <Enter> key
actionstring value associated whenever this widget is enga
mode

numeric integer complex

 – 33 –

stickyoption for placing the widget in available space; va
N, NE, E, SE, S, SW, W, NW

...................space used to pad the widget on the left and right

...................space used to pad the widget on the top and bottom

lid choices are:

padx .
pady .

Example
window title="Widget = entry"
entry name=junk value="Enter something here" width=20

mode=character

Grid

Description

com

Usage
grid nrow=1 ncol=1 toptitle="" sidetitle="" topfont=""
efont="" byrow=TRUE borderwidth=1 relief="flat"

Arg

toptitle
sidetitle

mily (Times, Helvetica, or Courier),
, italic, underline,

ica, or
bold italic, underline,

Creates space for a rectangular block of widgets. Spaces must be filled. Widgets can be any
bination of available widgets, including grid.

type=
sid
sticky="" padx=0 pady=0

uments

nrownumber of rows in the grid
ncolnumber of columns in the grid

..........title to place above grid
title to place on the left side of the grid

ecify fatopfont.............font for top labels – sp
size (as point size), and style (bold
overstrike), in any order

sidefontfont for side labels – specify family (Times, Helvet
(, Courier), size (as point size), and style

overstrike), in any order
byrow..................if TRUE, create widgets across rows, otherwise down columns
borderwidth ...width of the border around the grid
relieftype of border around the grid, where valid styles are:

raised, sunken, flat, ridge, groove, solid
stickyoption for placing the widget in available space; valid choices are:

N, NE, E, SE, S, SW, W, NW
padxspace used to pad the widget on the left and right

 – 34 –

padyspace used to pad the widget on the top and bottom

Example
grid 2 2 relief=groove toptitle=Columns sidetitle=Rows

 bold"
 1" font="times 8 italic"
 label text="Cell 2" font="times 10 italic"
 label text="Cell 3" font="times 12 italic"
 label text="Cell 4" font="times 14 italic"

topfont="Helvetica 12 bold" sidefont="Helvetica 12
label text="Cell

History

Des

All rchive (history) of widget settings (records) through

Go directly to the first record of the history.
tory.

he history.

N Display he history.
Empty Remov

 after or
overtop

Delete Remov istory.
 or after

Usage
"

pa

Arg

namename of history archive
functionR function to call when the history record counter is changed

cription

ows the user to manage a temporary a
a panel of buttons:
<<
< Go to the previous record in the his
> Go to the next record in the history.
>> Go directly to the last record in t
Sort Sort the order of the records in the history.
n Display window (white background) shows the current record.

 window (grey background) shows total number of records in t
e all records from the history.

Insert Add a new record (current widget settings) to the history, either before,
 the current record.
e the current record from the h

Import Import a previously saved history (text file) to the history, either before
the current record.

Export Export the history to a text file.

type=history name="default" function="" import="" sticky="
y=0 dx=0 pad

uments

 – 35 –

importfile name of a saved history to load when the widget is called
e:

dx .
dy .

Example
window title="Widget = history"
vector length=3 names="alpha beta gamma" values="2 5 15"
history padx=20 pady=5

stickyoption for placing the widget in available space; valid choices ar
N, NE, E, SE, S, SW, W, NW

paspace used to pad the widget on the left and right
paspace used to pad the widget on the top and bottom

Label

Description

e null widget.

Usage

pady=

Arg

mily (Times, Helvetica, or Courier),
tyle (bold, italic, underline,

overstrike), in any order

bg ound colour for widget
...............option for placing the widget in available space; valid choices are:

N, NE, E, SE, S, SW, W, NW
get on the left and right

Creates a text label. If the text argument is left blank, label emulates th

type= label text="" font="" fg="black" bg="" sticky="" padx=0
0

uments

texttext to display in the label
fontfont for labels – specify fa

size (as point size), and s

fg.........................colour for label fonts
.........................backgr

sticky

padxspace used to pad the wid
padyspace used to pad the widget on the top and bottom

 – 36 –

Exa
windo

mple
"Widget = label" w title=

label text="Information Label"

Matrix

Description

An aligned set of entry fields for all components of a matrix. If the mode is logical, the
matrix appears as a set of check boxes that can be turned on or off using mouse clicks.

Usage
type=matrix nrow ncol names rowlabels="" collabels=""

rownames="" colnames="" font="" fg="black" bg=""
entryfont="" entryfg="black" entrybg="white" values=""
byrow=TRUE function="" enter=TRUE action="matrix"
mode="numeric" width=6 sticky="" padx=0 pady=0

ts

nrownumber of rows (required)
...............number of columns(required)

e na nam re the

labelseither one label or a vector of nrow labels used to label rows of this

co ncol
matrix in the display

esstring scalar or vector of length nrow to name the rows of the matrix
gth ncol to name the columns of the matrix

entryfg............ input/output boxes

nents or a set of
nrow*ncol values)

..................if TRUE and nrow*ncol names are used, interpret the names by row;
rpret nrow*ncol initial values.

Argumen

ncol
names..................either on me or a set of nrow*ncol es used to sto matrix in

R (required)
row

matrix in the display
llabelseither one label or a vector of labels used to label columns of this

rownam
colnamesstring scalar or vector of len
fontfont for labels – specify family (Times, Helvetica, or Courier),

size (as point size), and style (bold, italic, underline,
overstrike), in any order

fg.........................colour for label fonts
bg.........................background colour for widget
entryfontfont of entries appearing in input/output boxes

.font colour of entries appearing in
entrybg.............background colour of input/output boxes
valuesdefault values (either one value for all matrix compo

byrow
otherwise by column. Similarly, inte

 – 37 –

functionR function to call when any entry in the matrix is changed
enter..................if TRUE, call the function only after the <Enter> key is pressed
actionstring value associated whenever this widget is engaged
modeR mode for the matrix, where valid modes are:

numeric, integer, complex, logical, character
width..................character width to reserve for the each entry in the matrix

yoption for placing the widget in available space; valid choices are:
N, NE, E, SE, S, SW, W, NW

...............space used to pad the widget on the left and right

Exa
dow title="Widget = matrix"

20 30 100

stick

padx
padyspace used to pad the widget on the top and bottom

mple
win
matrix nrow=2 ncol=3 rowlabels="'Row A' 'Row B'"

collabels="'Col 1' 'Col 2' 'Col 3'" values="10
200 300" names="a b c d e f" font="times 10 italic"

Menu

Des

A menu grouping. Submenus can either be menu or menuitem.

Usa

Arguments

to include in the menu
l (required)

tica, or Courier),
line,

Exa

cription

ge
type=menu nitems=1 label font=""

bmenus nitemsnumber of items or su
label..................text to display as the menu labe
ntfofont for labels – specify family (Times, Helve

size (as point size), and style (bold, italic, under
overstrike), in any order

mple (assuming that the R functions have been defined)
window title="Widget = menu"
menu nitems=1 label="Widgets"
 menuitem label="Show arguments" func=showArgs
menu nitems=4 label="Test functions"
 menuitem label="Colours" func=testCol

 – 38 –

 menuitem label="Line types" func=testLty
 menuitem label="Line widths" func=testLw

 label="Point symbols" func=testPch
d

 menuitem

MenuItem

Description

One of nitems following a menu command.

Usage
type=menuitem label font="" function action="menuitem"

Arguments

..................text to display as the menu item label (required)
....................font for labels – specify family (Times, Helvetica, or Courier),

size (as point size), and style (bold, italic, underline,
overstrike), in any order

)
...............string value associated whenever this widget is engaged

label
font

functionR function to call when the menu item is clicked (required
action

Null

Des

.

Usage
type=null pad

l on the left and right
 on the top and bottom

Exa
id e=Side

r 10 bold"

cription

Creates a null widget, useful for padding a grid with blank cells that appear as empty space

x=0 pady=0

Arguments

padxspace used to pad the labe
padyspace used to pad the label

mple
gr 2 2 relief=raised toptitle=Top sidetitl

topfont="Courier 10 bold" sidefont="courie
 label text="Here" font="courier 8"

 – 39 –

 null
 null
 label text="There" font="courier 8"

Object

Description

A widget that represents the R-object specified – a vector becomes a vector widget, a
es a matrix widget, and a data frame becomes a data widget. transpose

Usa
bject name font="" fg="black" bg="" entryfont=""

LSE byrow=TRUE

Arguments

 widget

fontfont for labels – specify family (Times, Helvetica, or Courier),
size (as point size), and style (bold, italic, underline,
overstrike), in any order

fg.........................colour for label fonts
...............background colour for widget

ryfg.............font colour of entries appearing in input/output boxes
rybg.............background colour of input/output boxes

the vector as a vertical column with labels on the left;
otherwise display it as a horizontal row with labels above

 changed
ey is pressed

..................character width to reserve for the each entry in the vector
stickyoption for placing the widget in available space; valid choices are:

.
m

matrix becom

ge
type=o

entryfg="black" entrybg="white" vertical=FA
function="" enter=TRUE action="data" width=6 sticky=""
padx=0 pady=0

namename of object (vector, matrix, or data frame) to convert to a
(required)

bg..........
entryfontfont of entries appearing in input/output boxes
ent
ent
verticalif TRUE , display

functionR function to call when any entry in the vector is
enter..................if TRUE, call the function only after the <Enter> k
actionstring value associated whenever this widget is engaged
width

N, NE, E, SE, S, SW, W, NW
...................space used to pad the widget on the left and right padx

padyspace used to pad the widget on the top and botto

 – 40 –

Example
window bg="#ffd2a6" title="Object: longley"
label text="Longley\'s Economic Regression Data" font="bold

12" fg="#400080" pady=0 sticky=S
object name=longley width=7 pady=5

Radio

Des

h

Usa

="" padx=0

Arg

ere radio buttons with
ired)

value..................value of the variable when this radio button is selected (required)
....................identifying text placed to the right of this radio button

cription

One of a s of mutually exclusive radio buttons for making a particular choice. Buttons wit
the same value for name act collectively to define a single choice among the alternatives.

et

ge
type= radio name value text="" font="" fg="black" bg=""

function="" action="radio" mode="numeric" sticky
pady=0

uments

namename of R variable altered by this radio button, wh
the same name define a mutually exclusive set (requ

text

 – 41 –

fontfont for labels – specify family (Times, Helvetica, or Courier),
size (as point size), and style (bold, italic, underline,

fg.........................colour for label fonts
bg.........................background colour for widget
functionR function to call when this radio button is selected
actionstring value associated whenever this widget is engaged
modeR mode for the value associated with this button, where valid modes are:

numeric, integer, complex, logical, character
stickyoption for placing the widget in available space; valid choices are:

N, NE, E, SE, S, SW, W, NW
padxspace used to pad the widget on the left and right
padyspace used to pad the widget on the top and bottom

Example
window title="Widget = radio"
grid 1 4
 radio name=junk value=0 text="None"
 radio name=junk value=1 text="Option A"
 radio name=junk value=2 text="Option B"
 radio name=junk value=3 text="Option C"

overstrike), in any order

Slide

Des

ide bar that sets the value of a variable. This widget only accepts integer values.

Usa
ty

ion="horizontal" font="" fg="black" bg=""
ction="" action="slide" sticky="" padx=0 pady=0

Arg

name bar (required)

showvalue
orientation .. horizontal or vertical

cription

A sl

ge
pe= slide name from=0 to=100 value=NA showvalue=FALSE
orientat
fun

uments

.name of the numeric R variable corresponding to this slide
fromminimum value of the variable (must be an integer)
to.........................maximum value of the variable (must be an integer)
value..................initial slide value, where the default is the specified from value

if TRUE, display the current slide value above the slide bar
.direction for orienting the slide bar:

 – 42 –

fontfont for labels – specify family (Times, Helvetica, or Courier),
, italic, underline,

function

sticky ailable space; valid choices are:

....................space used to pad the widget on the top and bottom

Exa
le="Widget = slide"

ide howvalue=T

size (as point size), and style (bold
overstrike), in any order

fg.........................colour for label fonts
bg.........................background colour for widget

.R function to call when the slide value is changed
actionstring value associated whenever this widget is engaged

.option for placing the widget in av
N, NE, E, SE, S, SW, W, NW

padxspace used to pad the widget on the left and right
pady

mple
window tit
sl name=junk from=1 to=1000 value=225 s

SlidePlus

Description

An extended slide bar that also displays a minimum, maximum, and current value. This
cepts real numbers.

Usa
e= slideplus name from=0 to=1 by=0.01 value=NA function=""
enter=FALSE action="slideplus" sticky="" padx=0 pady=0

Argum

na)
.................minimum value of the variable

rom value

 function

padxspace used to pad the widget on the left and right

widget ac

ge
typ

ents

mename of the numeric R variable corresponding to this slide bar (required
from ...
to.........................maximum value of the variable
by.........................minimum amount for changing the variable’s value
value..................initial slide value, where the default is the specified f
functionR function to call when the slide value is changed

l theenter..................if TRUE and the slide value is changed via the entry box, cal
 only after the <Enter> key is pressed

 this ageactionstring value associated whenever widget is eng d
stickyoption for placing the widget in available space; valid choices are:

N, NE, E, SE, S, SW, W, NW

 – 43 –

padyspace used to pad the widget on the top and bottom

Not

additional

Example

slideplus name=junk from=0 to=1 by=0.01 value=0.75

e

To facilitate retrieving and setting the minimum and maximum values, two
variables are created by suffixing ".max" and ".min" to the given name.

window title="Widget = slideplus"

Text

Description

ation text box that can display messages, results, or whatever the user desires. The
 information can be either fixed or editable.

Usa
t=8 width=30 edit=FALSE scrollbar=TRUE

fg="black" bg="white" mode="character" font="" value=""
borderwidth=1 relief="sunken" sticky=”” padx=0 pady=0

Arg

.................name of the R variable containing the text (required)
...............text box height

lue stored in name

 yields "#FFD18F"

logical, character
r Courier),

An inform
displayed

ge
type= text name heigh

uments

name ...
height
width..................text box width
editif TRUE, the user can edit the va
scrollbarif TRUE, a scroll bar is added to the right of the text box
fg.........................colour for label fonts
bg.........................background colour specified in hexadecimal format; e.g.,

rgb(255,209,143,maxColorValue=255)
modeR mode for the value associated with this widget, where valid modes are:

numeric, integer, complex,
fontfont for labels – specify family (Times, Helvetica, o

size (as point size), and style (bold, italic, underline,
overstrike), in any order

value..................default value to display in the text
borderwidth ...width of the border around the text box

 – 44 –

relieftype of border around the text, where valid styles are:

N, NE, E, SE, S, SW, W, NW
....................space used to pad the widget on the left and right

he top and bottom

Exa
window title="Widget = text"
text name=mytext height=2 width=55 bg="#FFD18F" \

font="times 11" borderwidth=1 relief="sunken" edit=TRUE \
value="You can edit the text here and change the value of
\"mytext\""

raised, sunken, flat, ridge, groove, solid
stickyoption for placing the widget in available space; valid choices are:

padx
padyspace used to pad the widget on t

mple

Vector

Des

An ector
app

cnames=""
="" entryfont="" entryfg="black"
cal=FALSE function="" enter=TRUE

="" padx=0

Arg

for individual

labels labels,

values e for all vector components or a vector of

 the scalars or vector
Courier),

,
overstrike), in any order

cription

 aligned set of entry fields for all components of a vector. If the mode is logical, the v
ears as a set of check boxes that can be turned on or off using mouse clicks.

Usage
type=vector names length=0 labels="" values="" ve

font="" fg="black" bg
entrybg="white" verti
action="vector" mode="numeric" width=6 sticky
pady=0

uments

names..................either one name (for a whole vector) or a vector of names
variables used to store the values in R (required)

lengthrequired only if a single name is given for a vector of length greater than 1
.labels for the vector display – either one label, a vector of length
or NULL for no labels (default "" labels with names and, if number of
specified names is one, numbered elements)
.default values (either one valu
length values)

vecnamesstring vector of length length to name
fontfont for labels – specify family (Times, Helvetica, or

size (as point size), and style (bold, italic, underline

 – 45 –

fg.........................colour for label fonts
.background colour for widget bg........................

s
.............background colour of input/output boxes

calif TRUE , display the vector as a vertical column with labels on the left;
orizontal row with labels above

enter
actio
mode . for the vector, where valid modes are:

numeric, integer, complex, logical, character
width..................character width to reserve for the each entry in the vector
stickyoption for placing the widget in available space; valid choices are:

N, NE, E, SE, S, SW, W, NW
padxspace used to pad the widget on the left and right

m

width=6
tor length=5 mode=logical names=chosen labels=choose
values="F T F T T"

entryfontfont of entries appearing in input/output boxes
entryfg.............font colour of entries appearing in input/output boxe
entrybg
verti

otherwise display it as a h
functionR function to call when any entry in the vector is changed

..................if TRUE, call the function only after the <Enter> key is pressed
nstring value associated whenever this widget is engaged
...................R mode

padyspace used to pad the widget on the top and botto

Example
window title="Widget = vector"
vector length=4 names="a b g d" labels="alpha beta gamma

delta" values="100 0.05 1 5" font="times italic"
vec

Window

Des

Create a new wind used as a palette upon which widgets are placed. Each
less a

window with a nam ndow is
opened.

cription

ow. Windows are
open window has a unique name. The function closeWin closes all windows un
specific name (or vector of names) is provided by the user. Also, if createWin opens a

e already in use, the older window is closed before the new wi

 – 46 –

Usa
bg="#D4D0C8"

Arguments

 the window

fg........................
ressing

ge
type=window name="window" title="" vertical=TRUE

fg="#000000" onclose=""

nameunique name identifying an open window
title..................text to display in the window’s title line
verticalif TRUE, arrange widgets vertically, top to bottom, within
bg.........................background colour for window

.colour for label fonts
 onclose.............name of function called when user closes the window by p

Example
ther widgets window title="Widget = window (upon which all o

are placed)"

 – 47 –

Appendix B. Building PBSmodelling and other packages

 f functions, data, and
doc
(R
(see the References above). Ligges (2003) and
intro and a very simple enclosed package
PBS ed

B.1. install the required software;
B.2
B.3. write s new package and compile them;
B.4. include C code in a package.

 Our discussion applies only to package development on a computer running Microsoft

indows 2000, XP, or (maybe) later. We particularly highlight issues that have proved
oublesome for us. The R library directory PBSmodelling\PBStools contains batch
les that can assist the process. For example, you might locate this directory as

C:\Utils\R\R-2.6.0\library\PBSmodelling\PBStools.

B.1. Installing required software

 Building R packages requires five pieces of free software. Duncan Murdoch currently
maintains their availability and installation instructions at:
http://www.murdoch-sutherland.com/Rtools/

The R project defines a standard for creating a package o
umentation. You can obtain a comprehensive guide to “Writing R Extensions”

om the CRAN web site or the R GUI Development Core Team 2006b, R-exts.pdf) fr
Ligges and Murdoch (2005) provide useful

ductions. We have designed PBSmodelling
try as prototypes for package development. This Appendix summarizes the steps ne ed

to:

. build PBS Modelling from source materials;
ource materials for a

W
tr
fi

Users should periodically check this website for changes to the various software packages. We
recommend installing each package on a path that does not include spaces. For example, avoid
using C:\Program Files, even if that happens to be part of a package’s default path. In this
appendix, we use C:\Utils as a root directory for all required software. The list below gives a
brief summary of the required software (Murdoch provides links to these products).

1. R itself, currently version 2.5.0 (C:\Utils\R\R-2.6.0). We assume that R is already

installed from the CRAN web site http://cran.r-project.org/ and that it runs correctly on your
computer. We also assume that the package PBSmodelling is installed in R.

2. ActivePerl: text scripting language (C:\Utils\Perl\).

3. Rtools installer: Command line tools (C:\Utils\Rtools\) and MinGW compilers, etc.
Download and run the file Rtools.exe. The installation should create the subdirectories
\bin for command line programs and \MinGW for the minimalist GNU C compiler for
Windows. These tools are essential. DO NOT plan to use programs with the same name in an
installation of Cygwin or any other UNIX emulator that happens to be installed on your
computer.

4. The Microsoft HTML Help Workshop (C:\Utils\HHW\). Run the installation file
HtmlHelp.exe. After installation, we think you can safely ignore a message that “This

 – 48 –

computer already has a newer version of HTML Help”. (If anyone has different information,
please let us know.)

. Mi user to 5 KTeX: a LaTeX and pdftex package (C:\Utils\MiKTeX). The link takes the
http://www.miktex.org/. This processor for TeX and LaTeX files helps typeset h
within a package. Download the “basic” installation file, and install these components on
You can add more LaTeX packages from the Internet later, as required. (MiKTeX often
this automatically.) Take some time to investigate the MiKTeX package manager (mp
or go to the “Programs” menu and select “MiKTeX 2.5”, “Browse Packages”).

elp files
ly.

 does
m.exe

TeX slightly, so that it can independently process the LaTeX

y for storing LaTeX styles and
tils\MiKTeX\tex\latex).

b) C

”. This refreshes
 \R subdirectory.

le from http://www.winedt.com/

We recommend enhancing MiK
files produced from R documentation files.

a) Create a new subdirectory \R under the MiKTeX’s director
font definitions (e.g., C:\U

opy into it all files from \texmf in the R installation tree (e.g., C:\WinApps\R\R-
2.6.0\share\texmf). These should include Rd.sty.

c) Go to the “Start” menu, select “Programs” then “MiKTeX 2.5”, and run the program
“Settings”. In the “General” tab, click the button marked “Refresh FNDB
MiKTeX’s file name database, so that it recognizes files in the new

The text editor WinEdt (availab) provides a convenient GUI
for editing L

hat
re mentioned here.

aTeX files and operating MiKTeX. Combined with the R package RWinEdt, it
can also serve as an editor and interface for R. However, it is available only as shareware t
requires a fee for long-term use, unlike any other softwa

PBStools for building R packages

 After these five pieces of software are installed, you’re ready to start building R
packages. For this purpose, create a new directory (e.g., D:\Rdevel\) that will contain your
packages. Within the R library directory (C:\Utils\R\R-2.6.0\library\), find the

. Copy all the batch file

, ackPBS.bat, related to

bi

subdirectory PBSmodelling\PBStools s there into your new
packages directory. You should have these 11 files:

• RPaths.bat, RPathCheck.bat related to the installation;
• unpackPBS.bat, checkPBS.bat buildPBS.bat, p

PBS Modelling;
• Runpack.bat, Rcheck.bat, Rbuild.bat, Rpack.bat, RmakePDF.bat related to

the construction of new packages.

IMPORTANT: You need to change RPaths.bat so that it reflects the paths you chose in the
above six installations. For example, your version of this batch file might contain the lines
set R_PATH=C:\Utils\R\R-2.6.0\bin
set TOOLS_PATH=C:\Utils\Rtools\ n
set PERL_PATH=C:\Utils\Perl\bin
set MINGW_PATH=C:\Utils\Rtools\MinGW\bin

 – 49 –

set TEX_PATH=C:\Utils\MiKTeX\miktex\bin
set HTMLHELP_PATH=C:\Utils\HHW

Notice that each path, except the last, ends in a bin subdirectory.

 Hopefully, your installation is now complete. In your new packages directory, run
RPathCheck.bat from a command line or double-click the icon. This script verifies that a
few essential files lie on the indicated paths. If everything is correct, you should see the message
“All program paths look good”. Otherwise, you’ll see a warning about software that doesn’t
appear on your specified paths.

 editor, you will see that they don’t use your
sys
bui
change

B.2. Bu

easy to
discussed in Appendix B.1, say
rele
RPa
thes

.

If you view all the batch files with a text
tem PATH environment variable. Instead, each one defines a new local path appropriate for
lding R packages (via RPathCheck.bat). A SETLOCAL command ensures that this

 doesn’t alter your system’s permanent environment.

ilding PBSmodelling

Once all the required software is installed, the batch files discussed above make it fairly
 build PBSmodelling. We assume that you have already created the directory

D:\Rdevel, for building R packages and that it contains the
vant eight batch files. In particular, RPaths.bat should reflect your installation paths and
thCheck.bat should report the message that “All program paths look good”. Then follow
e steps:

On the CRAN web site http://cran.r-project.org/1 , go to “Packages” on the left and find
PBSmodelling. Download the
Then rename this file (or copy it and renam

 file PBSmodelling_x.xx.tar.gz into D:\Rdevel.
e the copy) so that the version number is

rem .

r
t

tories: \data, \inst, \man, \R, and

rs in the \Rtools directory (section B.1, step 3). The command line

smart

he icon for checkPBS.bat or type the
ow. If all software is installed
presents the contents of the

oved. You should now have the file PBSmodelling.tar.gz in D:\Rdevel

2. In the development directory D:\Rdevel, double-click the icon for unpackPBS.bat o
type the command unpackPBS in a corresponding command window. This should extrac
the contents of PBSmodelling.tar.gz, preserving directory structure, into a
subdirectory \PBSmodelling with five sudirec
\src.

3. Our batch file uses the command tar -xzvf PBSmodelling.tar.gz, where
tar.exe appea
parameters specify a verbose (v) extraction (x) of the given file (f), after filtering with
gzip (z).

If you use other software for this extraction, please ensure that it is configured to handle
UNIX files correctly. For example, “WinZip” has an option to extract a “TAR file with
CR/LF conversion”. This must be turned off.

4. In the base directory D:\Rdevel, double-click t
command checkPBS in a corresponding command wind
correctly and D:\Rdevel\PBSmodelling correctly re

 – 50 –

.tar.gz file, you should see a series of DOS messages reporting “OK” to various tests. A
e: “checking whether package 'PBSmodelling'

. You might also encounter a delay as MiKTeX downloads the LaTeX package lmodern,
par

 created by the
che

he
ow. This creates the file

, which could be used to install PBSmodelling

. Ag
ackage

vel. This generates an indexed documentation file PBSmodelling.pdf.
See Appendix C.3 for further details about the use of this file for producing this report.

hat

 to serve as a convenient prototype. For this reason, we include a small subset
he files

ange

ating the file PBStry_x.xx.tar.gz in the R library directory

ion

distinct pause might accompany the messag
can be installed ...”.

5
t of a larger package lm. If this is really slow, you can abort the process and install lm

with the MiKTeX package manager, as discussed in step 5 of section B.1. Choose a remote
server near you. You only need to do this once. When it’s finished, run checkPBS.bat
again.

. Examine the new directory D:\Rdevel\PBSmodelling.Rcheck6
ck process in step 2. The text files 00check.log and 00install.out show

detailed results.

7. In the base directory D:\Rdevel, double-click the icon for buildPBS.bat or type t
command buildPBS in a corresponding command wind
D:\Rdevel\PBSmodelling.zip
from a local zip file.

8 ain in the base directory D:\Rdevel, double-click the icon for packPBS.bat or type
the command packPBS in a corresponding command window. This creates a new p
distribution file PBSmodelling_x.xx.tar.gz that replaces the one downloaded from
CRAN in step 1.

9. Finally, type the command RmakePDF PBSmodelling in a command window for
D:\Rde

If these steps all work without problems, you can feel confident that the requisite software is
installed correctly and that you understand the basic steps needed to build R packages.

B.3. Creating a new R package

 R packages require a special directory structure. The R function package.skeleton
automatically creates this structure, but (without further work) it does not produce a package t
can be compiled. Although PBSmodelling has the requisite structure, it is perhaps too
complicated
PBStry that illustrates the key details. You can make a new package simply by editing t
in PBStry. You need a suitable editor (e.g., UltraEdit, WinEdt, or Notepad) to view and ch
various text files.

1. Start by loc
\PBSmodelling\PBStools. Copy this file into your development directory
(D:\Rdevel), and rename it (or copy and rename the copy) to obtain the file
PBStry.tar.gz.

2. Remove any previous traces of PBStry in your development directory, such as
subdirectories PBStry , PBStry.Rcheck, and .Rd2dvi, along with the documentat
file PBStry.pdf.

 – 51 –

3. Follow steps similar to those in section B.2 to unpack, check, build, re-package, and
document PBStry. You must now use a DOS command window in D:\Rdevel to issue
the five commands

nvoke the batch files Runpack.bat, Rcheck.bat, Rbuild.bat, Rpack.bat
ry,

o open the file DESCRIPTION in the root directory \PBStry. This file,

>= 2.3.0)

 file

ion
names for distributing your package.

. The subdirectory \PBStry\R contains all R code used by the package. For example,
PB

y

, the distinct file zzz.R defines code for initializing the package. In this case
brary

ingly. We
zzz.R, so that the version number appears on

zz.R.

Runpack PBStry
Rcheck PBStry
Rbuild PBStry
Rpack PBStry
RmakePDF PBStry
which i
and RmakePDF.bat. The first command should give you a new subdirectory \PBSt
along with its five sudirectories: \data, \inst, \man, \R, and \src.

4. Use your editor t
essential in every R package, contains key information in a special format (RDCT 2006b,
section 1.1.1). The following example illustrates a minimal set of required fields.

5. Package: MyPack
Version: 1.00
Date: 2006-12-31
Title: My R Package
Author: User of PBS Modelling
Maintainer: User of PBS Modelling
Depends: R (
Description: My customized R functions
License: GPL version 2 or newer (recommended)

. The package name in DESCRIPTION must agree with the directory name in which this6
lies. For example, if you change PBStry to MyPack in DESCRIPTION and rename the
directory from \PBStry to \MyPack, you have effectively changed the package name.
Similarly, if you change the version to 1.01, you have effectively changed the vers
number that appears in the file

7
Stry includes seven R functions (calcFib, calcFib2, calcGM, calcSum,

findPat, pause, and view). The seven files could be combined into a single file (such as
PBStry.R), but we use separate files here for clarity. The functions all have relativel
simple code, hopefully comprehensible to users with limited R experience. Five of them
come from PBSmodelling. Three of them (calcFib, calcFib2, calcSum) call
compiled C code, as we discuss more completely in section B.4 below.

8. By convention
the function .First.lib, calls library.dynam to load a dynamic link li
(PBStry.dll) created from compiled C code during the build process.

9. When a version number changes, the DESCRIPTION file must be changed accord
also like to make a corresponding change in
the R console when the library is loaded. PBStry illustrates this possibility for z

 – 52 –

10. The subdirectory \PBStry\data contains all data objects that come with the packa
Here, the binary file QBR.rda holds a matrix of quillback rockfish (Sebastes maliger)
sample data used in
CCA.qbr.hl in PBSm

11. If you want to add da
execute the comman
save(myData,file=
The object name must match the prefix in the file name, and the suffix must be .rda.
Include the resulting file in your package’s \data subdirectory.

12. The subdirectory \PBStry\man contains a documentation file for every

ge.

the CCA example above (section 5.2.3). The same data matrix is called
odelling.

ta to a new package, first create the object (e.g., myData) in R and then
d:

"myData.rda")

 object in the

he
b,

section 2) that can be converted to help files in several formats (PDF, HTML, text). For
ples in PBStry may provide adequate prototypes. They represent
ons (e.g., calcGM.Rd, findPat.Rd), data sets (QBR.Rd), and

Rd).

urce code for C code to be compiled into the
mple files to calculate Fibonacci numbers

 to add the components of a numeric vector (sum.c). In
piled C functions.

\PBStry\inst

ly familiar with the
our

urce

 file
ely, the namespace

.]"
arting with a period

includes the command: import(tcltk).

package. PBStry has six functions and one data set, so the \man subdirectory has seven
corresponding R documentation files (*.Rd). An additional file PBStry.Rd documents t
package as a whole. Rd files use a rather complex scripting language (RDCT 2006

many packages, the exam
three distinct cases: functi
complete packages (PBStry.

13. The subdirectory \PBStry\src contains so
dynamic link library PBStry.dll. We include sa
iteratively (fib.c, fib2.c) and
section B.4, we discuss the linkage between R code and com

14. Finally, the subdirectory contains files that are to be included directly in
the R library tree for PBStry when the package is installed. The file PBStry-Info.txt
briefly describes the context and purpose of the trial package.

 If you have successfully followed the steps above, you have actually built two R
packages, PBSmodelling and PBStry. Furthermore, you’re reasonab
contents of PBStry. You can use the files in that small package as prototypes for writing y
own R package, which might contain R code in the subdirectory \R. data in \data, C so
code in \src, and R documentation in \man.

 The larger package PBSmodelling offers more prototypes and uses a somewhat
different style. The main directory includes the required DESCRIPTION file, plus a second
NAMESPACE that lists all objects available to a user of the package. Effectiv
mechanism distinguishes between objects provided by the package and other (hidden) objects
required for the implementation, but not intended for public use. Our NAMESPACE file contains
the rather cryptic instruction: exportPattern("^[^\\.]"). The R string "^[^\\
translates to the regular expression ^[^\.] that designates any pattern not st
(.). We don’t export “dot” objects, whose names in R start with a period. (For more complete
information on these functions, see Appendix C2.) The NAMESPACE file must also import
functions required from other packages. Because PBSmodelling relies on tcltk, the file

 – 53 –

 In PBStry, without a namespace, the file zzz.R defines the initializing function
.First.lib, as mentioned in step 8 above. By contrast, the namespace protocol in
PBSmodelling requires a different name for the initializing function: .onLoad in zzz.R.

ore advanced

ind it
Ctrl-F) to find topics of

ry

at calling convention.

 In summary, we recommend building a new package by editing, adding, and deleting
prototype files in PBStry. Our batch files can facilitate tests and debugging. For m
work, particularly packages with a namespace protocol, look at PBSmodelling. Have a
current version of RDCT (2006b) available, and consult that manual when necessary. We f
useful to keep the PDF file open and to use Acrobat’s search feature (
interest.

B.4. Embedding C code

 R provides two functions, .C() and.Call(), for invoking compiled C code. PBSt
includes two simple examples that use .C(), probably the method of choice for simple
packages. The .Call() function uses a more complex interface that offers better support for R
objects, and another example illustrate th

Table B1. C representations of R data types.

R Object C Type
logical int *
integer int *
double double *
complex Rcomplex * 1
character char **

1 Rcomplex is defined in Complex.h.

Calling C functions from R using .C()

The .C() calling convention uses the following key concepts:
 R must allocate the appropriate length and type of variables before calling a C function.
 R ob e is

•
• jects are transformed into an equivalent C type (Table B.1), and a pointer to the valu

passed into the C function. All values are returned by modifying the original values passed in.
• A C function called by .C() must have return type void, because values are returned only

by accessing the predefined R function arguments.
• C code written for the shared DLL must not contain a main function.
• Within a C function, dynamically allocated memory must be de-allocated by the programmer

before the function returns. Otherwise a memory leak will likely occur.
• .C()returns a list similar to the '...' list of arguments passed in, but reflecting any changes

made by the C code. (See the help file for .C)

 – 54 –

Table B2. Two text files associated with a .C() call in PBStry. R code in the first file calls C

————

calcFib <- function(n, len=1) {

return(x) }
File 2: fib.c

(int *n, int *len, double *retArr) {
 double xa=0, xb=1, xn=-1; int i,j;

 else {xn = xa + xb; xa = xb; xb = xn; }
 /* save results if iteration i is within the
 range from n-len to n */
 j = i - en - 1
 if (j >= 0) retArr[j] = xn;
 } /* end loop */
} /* end function */

———————————————————————————————————————

 The function c n PBStry n application of these concepts
(Table B2). The R fun onacci numbers iteratively,

mbers calculated. After ensuring that n and len satisfy
turn array retArr of the appropriate length. The .C

all passes , len . On exit, the
vector and , so that the

code in the second.
———————————————————————————————————

File 1: calcFib.R

 if (n<0) return(NA);
 if (len>n) len <- n;
 retArr <- numeric(len);
 out <- .C("fibonacci", as.integer(n), as.integer(len),
 as.numeric(retArr), PACKAGE="PBStry")
 x <- out[[3]]

void fibonacci

 /* iterative loop */
 for(i=0;i<=*n;i++) {
 /* initial conditions: fib(0)=0, fib(1)=1 */
 if (i <= 1) { xn = i; }
 /* fib(n) = fib(n-1) + fib(n-2) */

 *n + *l ;

alcFib i illustrates a
ction uses C code to calculate the first n Fib

where a vector holds the last len nu
obvious constraints, the R code creates a re
c n , and retArr by reference to the C function fibonacci

out contains a list corresponding to the input variables n, len, retArr
third component out[[3]] holds the modified vector of values calculated by fibonacci.
We encourage you also to examine a second example in PBStry , associated the files

 and . calcSum.R sum.c

 – 55 –

Table B3. .Call() example adapted from PBStry, with two associated text files. R code in
the first file calls C code in the second.

calcF

 out <- .Call("fibonacci2", as.integer(n),
 as.integer(len), PACKAGE="PBSmodelling")

 ret

#incl
#include <Rdefines.h>
SEXP fibonacci2(SEXP sexp_n, SEXP sexp_len) {
 /*
 SEX
 double *p_retVals, xa=0, xb=1, xn;
 int
 /*
 len
 n =
 /*
 PRO
 p_retVals = NUMERIC_POINTER(retVals);
 /*
 for
 /* initial conditions: fib(0)=0, fib(1)=1 */
 if (i <= 1) { xn = i; }

—

 using .Call()

———————————————————————————————————————
File 1: calcFib2.R

ib2 <- function(n, len=1) {

urn(out) }

File 2: fib2.c
ude <R.h>

ptr to output vector that we will create */
P retVals;

 n, len, i, j;
convert R variables into C 'int's */
 = INTEGER_VALUE(sexp_len);
 INTEGER_VALUE(sexp_n);
Allocate space for the output vector */
TECT(retVals = NEW_NUMERIC(len));

iterative loop */
(i=0; i<=n; i++) {

 /* fib(n) = fib(n-1) + fib(n-2) */
 else { xn = xa + xb; xa = xb; xb = xn; }

 /* save results if iteration i is within the
 range from n-len to n */
 j = i - n + len - 1;
 if (j >= 0) p_retVals[j] = xn;
 } /* end loop */
 UNPROTECT(1);
 return retVals;
} /* end fibonacci2 */
——————————————————————————————————————

Calling C functions from R

The .C() convention requires a fairly simple conversion of R objects into C types
(Table B.1). By contrast, .Call() provides extra structure that enables C to handle R objects
directly (RDCT 2006b, section 4.7). This function uses “S-expression” SEXP types defined in
rinternals.h., a file in the \include directory of the R installation. An SEXP pointer can
reference any type of R object. The .Call() convention uses the following key concepts:

• C functions called by R must accept only SEXP typed arguments. These arguments should be
treated as read only.

 – 56 –

• Similarly, C functions called by R must have SEXP return types.
• The Programmer must protect R objects from the R garbage collector, and must release

• C code written for the shared DLL m in function.
 memory must be de-allocated by the programmer

 likely occur.

alcFib2 in Table B3 illustrates an application of these concepts. As
before, the R function uses C code to calcu Fibonacci numbers iteratively, where a

 numbers calculated. (To save space, we’ve removed R code that checks
 simple .Call to fibonacci2 looks very natural. Input values

st somehow determine what
e to make this happen.

nacci2 (Table B3) first loads header files that include the
 belong to type SEXP. Other internal

nd int. Functions like INTEGER_VALUE()
alues is created by the R

PROTECT().
rrectly, the iterative loop of calculations

able B2. Finally, the only protected vector retVals is released
dard closing command return retVals returns the output

iliar with the specialized R types,
easier at first to use .C(),

protected objects before the function terminates. R provides macros for this task.
ust not contain a ma

• Within a C function, dynamically allocated
before the function returns. Otherwise a memory leak will

 The function c

late the first n
vector holds the last len
constraints on n and len). The
n and len produce the output vector out, where the C code mu
out should be. Not surprisingly, it requires more complicated C cod

 The C function fibo
required definitions from R. All input and output variables
variables have the standard C types double a
convert R types into C types. The SEXP vector retVals of return v

m garbage collection by constructor NEW_NUMERIC() and then protected fro
After all required variables are defined and type cast co
follows the earlier example in T
by UNPROTECT(1), and the stan
vector from fibonacci2.

 Obviously, it takes some time and effort to become fam
constructors, and conversion functions. For this reason, it’s probably
rather than .Call().

 – 57 –

Appendix C. PBS Modelling functions and data

 This appendix documents the objects currently available in PBS Modelling, along with a

tions. The latter are

alled
ixInNamespace() for modifying NAMESPACE objects. The final section of this appendix

 of

ddLabel Add a label to a plot using relative (0:1) coordinates

Clear saved values for a history widget
lear

Create a GUI with a vector widget
reateWin Create a GUI window
drawBars Draw a linear barplot on the current plot
expandGraph Expand the plot area by adjusting margins
exportHistory Export a saved history
findPat Search a character vector to find multiple patterns
firstHistory Jump to the first history record
focusWin Set the focus on a particular window
forwHistory Move forward one step in the saved values for a history widget
genMatrix Generate test matrices for plotBubbles
getChoice Choose one string item from a list of choices
getPBSext Get a command associated with a filename
getPBSoptions Retrieve a user option
getWinAct Retrieve the last window action
getWinFun Retrieve names of functions referenced in a window
getWinVal Retrieve widget values for use in R code
GT0 Restrict a numeric variable to a positive value

list of function dependencies for exported functions and hidden “dot” func
hidden through R’s NAMESPACE but can be seen through the triple colon convention
(e.g., PBSmodelling:::.addslashes). R also provides a function c
f
details how a user can generate a standard R manual for PBS Modelling, that includes a Table
Contents, help pages for all objects, and an index. The manual itself is also appended.

C.1. Objects in PBS Modelling

addArrows Add arrows to a plot using relative (0:1) coordinates
addHistory Add current window settings to the current history record
a
addLegend Add a legend to a plot using relative (0:1) coordinates
backHistory Move back one step in the saved values for a history widget
calcFib Calculate Fibonacci numbers by several methods
calcGM Calculate the geometric mean, allowing for zeroes
calcMin Calculate the minimum of user-defined function
CCA.qbr Dataset: sampled counts of quillback rockfish (Sebastes maliger)
chooseWinVal Choose and set a string item in a GUI
clearAll Remove all R objects from the global environment
clearHistory
c WinVal Remove all current widget variables
closeWin Close GUI window(s)
compileDescription Convert and save a window description as a list
reateVector c
c

 – 58 –

importHistory Import a history list from a file
nitHistory Create structures for a new history widget

e
correlation bars from a data frame, matrix, or vector

struct a plot with a specified aspect ratio
s

or

le
veFile
t
ph
ar

lled
odelling

 ted with a filename extension

on vector

decimal places

trings

s

anffy curve
 for a von Bertalanffy curve

i
jumpHistory Jump to a particular history record
lastHistory Jump to the last history record
openFile Open a file with the associated program
pad0 Pad numbers with leading zeroes
parseWinFile Convert a window description file into a list object
pause Pause between graphics displays or other calculations
pickCol Pick a colour from a palette and get the hexadecimal cod
plotACF Plot auto
plotAsp Con
plotBubble Construct a bubble plot from a matrix
plotCsum Plot cumulative sum of data
plotDens Plot density curves from a data frame, matrix, or vect
plotTrace Plot trace lines from a data frame, matrix, or vector
promptOpenFi Display an “Open File” dialogue
promptSa Display a “Save File” dialogue
readLis Read a list from a file in PBS Modelling format
resetGra Reset par values for a plot
restoreP Get actual parameters from scaled values
rmHistory Remove a record from the history
runDemos Run GUI to access demos from any R package insta
runExamples Run GUI examples included with PBS M
scalePar Scale parameters to [0,1]
setPBSext Set a command associa
setPBSoptions Set a user option
setWinAct Add a window action to the saved acti
setWinVal Update widget values
show0 Convert numbers into text with specified
showArgs Display expected widget arguments
sortHistory Sort the history records
testCol Display named colours available based on a set of s
testLty Display line types available
testLwd Display line widths
testPch Display plotting symbols and backslash characters
testWidget Display sample GUIs and their source code
unpackList Unpack list elements into variables
vbdata Dataset: Length-at-age data for a von Bertal
vbpars Dataset: Initial parameters
view Display first n rows of an object
writeList Write a list to a file in PBS Modelling format

 – 59 –

Dot functions (and two list objects: .pFormatDefs and .widgetDefs)

ing
Mode

d
rror

rarmStrToV

a given widget

teWidget.o

g runDemos()
ta for getWinAct

Funs
 window

l
sedForm

ing iteration

.getMatrixListSize Determine the minimum required size of the required array

.addslashes Escape special characters from a str
.autoConvert Convert x into a numeric mode
.buildgri Attach child widgets to a grid
.catE Display parsing errors
.catError2 Display parsing error (from C code)
.convertMatrixListToDataFrame

Convert a list into a data frame
.convertMatrixListToMatrix

onal array) Convert a list to a matrix (or a higher dimensi
 showing any warnings .convertMode Convert a variable into a mode without

.convertPararmStrToList
Convert a string representing a widget into a vector

.convertP a ector
Convert a string representing data into a vector

.convertVecToArray Convert a vector to an array

.createTkFont Creates a usable TK font from a given string

.createWidget Call the appropriate sub-function (below) to create
.createWidget.button
.createWidget.check
.createWidget.data
.createWidget.entry
.createWidget.grid
.createWidget.history
.createWidget.label
.createWidget.matrix
.createWidget.null
.crea bject
.createWidget.radio
.createWidget.slide
.createWidget.slideplus
.createWidget.text
.createWidget.vector

.dClose Function to execute on closin

.extractData Receive events from TK, and extract da

.extract Extract a list of called functions

.extractVar Extract values from the tclvar ptrs of a

.fibC Call Fibonacci C code via C

.fibCal Call Fibonacci C code via Call

.fibClo Close form equation for Fibonacci numbers

.fibR Calculate Fibonacci numbers in R us

.getArrayPts Return all possible indices of an array

 – 60 –

.getParamFromStr Convert a string representing a widget into a list including default
values as defined in widgetDefs.r

n
odelling is loaded

ll
iven key, if no current value is set

es of the map
.map.init olds the map(s); a map is another

.map.set

 al array list)
gets of a grid
gets of a menu

.read t in P format

.read Convert data into a proper mode

.sear haystack for a needle, or a similar longer needle

.setM values from a list into a matrix (or a higher dimensional

.setW idget values when setWinVal is called

.sort ow action as history name

.sort function to sort history

.sort nction to sort history

.sort tory with input from and output to an archive file

.stop arsing errors and halt

.stri ents from a string

.stri escape backslashes from a string
shesVec gument into a

e
y

File
WindowDescL

 list and set any

owDescW
)

.writeList.P Saves a list to disk using the "P" format

.inCollectio Find a needle in a haystack (may be removed in future)

.initPBSoptions Initialization function when PBSm

.isReallyNu Test if a key exists in a list

.map.add Save a new value for a g

.map.get Returns a value associated with a key

.map.getAll Return all valu
Initialize the data structure that h
name for hash table (implemented using an R list)
Save a value, even if a current one exists

.mapArrayToVe Determine the index to use for a vector, given the indices for anc
element of a higher dimensional array
Store an element in matrix list (or a higher dimension.matrixHelp

.parsegrid Create a branch in the parse tree for children wid
C ree for children wid.parsemenu reate a branch in the parse t

er .PBSdimnameHelp Add dimnames to an object
 .pFormatDefs A list defining accepted parameters (and default values) for "P"

format of readList and writeList
List.P Read a lis
List.P.convertData
chCollection Search a
atrixElement Assign

array)
inValHelper Update w
ActHistory Use wind
Helper Helper
HelperActive Helper fu
HelperFile Help his
Widget Display fatal post-p

e commpComments Remov
pSlashes Removes

.stripSla Convert a grouping of strings representing an ar
vector of strings

e space .trimWhiteSpac Remove leading and trailing whit
.updateHistor Update widget values

 .update Coordinate file transfers
.validate ist

Check for a valid PBS Modelling description
missing default values

.valida Validate a single widget teWind idgets

.viewPkgDemo Display a GUI to display something equivalent to R's demo(

.widgetDefs A list defining widget parameters and default values

 – 61 –

x docume ctions

t of
ing a standard in UNIX and R,

e begins user.
 enforces this s

C.2. Function dependencies

 This appendi nts function dependencies within PBS Modelling. All fun
appear as underlined entries in alphabetic order. If a function depends on others, the lis
dependencies appears below the underlined name. Follow

ose namfunctions wh with a period (dot functions) are considered hidden from the
d in section B.3. PBS Modelling tandard through NAMESPACE discusse

.addslashes

.autoConvertMode

.buildgrid
.createTkFont
.createWidget

.catError

.convertMatrixList
ToDataFrame

istSize

st

.getMatrixL

.setMatrixElement

.convertMatrixLi
ToMatrix

stSize .getMatrixLi
.setMatrixElement

.convertMode

.convertPararmStr
ToList
.catError
.trimWhiteSpace

.convertPararmStr
ToVector
.catError
.trimWhiteSpace

.convertVecToArray
.getArrayPts
.mapArrayToVec

.createTkFont
.convertPararmStr
 ToVector

.createWidget
.isReallyNull

.createWidget.button
.createTkFont
.extractData

.createWidget.check
.createTkFont
.extractData
.map.add

.createWidget.data
.createWidget.grid
.stopWidget

.createWidget.entry
.createTkFont
.createWidget.grid
.extractData
 .map.add

.createWidget.grid
.buildgrid
.createTkFont

.createWidget.history
.createWidget.grid
initHistory

.createWidget.label
.createTkFont

.createWidget.matrix
.createWidget.grid
.stopWidget

.createWidget.null

.createWidget.object
.createWidget

.createWidget.radio
.createTkFont
.extractData
.map.add

.createWidget.slide
.createTkFont
.extractData
.map.add

ideplus.createWidget.sl
.extractData
.map.add
.map.set

.createWidget.text
.createTkFont
.map.add

.createWidget.vector
.createWidget.grid
.stopWidget

.dClose
getWinAct
closeWin

.extractData

xtractFuns

setWinAct

.e

.extractVar
.convertMatrixList
 ToDataFrame
.convertMatrixList
 ToMatrix
.convertMode
.isReallyNull
.map.getAll

Help
nameHelper

.matrix

.PBSdim

.fibC

.fibCall

.fibClosedForm

.fibR

.getArrayPts

.getMatrixListSize
ize

ParamFromStr

.getMatrixListS

.get
.catError

nvertPararmStr

.searchCollection
stripSlashes

.trimWhiteSpace

.co
 ToList
.isReallyNull

.

.stripSlashesVec

.inCollection

.initPBSoptions

.isReallyNull

.map.add
.isReallyNull
.map.init

.map.get

 – 62 –

.map.getAll

.map.init

.map.set
.isReallyNull
.map.init

.mapArrayToVec

matrixHelp.
.matrixHelp

.parsegrid
.parsegrid

.parsemenu
.parsemenu

.PBSdimnameHelper

.readList.P

onvert

.readList.P.convertData

.catError

.readList.P.c
 Data
.stripComments
.trimWhiteSpace

e
.convertPararmStr

VecToArray
omStr

.searchCollection

.autoConvertMode

.catError

.convertMod

 ToVector
.convert
.getParamFr

.setMatrixElement
lement

.s

.setMatrixE

etWinValHelper
.map.get
.setWinValHelp

ortActHistory

er

.s
getWinAct
sortHistory

ortHelper.s
getWinAct
getWinVal
.sortHelperActive

.sortHelperActive

.sortHelperFile
sortHistory

.s

.updateHistory

ortHelperFile
readList
writeList

.stopWidget

.stripComments
.stripComments

.stripSlashes
.catError

.stripSlashesVec
.catError

.trimWhiteSpace

.updateFile
getWinAct
getWinVal
promptOpenFile

.u

promptSaveFile
setWinVal

pdateHistory
setWinVal

.validateWindowDescList

ts

.validateWindow

.validateWindow
 DescWidge

DescWidgets

iewPkgDemo.v
getWinAct

.w

getWinVal
openFile
runDemos

riteList.P
.addslashes

 – 63 –

addArrows

addLabel

addLegend

addHistory
.updateHistory
getWinAct
getWinVal

backHistory
tory

calcFib

.updateHis
getWinAct
setWinVal

.fibC
.fibCall
.fibClosed
.fibR

lcGM

Form

ca

lcMinca
restorePar
scalePar
show0

ooseWinValch
getChoice
setPBSoptions
setWinVal

clearAll

clearHistory
.updateHistory
getWinAct
rmHistory

clearWinVal
getWinVal

oseWincl
.isReallyNull

compileDescription
le

cr

parseWinFi
writeList

eateVector
createWin

createWin
.createWidget
.initPBSopt
.map.init

ions

.validateWindow
 DescList
parseWinFile

drawBars

expandGraph

exportHistory
getWinAct
promptSaveFile
writeList

findPat

focusWin

rwHistoryfo
.updateHistory
getWinAct
setWinVal

genMatrix

tChoicege
createWin
focusWin

ons
s

getPBSext

getPBSopti
setPBSoption

.isReallyNull

getPBSoptions

getWinAct

getWinFun

getWinVal
.extractVar
.isReallyNull

GT0

importHistory
.updateHistory
getWinAct
promptOpenFile
readList

initHistory

jumpHistory
.updateHistory
getWinAct
getWinVal
setWinVal

openFile
.initPBSoptions
.isReallyNull
getPBSext
getWinAct
openFile

pad0

parseWinFile
.getParamFromStr
.parsegrid
.parsemenu
.stripComments
.trimWhiteSpace

pause

pickCol

plotACF

plotAsp

plotBubbles

plotCsum
addLabel
resetGraph

plotDens

plotTrace

promptOpenFile
.trimWhiteSpace

promptSaveFile
promptOpenFile

readList
.readList.P

resetGraph

restorePar

rmHistory
.updateHistory
getWinAct
setWinVal

 – 64 –

runExamples

t

sc

closeWin
createWin
getWinAc
getWinVal
setWinAct
setWinVal

alePar

setPBSext

setPBSoptions

tWinActse

setWinVal
.isReallyNull
.setWinValHelper

ow0sh

owArgssh

stColte

testLty

testLwd
resetGraph

stPchte
resetGraph

testWidgets
closeWin
createWin
getWinAct
getWinVal
setWinVa

packList

l

un

ewvi

iteListwr
.writeList.P

 – 65 –

C.3. PBS Modell

The follow

b site:

p://cran.r-proje

ing manual

 ing pages show th PBS Mod g help
pages for all objects, a table of contents, and an index. This manual also appears on the CRAN
we

htt ct.org/src/contri ns/PBSmodelling.htm

e standard R manual for elling, includin

b/Descriptio l

(Or from CRANS’s root, locate “ nd find “PBSmodellin

the pages that ould first ensure t nt files
iKTeX (see steps 5a-c in Section B1). This enhanc l for

 creation of a PDF

 Next we provide a choice of two methods that use the batch files RmakePDF.bat and
RmakePDF2.bat to assist the user in building the manual. The first method alters a temporary
TEX file after R’s Perl script is run, and the PDF is built by calling MiKTeX commands. The
second method modifies R’s Perl script before it builds the TEX and PDF files. The final result
of both methods yields a manual with letter (8.5″ × 11″) rather than A4 paper, and renumbering
beginning on a specified page. This page number should be odd so that the next page becomes
the front of a two-sided copy. Although the first method requires a redundant build of the
document, it is possibly more robust to future changes in R’s Perl script.

Method 1

Packages” a g”.)

 To generate
have been copied to M

 follow, the user sh hat R’s style and fo
ement is essentia

the successful manual.

: On a command line, type the command:

 RmakePDF PBSmodelling 67

which automatically generates the PDF manual PBSmodelling.pdf from the package’s
*.Rd files. Page numbering for this PDF begins with the number specified by the second
argument of the above command. If the argument is not supplied, it defaults to 1.

The batch file uses R’s Perl script by issuing the following command:

 R CMD Rd2dvi --pdf --no-clean %1

This method creates a temporary directory called .Rd2dvi\ containing Rd2.tex with the
initial lines:

 \nonstopmode{}
 \documentclass[letter]{book}
 \usepackage[times,hyper]{Rd}
 \usepackage{makeidx}
 \makeindex{}
 \begin{document}
 \setcounter{page}{67}

 – 66 –

where a boldface red font indicates changes that RmakePDF.bat makes to the file Rd2.tex.
he revised TEX file is then copied to D:\Rdevel\PDFmodelling.tex and the following

tex PBSmodelling

e appended to the first 66 pages of this report.

T
MiKTeX commands are issued:

 la
 latex PBSmodelling

PBSmodelling makeindex
 pdflatex PBSmodelling

(The second call to latex might not be needed, but it resolves a number of references. The
makeindex command creates the table of contents.) You should now have the PDF manual
called PBSmodelling.pdf, which can b

Method 2: On a command line, type the command:

 RmakePDF2 PBSmodelling 67

which automatically generates the PDF manual PBSmodelling.pdf from the package’s
*.Rd files. Page numbering for this PDF begins with the number specified by the second
argument of the above command. If the argument is not supplied, it defaults to 1.

odifies R’s Rd2dvi.sh Perl script and
ves it to the file , which sits in R’s bin\ directory. The batch file then

 directory.
 the TEX file into the

is report

 to any package to produce a manual
and append their manual to more

ive User’s Guide such as this one.

 Essentially the script in RmakePDF2.bat m
sa Rd2dvi4pbs.sh
issues the command:

 R CMD Rd2dvi4pbs.sh --pdf --no-clean %1

which builds and creates the manual PBSmodelling.pdf in the D:\Rdevel\
The batch file also retains the temporary directory .Rd2dvi\ and copies
development directory. The PDF manual can be then be appended to th
(PBSmodelling-UG.pdf).

 Once the user is satisfied with the results, he/she may wish to remove the temporary
directory:

rm -rf .Rd2dvi

The techniques presented in this appendix can be applied
based on the *.Rd files. Readers may wish to go further
detailed instructions to produce a comprehens

Package ‘PBSmodelling’
October 9, 2007

Version 1.61

Date 2007-10-09

Title PBS Modelling

Author Jon T. Schnute <SchnuteJ@pac.dfo-mpo.gc.ca>, Alex Couture-Beil <alex@mofo.ca>, and
Rowan Haigh <HaighR@pac.dfo-mpo.gc.ca>

Maintainer Jon Schnute <SchnuteJ@pac.dfo-mpo.gc.ca>

Depends R (>= 2.3.0)

Suggests PBSmapping, odesolve, BRugs

Description PBS Modelling provides software to facilitate the design, testing, and operation of
computer models. It focuses particularly on tools that make it easy to construct and edit a
customized graphical user interface (GUI). Although it depends heavily on the R interface to the
Tcl/Tk package, a user does not need to know Tcl/Tk. The package contains examples that
illustrate models built with other R packages, including PBS Mapping, odesolve, ddesolvem, and
BRugs. It also serves as a convenient prototype for building new R packages, along with
instructions and batch files to facilitate that process. The root library directory of PBSmodelling
includes a complete user guide PBSmodelling-UG.pdf. To use this package effectively, please
consult the guide.

License GPL version 2 or newer

R topics documented:
CCA.qbr . 69
GT0 . 70
PBSmodelling . 71
addArrows . 72
addLabel . 72
addLegend . 73
calcFib . 74
calcGM . 74
calcMin . 75

67

68 R topics documented:

chooseWinVal . 77
clearAll . 79
clearWinVal . 79
closeWin . 80
compileDescription . 80
createVector . 81
createWin . 82
drawBars . 83
expandGraph . 84
exportHistory . 84
findPat . 85
focusWin . 86
genMatrix . 87
getChoice . 87
getPBSext . 89
getPBSoptions . 89
getWinAct . 90
getWinFun . 90
getWinVal . 91
importHistory . 92
initHistory . 92
openFile . 94
pad0 . 95
parseWinFile . 96
pause . 97
pickCol . 97
plotACF . 98
plotAsp . 98
plotBubbles . 99
plotCsum . 100
plotDens . 101
plotTrace . 102
promptOpenFile . 102
promptSaveFile . 103
readList . 104
resetGraph . 105
restorePar . 105
runDemos . 106
runExamples . 107
scalePar . 107
setPBSext . 108
setPBSoptions . 109
setWinAct . 109
setWinVal . 110
show0 . 111
showArgs . 112
sortHistory . 112
testCol . 113

CCA.qbr 69

testLty . 114
testLwd . 114
testPch . 115
testWidgets . 115
unpackList . 117
vbdata . 118
vbpars . 118
view . 119
writeList . 119

Index 121

CCA.qbr Dataset: Sampled Counts of Quillback Rockfish (Sebastes maliger)

Description

Count of sampled fish-at-age for quillback rockfish (Sebastes maliger) in Johnstone Strait, British
Columbia, from 1984 to 2004.

Usage

data(CCA.qbr)

Format

A matrix with 70 rows (ages) and 14 columns (years). Attributes “syrs” and “cyrs” specify years of
survey and commercial data, respectively.

[,c(3:5,9,13,14)] Counts-at-age from research survey samples
[,c(1,2,6:8,10:12)] Counts-at-age from commercial fishery samples

All elements represent sampled counts-at-age in year. Zero-value entries indicate no observations.

Details

Handline surveys for rockfish have been conducted in Johnstone Strait (British Columbia) and
adjacent waterways (126◦37’W to 126◦53’W, 50◦32’N to 50◦39’N) since 1986. Yamanaka and
Richards (1993) describe surveys conducted in 1986, 1987, 1988, and 1992. In 2001, the Rockfish
Selective Fishery Study (Berry 2001) targeted quillback rockfish Sebastes maliger for experiments
on improving survival after capture by hook and line gear. The resulting data subsequently have
been incorporated into the survey data series. The most recent survey in 2004 essentially repeated
the 1992 survey design. Fish samples from surveys have been supplemented by commercial hand-
line fishery samples taken from a larger region (126◦35’W to 127◦39’W, 50◦32’N to 50◦59’N) in
the years 1984-1985, 1989-1991, 1993, 1996, and 2000 (Schnute and Haigh 2007).

70 GT0

Note

Years 1994, 1997-1999, and 2002-2003 do not have data.

Source

Fisheries and Oceans Canada - GFBio database:
http://www-sci.pac.dfo-mpo.gc.ca/sa-mfpd/statsamp/StatSamp_GFBio.htm

References

Berry, M.D. 2001. Area 12 (Inside) Rockfish Selective Fishery Study. Science Council of British
Columbia, Project Number FS00- 05.

Schnute, J.T., and Haigh, R. 2007. Compositional analysis of catch curve data with an application
to Sebastes maliger. ICES Journal of Marine Science (in press).

Yamanaka, K.L. and Richards, L.J. 1993. 1992 Research catch and effort data on nearshore reef-
fishes in British Columbia Statistical Area 12. Canadian Manuscript Report of Fisheries and Aquatic
Sciences 2184, 77 pp.

Examples

Plot age proportions (blue bubbles = survey data, red = commercial)
data("CCA.qbr", package="PBSmodelling")
z <- CCA.qbr; cyr <- attributes(z)$cyrs;
z <- apply(z,2,function(x){x/sum(x)}); z[,cyr] <- -z[,cyr];
x <- as.numeric(dimnames(z)[[2]]); xlim <- range(x) + c(-.5,.5);
y <- as.numeric(dimnames(z)[[1]]); ylim <- range(y) + c(-1,1);
plotBubbles(z,xval=x,yval=y,powr=.5,size=0.15,lwd=1,clrs=c("blue","red"),

xlim=xlim,ylim=ylim,xlab="Year",ylab="Age",cex.lab=1.5)

GT0 Restrict a Numeric Variable to a Positive Value

Description

Restrict a numeric value x to a positive value using a differentiable function. GT0 stands for “greater
than zero”.

Usage

GT0(x,eps=1e-4)

Arguments

x vector of values

eps minimum value greater than zero.

http://www-sci.pac.dfo-mpo.gc.ca/sa-mfpd/statsamp/StatSamp_GFBio.htm

PBSmodelling 71

Details

if (x >= eps)..........GT0 = x
if (0 < x < eps).......GT0 = (eps/2) * (1 + (x/eps)^2)
if (x <= 0)............GT0 = eps/2

See Also

scalePar, restorePar, calcMin

Examples

plotGT0 <- function(eps=1,x1=-2,x2=10,n=1000,col="black") {
x <- seq(x1,x2,len=n); y <- GT0(x,eps);
lines(x,y,col=col,lwd=2); invisible(list(x=x,y=y)); }

testGT0 <- function(eps=c(7,5,3,1,.1),x1=-2,x2=10,n=1000) {
x <- seq(x1,x2,len=n); y <- x;
plot(x,y,type="l");
mycol <- c("red","blue","green","brown","violet","orange","pink");
for (i in 1:length(eps))

plotGT0(eps=eps[i],x1=x1,x2=x2,n=n,col=mycol[i]);
invisible(); };

testGT0()

PBSmodelling PBS Modelling

Description

PBS Modelling provides software to facilitate the design, testing, and operation of computer models.
It focuses particularly on tools that make it easy to construct and edit a customized graphical user
interface (GUI). Although it depends heavily on the R interface to the Tcl/Tk package, a user
does not need to know Tcl/Tk.

PBSmodelling contains examples that illustrate models built uisng other R packages, including
PBSmapping, odesolve, ddesolve, and BRugs. It also serves as a convenient prototype for
building new R packages, along with instructions and batch files to facilitate that process.

The root library directory of PBSmodelling includes a complete user guide “PBSmodelling-
UG.pdf”. To use this package effectively, please consult the guide.

PBS Modelling comes packaged with interesting examples accessed through the function runExamples().
Additionally, users can view PBS Modelling widgets through the function testWidgets().
More generally, a user can run any available demos in his/her locally installed packages through
the function runDemos().

72 addLabel

addArrows Add Arrows to a Plot Using Relative (0:1) Coordinates

Description

Call the arrows function using relative (0:1) coordinates.

Usage

addArrows(x1, y1, x2, y2, ...)

Arguments

x1 x-coordinate (0:1) at base of arrow.

y1 y-coordinate (0:1) at base of arrow.

x2 x-coordinate (0:1) at tip of arrow.

y2 y-coordinate (0:1) at tip of arrow.

... additional paramaters for the function arrows.

Details

Lines will be drawn from (x1[i],y1[i]) to (x2[i],y2[i])

See Also

addLabel, addLegend

Examples

tt=seq(from=-5,to=5,by=0.01)
plot(sin(tt), cos(tt)*(1-sin(tt)), type="l")
addArrows(0.2,0.5,0.8,0.5)
addArrows(0.8,0.95,0.95,0.55, col="#FF0066")

addLabel Add a Label to a Plot Using Relative (0:1) Coordinates

Description

Place a label in a plot using relative (0:1) coordinates

Usage

addLabel(x, y, txt, ...)

addLegend 73

Arguments

x x-axis coordinate in the range (0:1); can step outside.

y y-axis coordinate in the range (0:1); can step outside.

txt desired label at (x,y).

... additional arguments passed to the function text.

See Also

addArrows, addLegend

Examples

resetGraph()
addLabel(0.75,seq(from=0.9,to=0.1,by=-0.10),c('a','b','c'), col="#0033AA")

addLegend Add a Legend to a Plot Using Relative (0:1) Coordinates

Description

Place a legend in a plot using relative (0:1) coordinates.

Usage

addLegend(x, y, ...)

Arguments

x x-axis coordinate in the range (0:1); can step outside.

y y-axis coordinate in the range (0:1); can step outside.

... arguments used by the function legend, such as lines, text, or rectangle.

See Also

addArrows, addLabel

Examples

resetGraph(); n <- sample(1:length(colors()),15); clrs <- colors()[n]
addLegend(.2,1,fill=clrs,leg=clrs,cex=1.5)

74 calcGM

calcFib Calculate Fibonacci Numbers by Several Methods

Description

Compute Fibonacci numbers using four different methods: 1) iteratively using R code, 2) via the
closed function in R code, 3) iteratively in C using the .C function, and 4) iteratively in C using the
.Call function.

Usage

calcFib(n, len=1, method="C")

Arguments

n nth fibonacci number to calculate

len a vector of length len showing previous fibonacci numbers

method select method to use: C, Call, R, closed

Value

Vector of the last len Fibonacci numbers calculated.

calcGM Calculate the Geometric Mean, Allowing for Zeroes

Description

Calculate the geometric mean of a numeric vector, possibly excluding zeroes and/or adding an offset
to compensate for zero values.

Usage

calcGM(x, offset = 0, exzero = TRUE)

Arguments

x vector of numbers

offset value to add to all components, including zeroes

exzero if TRUE, exclude zeroes (but still add the offset)

Value

geometric mean of the modified vector x + offset

calcMin 75

Note

NA values are automatically removed from x

Examples

calcGM(c(0,1,100))
calcGM(c(0,1,100),offset=0.01,exzero=FALSE)

calcMin Calculate the Minimum of a User-Defined Function

Description

Minimization based on the R-stat functions nlm, nlminb, and optim. Model parameters are
scaled and can be active or not in the minimization.

Usage

calcMin(pvec, func, method="nlm", trace=0, maxit=1000, reltol=1e-8,
steptol=1e-6, temp=10, repN=0, ...)

Arguments

pvec Initial values of the model parameters to be optimized. pvec is a data frame
comprising four columns ("val","min","max","active") and as many
rows as there are model parameters. The "active" field (logical) determines
whether the parameters are estimated (T) or remain fixed (F).

func The user-defined function to be minimized (or maximized). The function should
return a scalar result.

method The minimization method to use: one of nlm, nlminb, Nelder-Mead, BFGS,
CG, L-BFGS-B, or SANN. Default is nlm.

trace Non-negative integer. If positive, tracing information on the progress of the min-
imization is produced. Higher values may produce more tracing information: for
method "L-BFGS-B" there are six levels of tracing. Default is 0.

maxit The maximum number of iterations. Default is 1000.
reltol Relative convergence tolerance. The algorithm stops if it is unable to reduce the

value by a factor of reltol * (abs(val) + reltol) at a step. Default
is 1e-8.

steptol A positive scalar providing the minimum allowable relative step length. Default
is 1e-6.

temp Temperature controlling the "SANN" method. It is the starting temperature for
the cooling schedule. Default is 10.

repN Reports the parameter and objective function values on the R-console every
repN evaluations. Default is 0 for no reporting.

... Further arguments to be passed to the optimizing function chosen: nlm, nlminb,
or optim. Beware of partial matching to earlier arguments.

76 calcMin

Details

See optim for details on the following methods: Nelder-Mead, BFGS, CG, L-BFGS-B, and
SANN.

Value

A list with components:

Fout The output list from the optimizer function chosen through method.
iters Number of iterations.
evals Number of evaluations.
cpuTime The user CPU time to execute the minimization.
elapTime The total elapsed time to execute the minimization.
fminS The objective function value calculated at the start of the minimization.
fminE The objective function value calculated at the end of the minimization.
Pstart Starting values for the model parameters.
Pend Final values estimated for the model parameters from the minimization.
AIC Akaike’s Information Criterion
message Convergence message from the minimization routine.

Note

Some arguments to calcMin have no effect depending on the method chosen.

See Also

scalePar, restorePar, calcMin, GT0
In the stats package: nlm, nlminb, and optim.

Examples

Ufun <- function(P) {
Linf <- P[1]; K <- P[2]; t0 <- P[3]; obs <- afile$len;
pred <- Linf * (1 - exp(-K*(afile$age-t0)));
n <- length(obs); ssq <- sum((obs-pred)^2);
return(n*log(ssq)); };

afile <- data.frame(age=1:16,len=c(7.36,14.3,21.8,27.6,31.5,35.3,39,
41.1,43.8,45.1,47.4,48.9,50.1,51.7,51.7,54.1));

pvec <- data.frame(val=c(70,0.5,0),min=c(40,0.01,-2),max=c(100,2,2),
active=c(TRUE,TRUE,TRUE),row.names=c("Linf","K","t0"),
stringsAsFactors=FALSE);

alist <- calcMin(pvec=pvec,func=Ufun,method="nlm",steptol=1e-4,repN=10);
print(alist[-1]); P <- alist$Pend;
resetGraph(); expandGraph();
xnew <- seq(afile$age[1],afile$age[nrow(afile)],len=100);
ynew <- P[1] * (1 - exp(-P[2]*(xnew-P[3])));
plot(afile); lines(xnew,ynew,col="red",lwd=2);
addLabel(.05,.88,paste(paste(c("Linf","K","t0"),round(P,c(2,4,4)),

sep=" = "),collapse="\n"),adj=0,cex=0.9);

chooseWinVal 77

chooseWinVal Choose and Set a String Item in a GUI

Description

Prompts the user to choose one string item from a list of choices displayed in a GUI, then sets a
specified variable in a target GUI.

Usage

chooseWinVal(choice, varname, winname="window")

Arguments

choice vector of strings from which to choose

varname variable name to which choice is assigned in the target GUI

winname window name for the target GUI

Details

chooseWinVal activates a setWinVal command through an onClose function created by the
getChoice command and modified by chooseWinVal.

Value

No value is returned directly. The choice is written to the PBS options workspace, accessible
through getPBSoptions("getChoice"). Also set in PBS options is the window name from
which the choice was activated.

Note

Microsoft Windows users may experience difficulties switching focus between the R console and
GUI windows. The latter frequently disappear from the screen and need to be reselected (either
clicking on the task bar or pressing <Alt><Tab>. This issue can be resolved by switching from
MDI to SDI mode. From the R console menu bar, select <Edit> and <GUI preferences>, then
change the value of “single or multiple windows” to SDI.

See Also

getChoice, getWinVal, setWinVal

78 chooseWinVal

Examples

Not run:
dfnam <-

c("airquality","attitude","ChickWeight","faithful","freeny",
"iris","LifeCycleSavings","longley","morley","Orange",
"quakes","randu","rock","stackloss","swiss","trees")

wlist <- c(
"window name=choisir title=\"Test chooseWinVal\"",
"label text=\"Press <ENTER> in the green entry box
\nto choose a file, then press <GO>\" sticky=W pady=5",
"grid 1 3 sticky=W",
"label text=File: sticky=W",
"entry name=fnam mode=character width=23 value=\"\"
func=chFile entrybg=darkolivegreen1 pady=5",
"button text=GO bg=green sticky=W func=test",
"")

chFile <- function(ch=dfnam,fn="fnam")
{chooseWinVal(ch,fn,winname="choisir")};

#-- Example 1 GUI test
test <- function() {

getWinVal(winName="choisir",scope="L")
if (fnam!="" && any(fnam==dfnam)) {

file <- get(fnam);
pairs(file,gap=0); }

else {
resetGraph();
addLabel(.5,.5,"Press <ENTER> in the green entry box
\nto choose a file, then press <GO>", col="red",cex=1.5)}};

#-- Example 2 Non-GUI test
#To try the non-GUI version, type 'test2()' on the command line
test2 <- function(fnames=dfnam) {
frame();resetGraph()
again <- TRUE;
while (again) {
fnam <- sample(fnames,1); file <- get(fnam);
flds <- names(file);
xfld <- getChoice(paste("Pick x-field from",fnam),flds,gui=F);
yfld <- getChoice(paste("Pick y-field from",fnam),flds,gui=F)
plot(file[,xfld],file[,yfld],xlab=xfld,ylab=yfld,
pch=16,cex=1.2,col="red");

again <- getChoice("Plot another pair?",gui=F) }
}

require(PBSmodelling)
createWin(wlist,astext=T); test();
End(Not run)

clearAll 79

clearAll Remove all R Objects From the Global Environment

Description

Generic function to clear .RData in R

Usage

clearAll(hidden=TRUE, verbose=TRUE)

Arguments

hidden if TRUE, remove variables that start with a dot (.)

verbose if TRUE, report all removed items

clearWinVal Remove all Current Widget Variables

Description

Remove all global variables that share a name in common with any widget variable name defined
in names(getWinVal()). Use this function with caution.

Usage

clearWinVal()

See Also

getWinVal

80 compileDescription

closeWin Close GUI Window(s)

Description

Close (destroy) one or more windows made with createWin.

Usage

closeWin(name)

Arguments

name a vector of window names that indicate which windows to close. These names
appear in the Window Description File(s) on the line(s) defining WINDOW wid-
gets. If name is ommitted, all active windows will be closed.

See Also

createWin

compileDescription Convert and Save a Window Description as a List

Description

Convert a Window Description File (ASCII markup file) to an equivalent Window Description List.
The output list (an ASCII file containing R-source code) is complete, i.e., all default values have
been added.

Usage

compileDescription(descFile, outFile)

Arguments

descFile file name of markup file.
outFile file name of output file containing R source code.

Details

The Window Description File descFile is converted to a list, which is then converted to R code,
and saved to outFile.

See Also

parseWinFile, createWin

createVector 81

createVector Create a GUI with a Vector Widget

Description

Create a basic window containing a vector and a submit button. This provides a quick way to create
a window without the need for a Window Description File.

Usage

createVector(vec, vectorLabels=NULL, func="",
windowname="vectorwindow")

Arguments

vec a vector of strings representing widget variables. The values in vec become
the default values for the widget. If vec is named, the names are used as the
variable names.

vectorLabels an optional vector of strings to use as labels above each widget.

func string name of function to call when new data are entered in widget boxes or
when "GO" is pressed.

windowname unique window name, required if multiple vector windows are created.

See Also

createWin

Examples

Not run:
#user defined function which is called on new data
drawLiss <- function() {

getWinVal(scope="L");
tt <- 2*pi*(0:k)/k; x <- sin(2*pi*m*tt); y <- sin(2*pi*(n*tt+phi));
plot(x,y,type="p"); invisible(NULL); };

#create the vector window
createVector(c(m=2, n=3, phi=0, k=1000),

vectorLabels=c("x cycles","y cycles", "y phase", "points"),
func="drawLiss");

End(Not run)

82 createWin

createWin Create a GUI Window

Description

Create a GUI window with widgets using instructions from a Window Description (markup) File.

Usage

createWin(fname, astext=FALSE)

Arguments

fname file name of Window Description File or list returned from parseWinFile.

astext logical; if TRUE, interpret fname as a vector of strings with each element rep-
resenting a line in a Window Description File.

Details

Generally, the markup file contains a single widget per line. However, widgets can span multiple
lines by including a backslash (’\’) character at the end of a line, prompting the suppression of the
newline character.

For more details on widget types and markup file, see “PBSModelling-UG.pdf” in the installation
directory.

It is possible to use a Window Description List produced by compileDescription rather than
a file name for fname.

Another alternative is to pass a vector of characters to fname and set astext=T. This vector rep-
resents the file contents where each element is equivalent to a new line in the Window Description
File.

Note

Microsoft Windows users may experience difficulties switching focus between the R console and
GUI windows. The latter frequently disappear from the screen and need to be reselected (either
clicking on the task bar or pressing <Alt><Tab>. This issue can be resolved by switching from
MDI to SDI mode. From the R console menu bar, select <Edit> and <GUI preferences>, then
change the value of “single or multiple windows” to SDI.

See Also

parseWinFile, getWinVal, setWinVal

closeWin, compileDescription, createVector

initHistory for an example of using astext=TRUE

drawBars 83

Examples

Not run:
#see file testWidgets\LissWin.txt in PBSmodelling package directory

Calculate and draw the Lissajous figure
drawLiss <- function() {

getWinVal(scope="L");
ti <- 2*pi*(0:k)/k; x <- sin(2*pi*m*ti); y <- sin(2*pi*(n*ti+phi));
plot(x,y,type=ptype); invisible(NULL); };

createWin(system.file("testWidgets/LissWin.txt",package="PBSmodelling"));
End(Not run)

drawBars Draw a Linear Barplot on the Current Plot

Description

Draw a linear barplot on the current plot.

Usage

drawBars(x, y, width, base = 0, ...)

Arguments

x x-coordinates

y y-coordinates

width bar width, computed if missing

base y-value of the base of each bar

... further graphical parameters (see par) may also be supplied as arguments

Examples

plot(0:10,0:10,type="n")
drawBars(x=1:9,y=9:1,col="deepskyblue4",lwd=3)

84 exportHistory

expandGraph Expand the Plot Area by Adjusting Margins

Description

Optimize the plotting region(s) by minimizing margins.

Usage

expandGraph(mar=c(4,3,1.2,0.5), mgp=c(1.6,.5,0),...)

Arguments

mar numerical vector of the form ’c(bottom, left, top, right)’ specifying the margins
of the plot

mgp numerical vector of the form ’c(axis title, axis labels, axis line)’ specifying the
margins for axis title, axis labels, and axis line

... additional graphical parameters to be passed to par

See Also

resetGraph

Examples

resetGraph(); expandGraph(mfrow=c(2,1));
tt=seq(from=-10, to=10, by=0.05);

plot(tt,sin(tt), xlab="this is the x label", ylab="this is the y label",
main="main title", sub="sometimes there is a \"sub\" title")

plot(cos(tt),sin(tt*2), xlab="cos(t)", ylab="sin(2 t)", main="main title",
sub="sometimes there is a \"sub\" title")

exportHistory Export a Saved History

Description

Export the current history list.

Usage

exportHistory(hisname="", fname="")

findPat 85

Arguments

hisname name of the history list to export. If set to "", the value from getWinAct()[1]
will be used instead.

fname file name where history will be saved. If it is set to "", a Save As window will
be displayed.

See Also

importHistory, initHistory, promptSaveFile

findPat Search a Character Vector to Find Multiple Patterns

Description

Use all available patterns in pat to search in vec, and return the matched elements in vec.

Usage

findPat(pat, vec)

Arguments

pat character vector of patterns to match in vec

vec character vector where matches are sought

Value

A character vector of all matched strings.

Examples

#find all strings with a vowel, or that start with a number
findPat(c("[aeoiy]", "^[0-9]"), c("hello", "WRLD", "11b"))

86 focusWin

focusWin Set the Focus on a Particular Window

Description

Bring the specified window into focus, and set it as the active window. focusWin will fail to
bring the window into focus if it is called from the R console, since the R console returns focus to
itself once a function returns. However, it will work if focusWin is called as a result of calling
a function from the GUI window. (i.e., pushing a button or any other widget that has a function
argument).

Usage

focusWin(winName, winVal=TRUE)

Arguments

winName name of window to focus

winVal if TRUE, associate winName with the default window for setWinVal and
getWinVal

Examples

Not run:
focus <- function() {

winName <- getWinVal()$select;
focusWin(winName);
cat("calling focusWin(\"", winName, "\")\n", sep="");
cat("getWinVal()$myvar = ", getWinVal()$myvar, "\n\n", sep=""); };

#create three windows named win1, win2, win3
#each having three radio buttons, which are used to change the focus
for(i in 1:3) {

winDesc <- c(
paste('window name=win',i,' title="Win',i,'"', sep=''),
paste('entry myvar ', i, sep=''),
'radio name=select value=win1 text="one" function=focus mode=character',
'radio name=select value=win2 text="two" function=focus mode=character',
'radio name=select value=win3 text="three" function=focus mode=character');

createWin(winDesc, astext=TRUE); };
End(Not run)

genMatrix 87

genMatrix Generate Test Matrices for plotBubbles

Description

Generate a test matrix of random numbers (mu = mean and signa = standard deviation), primarily
for plotBubbles.

Usage

genMatrix(m,n,mu=0,sigma=1)

Arguments

m number of rows

n number of columns

mu mean of normal distribution

sigma standard deviation of normal distribution

Value

An m by n matrix with normally distributed random values.

See Also

plotBubbles

Examples

plotBubbles(genMatrix(20,6))

getChoice Choose One String Item from a List of Choices

Description

Prompts the user to choose one string item from a list of choices displayed in a GUI. The simplest
case getChoice() yields TRUE or FALSE.

Usage

getChoice(question="Make a choice: ", choice=c("Yes","No"),
winname="getChoice", horizontal=TRUE, radio=FALSE,
qcolor="blue", gui=TRUE, quiet=FALSE)

88 getChoice

Arguments

question question or prompting statement

choice vector of strings from which to choose

winname window name for the getChoice GUI

horizontal if TRUE, display the choices horizontally, else vertically

radio if TRUE, display the choices as radio buttons, else as buttons

qcolor colour for question

gui if TRUE, getChoice is functional when called from a GUI, else it is functional
from command line programs

quiet if TRUE, don’t print the choice on the command line

Details

The user’s choice is stored in .PBSmod$options$getChoice (or whatever winname is sup-
plied).

getChoice generates an onClose function that returns focus to the calling window (if applica-
ble) and prints out the choice.

Value

If called from a GUI (gui=TRUE), no value is returned directly. Rather, the choice is written to the
PBS options workspace, accessible through getPBSoptions("getChoice") (or whatever
winname was supplied).

If called from a command line program (gui=FASLE), the choice is returned directly as a string
scalar (e.g., answer <- getChoice(gui=F)).

Note

Microsoft Windows users may experience difficulties switching focus between the R console and
GUI windows. The latter frequently disappear from the screen and need to be reselected (either
clicking on the task bar or pressing <Alt><Tab>. This issue can be resolved by switching from
MDI to SDI mode. From the R console menu bar, select <Edit> and <GUI preferences>, then
change the value of “single or multiple windows” to SDI.

See Also

chooseWinVal, getWinVal, setWinVal

Examples

Not run:
#-- Example 1
getChoice("What do you want?", c("Fame","Fortune","Health",

"Beauty","Lunch"),qcolor="red",gui=F)

#-- Example 2
getChoice("Who`s your daddy?",c("Homer Simpson","Pierre Trudeau",

getPBSext 89

"Erik the Red"),horiz=F,radio=T,gui=F)
End(Not run)

getPBSext Get a Command Associated With a Filename

Description

Display all locally defined file extensions and their associated commands, or search for the com-
mand associated with a specific file extension ext.

Usage

getPBSext(ext)

Arguments

ext optional string specifying a file extension (suffix)

Value

Command associated with file extension.

Note

These file associations are not saved from one PBS Modelling session to the next.

See Also

setPBSext, openFile

getPBSoptions Retreive A User Option

Description

Get a previously defined user option.

Usage

getPBSoptions(option)

Arguments

option name of option to retrieve. If omitted, a list containing all options is returned.

90 getWinFun

Value

Value of the specified option, or NULL if the specified option is not found.

See Also

getPBSext

getWinAct Retreive the Last Window Action

Description

Get a string vector of actions (latest to earliest).

Usage

getWinAct(winName)

Arguments

winName name of window to retrieve action from

Details

When a function is called from a GUI, a string descriptor associated with the action of the function
is stored internaly (appended to the first position of the action vector). A user can utilize this action
as a type of argument for programming purposes. The command getWinAct()[1] yields the
latest action.

Value

String vector of recorded actions (latest first).

getWinFun Retrieve Names of Functions Referenced in a Window

Description

Get a vector of all function names referenced by a window.

Usage

getWinFun(winName)

getWinVal 91

Arguments

winName name of window, to retrieve its function list

Value

A vector of function names referenced by a window.

getWinVal Retreive Widget Values for Use in R Code

Description

Get a list of variables defined and set by the GUI widgets. An optional argument scope directs the
function to create local or global variables based on the list that is returned.

Usage

getWinVal(v=NULL, scope="", asvector=FALSE, winName="")

Arguments

v vector of variable names to retrieve from the GUI widgets. If NULL, v retrieves
all variables from all GUI widgets.

scope scope of the retrieval. The default sets no variables in the non-GUI environment;
scope="L" creates variables locally in relation to the parent frame that called
the function; and scope="G" creates global variables(pos=1).

asvector return a vector instead of a list. WARNING: if a widget variable defines a true
vector or matrix, this will not work.

winName window from which to select GUI widget values. The default takes the window
that has most recently received new user input.

Value

A list (or vector) with named components, where names and values are defined by GUI widgets.

See Also

parseWinFile, setWinVal, clearWinVal

92 initHistory

importHistory Import a History List from a File

Description

Import a history list from file fname, and place it into the history list hisname.

Usage

importHistory(hisname="", fname="", updateHis=TRUE)

Arguments

hisname name of the history list to be populated. The default ("") uses the value from
getWinAct()[1].

fname file name of history file to import. The default ("") causes an open-file window
to be displayed.

updateHis if true, update the history widget to reflect the change in size and index.

See Also

exportHistory, initHistory, promptOpenFile

initHistory Create Structures of a New History Widget

Description

PBS history functions (below) are available to those who would like to use the package’s history
functionality, without using the pre-defined history widget. These functions allow users to create
customized history widgets.

Usage

initHistory(hisname,indexname=NULL,sizename=NULL,modename=NULL,
func=NULL,overwrite=TRUE)

rmHistory(hisname="", index="")
addHistory(hisname="")
forwHistory(hisname="")
backHistory(hisname="")
lastHistory(hisname="")
firstHistory(hisname="")
jumpHistory(hisname="", index="")
clearHistory(hisname="")

initHistory 93

Arguments

hisname name of the history "list" to manipulate. If it is omitted, the function uses the
value of getWinAct()[1] as the history name. This allows the calling of
functions directly from the Window Description File (except initHistory,
which must be called before createWin()).

indexname name of the index entry widget in the Window Description File. If NULL, then
the current index feature will be disabled.

sizename name of the current size entry widget. If NULL, then the current size feature will
be disabled.

modename name of the radio widgets used to change addHistoryś mode. If NULL, then the
default mode will be to insert after the current index.

index index to the history item. The default ("") causes the value to be extracted from
the widget identified by indexname.

func name of user supplied function to call when viewing history items.

overwrite if TRUE, history (matching hisname) will be cleared. Otherwise, the imported
history will be merged with the current one.

Details

PBS Modelling includes a pre-built history widget designed to collect interesting choices of GUI
variables so that they can be redisplayed later, rather like a slide show.

Normally, a user would invoke a history widget simply by including a reference to it in the Win-
dow Description File. However, PBS Modelling includes support functions (above) for customized
applications.

To create a customized history, each button must be described separately in the Window Description
File rather than making reference to the history widget.

The history "List" must be initialized before any other functions may be called. The use of a unique
history name (hisname) is used to associate a unique history session with the supporting functions.

The indexname and sizename arguments correspond to the given names of entry widgets in
the Window Description File, which will be used to display the current index and total size of the
list. The indexname entry widget can also be used by jumpHistory to retrieve a target index.

See Also

importHistory, exportHistory

Examples

Not run:
Example of creating a custom history widget that saves values
whenever the "Plot" button is pressed. The user can tweak the
inputs "a", "b", and "points" before each "Plot" and see the
"Index" increase. After sufficient archiving, the user can review
scenarios using the "Back" and "Next" buttons.
A custom history is needed to achieve this functionality since
the packages pre-defined history widget does not update plots.

94 openFile

To start, create a Window Description to be used with createWin
using astext=TRUE. P.S. Watch out for special characters which
must be "escaped" twice (first for R, then PBSmodelling).

winDesc <- '
window title="Custom History"
vector names="a b k" labels="a b points" font="bold" \\
values="1 1 1000" function=myPlot
grid 1 3

button function=myHistoryBack text="<- Back"
button function=myPlot text="Plot"
button function=myHistoryForw text="Next ->"

grid 2 2
label "Index"
entry name="myHistoryIndex" width=5
label "Size"
entry name="myHistorySize" width=5

'
Convert text to vector with each line represented as a new element
winDesc <- strsplit(winDesc, "\n")[[1]]

Custom functions to update plots after restoring history values
myHistoryBack <- function() {

backHistory("myHistory");
myPlot(saveVal=FALSE); # show the plot with saved values

}
myHistoryForw <- function() {

forwHistory("myHistory");
myPlot(saveVal=FALSE); # show the plot with saved values

}
myPlot <- function(saveVal=TRUE) {

save all data whenever plot is called (directly)
if (saveVal) addHistory("myHistory");
getWinVal(scope="L");
tt <- 2*pi*(0:k)/k;
x <- (1+sin(a*tt)); y <- cos(tt)*(1+sin(b*tt));
plot(x, y);

}

initHistory("myHistory", "myHistoryIndex", "myHistorySize")
createWin(winDesc, astext=TRUE)
End(Not run)

openFile Open a File with the Associated Program

Description

Open a file using the program associated with its extension defined by the Windows shell. Non-
windows users, or users wishing to overide the default application, can specify a program associa-

pad0 95

tion using setPBSext.

Usage

openFile(fname)

Arguments

fname file name of file to open.

Note

If a command is registered with setPBSext, then openFile will replace all occurrences of
"%f" with the absolute path of the filename, before executing the command.

See Also

getPBSext, setPBSext

Examples

Not run:
Set up firefox to open .html files
setPBSext("html", '"c:/Program Files/Mozilla Firefox/firefox.exe" file://%f')
openFile("foo.html")
End(Not run)

pad0 Pad Numbers with Leading Zeroes

Description

Convert numbers to integers then text, and pad them with leading zeroes.

Usage

pad0(x, n, f = 0)

Arguments

x vector of numbers

n number of text characters representing a padded integer

f factor of 10 transformation on x before padding

Value

A character vector representing x with leading zeroes.

96 parseWinFile

Examples

resetGraph(); x <- pad0(x=123,n=10,f=0:7);
addLabel(.5,.5,paste(x,collapse="\n"),cex=1.5);

parseWinFile Convert a Window Description File into a List Object

Description

Parse a Window Description (markup) File into the list format expected by createWin().

Usage

parseWinFile(fname, astext=FALSE)

Arguments

fname file name of the Window Description File.

astext if TRUE, fname is interpreted as a vector of strings, with each element repre-
senting a line of code in a Window Description File.

Value

A list representing a parsed Window Description File that can be directly passed to createWin.

Note

All widgets are forced into a 1-column by N-row grid.

See Also

createWin, compileDescription

Examples

Not run:
x<-parseWinFile(system.file("examples/LissFigWin.txt",package="PBSmodelling"))
createWin(x)
End(Not run)

pause 97

pause Pause Between Graphics Displays or Other Calculations

Description

Pause, typically between graphics displays. Useful for demo purposes.

Usage

pause(s = "Press <Enter> to continue")

Arguments

s text issued on the command line when pause is invoked.

pickCol Pick a Colour From a Palette and get the Hexadecimal Code

Description

Display an interactive colour palette from which the user can choose a colour.

Usage

pickCol(returnValue=TRUE)

Arguments

returnValue If TRUE, display the full colour palette, choose a colour, and return the hex value
to the R session. If FALSE, use an intermediate GUI to interact with the palette
and display the hex value of the chosen colour.

Value

A hexidecimal colour value.

See Also

testCol

Examples

Not run:
junk<-pickCol(); resetGraph(); addLabel(.5,.5,junk,cex=4,col=junk);
End(Not run)

98 plotAsp

plotACF Plot Autocorrelation Bars From a data frame, matrix, or vector

Description

Plot autocorrelation bars (ACF) from a data frame, matrix, or vector.

Usage

plotACF(file, lags=20,
clrs=c("blue","red","green","magenta","navy"), ...)

Arguments

file data frame, matrix, or vector of numeric values.

lags maximum number of lags to use in the ACF calculation.

clrs vector of colours. Patterns are repeated if the number of fields exceeed the length
of clrs.

... additional arguments for plot or lines.

Details

This function is designed primarily to give greater flexibility when viewing results from the R-
package BRugs. Use plotACF in conjuction with samplesHistory("*",beg=0,plot=FALSE)
rather than samplesAutoC which calls plotAutoC.

Examples

resetGraph(); plotACF(trees,lwd=2,lags=30);

plotAsp Construct a Plot with a Specified Aspect Ratio

Description

Plot x and y coordinates using a specified aspect ratio.

Usage

plotAsp(x, y, asp=1, ...)

plotBubbles 99

Arguments

x vector of x-coordinate points in the plot.

y vector of y-coordinate points in the plot.

asp y/x aspect ratio.

... additional arguments for plot.

Details

The function plotAsp differs from plot(x,y,asp=1) in the way axis limits are handled.
Rather than expand the range, plotAsp expands the margins through padding to keep the aspect
ratio accurate.

Examples

x <- seq(0,10,0.1)
y <- sin(x)
par(mfrow=2:1)
plotAsp(x,y,asp=1,xlim=c(0,10),ylim=c(-2,2), main="sin(x)")
plotAsp(x,y^2,asp=1,xlim=c(0,10),ylim=c(-2,2), main="sin^2(x)")

plotBubbles Construct a Bubble Plot from a Matrix

Description

Construct a bubble plot for a matrix z.

Usage

plotBubbles(z, xval=FALSE, yval=FALSE, dnam=FALSE, rpro=FALSE,
cpro=FALSE, rres=FALSE, cres=FALSE, powr=1, size=0.2, lwd=2,
clrs=c("black","red","blue"), hide0=FALSE, debug=FALSE, ...)

Arguments

z input matrix

xval x-values for the columns of z. if xval=TRUE, the first row contains x-values
for the columns.

yval y-values for the rows of z. If yval=TRUE, the first column contains y-values
for the rows.

dnam logical; if TRUE, attempt to use dimnames of input matrix z as xval and
yval. The dimnames are converted to numeric values and must be strictly
inreasing or decreasing. If successful, these values will overwrite previously
specified values of xval and yval or any default indices.

rpro logical; if TRUE, convert rows to proportions.

100 plotCsum

cpro logical; if TRUE, convert columns to proportions.

rres logical; if TRUE, use row residuals (subtract row means).

cres logical; if TRUE, use column residuals (subtract column means).

powr power transform. Radii are proportional to z^powr. Note: powr=0.5 yields
bubble areas proportional to z.

size size (inches) of the largest bubble.

lwd line width for drawing circles.

clrs colours (3-element vector) used for positive, negative, and zero values, respec-
tively.

hide0 logical; if TRUE, hide zero-value bubbles.

debug logical; if TRUE, display debug information.

... additional arguments for symbols function.

Details

The function plotBubbles essentially flips the z matrix visually. The columns of z become the
x-values while the rows of z become the y-values, where the first row is displayed as the bottom
y-value and the last row is displayed as the top y-value. The function’s original intention was to
display proportions-at-age vs. year.

See Also

genMatrix

Examples

plotBubbles(round(genMatrix(40,20),0),clrs=c("green","grey","red"));

data(CCA.qbr)
plotBubbles(CCA.qbr,cpro=TRUE,powr=.5,dnam=TRUE,size=.15,

ylim=c(0,70),xlab="Year",ylab="Quillback Rockfish Age")

plotCsum Plot Cumulative Sum of Data

Description

Plot the cumulative frequency of a data vector or matrix, showing the median and mean of the
distribution.

Usage

plotCsum(x, add = FALSE, ylim = c(0, 1), xlab = "Measure",
ylab = "Cumulative Proportion", ...)

plotDens 101

Arguments

x vector or matrix of numeric values.

add logical; if TRUE, add the cumulative frequency curve to a current plot.

ylim limits for the y-axis.

xlab label for the x-axis.

ylab label for the y-axis.

... additional arguments for the plot function.

Examples

x <- rgamma(n=1000,shape=2)
plotCsum(x)

plotDens Plot Density Curves from a data frame, matrix, or vector

Description

Plot the density curves from a data frame, matrix, or vector. The mean density curve of the data
combined is also shown.

Usage

plotDens(file, clrs=c("blue","red","green","magenta","navy"), ...)

Arguments

file data frame, matrix, or vector of numeric values.

clrs vector of colours. Patterns are repeated if the number of fields exceeed the length
of clrs.

... additional arguments for plot or lines.

Details

This function is designed primarily to give greater flexibility when viewing results from the R-
package BRugs. Use plotDens in conjuction with samplesHistory("*",beg=0,plot=FALSE)
rather than samplesDensity which calls plotDensity.

Examples

z <- data.frame(y1=rnorm(50,sd=2),y2=rnorm(50,sd=1),y3=rnorm(50,sd=.5))
plotDens(z,lwd=3)

102 promptOpenFile

plotTrace Plot Trace Lines from a data frame, matrix, or vector

Description

Plot trace lines from a data frame or matrix where the first field contains x-values, and subsequent
fields give y-values to be traced over x. If input is a vector, this is traced over the number of
observations.

Usage

plotTrace(file, clrs=c("blue","red","green","magenta","navy"), ...)

Arguments

file data frame or matrix of x and y-values, or a vector of y-values.

clrs vector of colours. Patterns are repeated if the number of traces (y-fields) exceeed
the length of clrs.

... additional arguments for plot or lines.

Details

This function is designed primarily to give greater flexibility when viewing results from the R-
package BRugs. Use plotTrace in conjuction with samplesHistory("*",beg=0,plot=FALSE)
rather than samplesHistory which calls plotHistory.

Examples

z <- data.frame(x=1:50,y1=rnorm(50,sd=3),y2=rnorm(50,sd=1),y3=rnorm(50,sd=.25))
plotTrace(z,lwd=3)

promptOpenFile Display an "Open File" Dialogue

Description

Display the default Open prompt provided by the Operating System.

Usage

promptOpenFile(initialfile="", filetype=list(c("*","All Files")),
open=TRUE)

promptSaveFile 103

Arguments

initialfile file name of the text file containing the list.
filetype a list of character vectors indicating file types made available to users of the

GUI. Each vector is of length one or two. The first element specifies either the
file extension or "*" for all file types. The second element gives an optional
descriptor name for the file type. The supplied filetype list appears as a set
of choices in the pull-down box labelled “Files of type:"”.

open logical; if TRUE display Open prompt, if FALSE display Save As prompt.

Value

The file name and path of the file selected by the user.

See Also

promptSaveFile

Examples

Not run:
Open a filename, and return it line by line in a vector
scan(promptOpenFile(),what=character(),sep="\n")

Illustrates how to set filetype.
promptOpenFile("intial_file.txt", filetype=list(c(".txt", "text files"),

c(".r", "R files"), c("*", "All Files")))
End(Not run)

promptSaveFile Display a "Save File" Dialogue

Description

Display the default Save As prompt provided by the Operating System.

Usage

promptSaveFile(initialfile="", filetype=list(c("*", "All Files")),
save=TRUE)

Arguments

initialfile file name of the text file containing the list.
filetype a list of character vectors indicating file types made available to users of the

GUI. Each vector is of length one or two. The first element specifies either the
file extension or "*" for all file types. The second element gives an optional
descriptor name for the file type. The supplied filetype list appears as a set
of choices in the pull-down box labelled “Files of type:”.

save logical; if TRUE display Save As prompt, if FALSE display Open prompt.

104 readList

Value

The file name and path of the file selected by the user.

See Also

promptOpenFile

Examples

Not run:
#illustrates how to set filetype.
promptSaveFile("intial_file.txt", filetype=list(c(".txt", "text files"),

c(".r", "R files"), c("*", "All Files")))
End(Not run)

readList Read a List from a File in PBS Modelling Format

Description

Read in a list previously saved to a file by writeList. At present, only two formats are supported
- R’s native format used by the dput function or an ad hoc PBSmodelling format. The function
readList detects the format automatically.

For information about the PBSmodelling format, see writeList.

Usage

readList(fname)

Arguments

fname file name of the text file containing the list.

See Also

writeList, unpackList

resetGraph 105

resetGraph Reset par Values for a Plot

Description

Reset par() to default values to ensure that a new plot utilizes a full figure region. This function
helps manage the device surface, especially after previous plotting has altered it.

Usage

resetGraph()

See Also

resetGraph

restorePar Get Actual Parameters from Scaled Values

Description

Restore scaled parameters to their original units. Used in minimization by calcMin.

Usage

restorePar(S,pvec)

Arguments

S scaled parameter vector.

pvec a data frame comprising four columns - c("val","min","max","active")
and as many rows as there are model parameters. The "active" field (logi-
cal) determines whether the parameters are estimated (TRUE) or remain fixed
(FALSE).

Details

Restoration algorithm: P = Pmin + (Pmax − Pmin)(sin(πS2))2

Value

Parameter vector converted from scaled units to original units specified by pvec.

See Also

scalePar, calcMin, GT0

106 runDemos

Examples

pvec <- data.frame(val=c(1,100,10000),min=c(0,0,0),max=c(5,500,50000),
active=c(TRUE,TRUE,TRUE))

S <- c(.5,.5,.5)
P <- restorePar(S,pvec)
print(cbind(pvec,S,P))

runDemos Interactive GUI for R demos

Description

An interactive GUI for accessing demos from any R package installed on the user’s system. runDemos
is a convenient alternative to Rś demo function.

Usage

runDemos(package)

Arguments

package display demos from a particular package (optional)

Details

If the argument package is not specified, the function will look for demos in all packages installed
on the user’s system.

Note

The runDemos GUI attempts to retain the user’s objects and restore the working directory. How-
ever, pre-existing objects will be overwritten if their names co-incide with names used by the various
demos. Also, depending on conditions, the user may lose working directory focus. We suggest that
users run this demo from a project where data objects are not critical. — USER BEWARE —

See Also

runExamples for examples specific to PBSmodelling.

runExamples 107

runExamples Run GUI Examples Included with PBS Modelling

Description

Display an interactive GUI to demonstrate PBS Modelling examples.

The example source files can be found in the directory PBSmodelling/examples, located in
R’s directory library.

Usage

runExamples()

Details

Some examples use external packages which must be installed to work correctly:

BRugs - LinReg, MarkRec, and CCA;

odesolve/ddesolve - FishRes;

PBSmapping - FishTows.

Note

The examples are copied from PBSmodelling/examples to R’s current temporary working
directory and run from there.

See Also

runDemos

scalePar Scale Parameters to [0,1]

Description

Scale parameters for function minimization by calcMin.

Usage

scalePar(pvec)

Arguments

pvec a data frame comprising four columns - c("val","min","max","active")
and as many rows as there are model parameters. The "active" field (logi-
cal) determines whether the parameters are estimated (TRUE) or remain fixed
(FALSE).

108 setPBSext

Details

Scaling algorithm: S = 2
πasin

√
P−Pmin

Pmax−Pmin

Value

Parameter vector scaled between 0 and 1.

See Also

restorePar, calcMin, GT0

Examples

pvec <- data.frame(val=c(1,100,10000),min=c(0,0,0),max=c(5,500,50000),
active=c(TRUE,TRUE,TRUE))

S <- scalePar(pvec)
print(cbind(pvec,S))

setPBSext Set a Command Associated with a Filename Extension

Description

Set a command with an associated extension (suffix), for use in openFile. The command must
specify where the target file name is inserted by indicating a %f.

Usage

setPBSext(ext, cmd)

Arguments

ext string of specifying the extension suffix.

cmd command string to associate with the extension.

Note

These values are not saved from one PBS Modelling session to the next.

See Also

getPBSext, openFile

setPBSoptions 109

setPBSoptions Set A User Option

Description

Some options may be set by the user.

Usage

setPBSoptions(option, value)

Arguments

option name of the option to set.

value new value to assign this option.

See Also

getPBSoptions

setWinAct Add a Window Action to the Saved Action Vector

Description

Append a string value specifying an action to the first position of an action vector.

Usage

setWinAct(winName, action)

Arguments

winName window name where action is taking place.

action string value describing an action.

Details

When a function is called from a GUI, a string descriptor associated with the action of the function
is stored internaly (appended to the first position of the action vector). A user can utilize this action
as a type of argument for programming purposes. The command getWinAct()[1] yields the
latest action.

Sometimes it is useful to “fake” an action. Calling setWinAct allows the recording of an action,
even if a button has not been pressed.

110 setWinVal

setWinVal Update Widget Values

Description

Update a widget with a new value.

Usage

setWinVal(vars, winName)

Arguments

vars a list or vector with named components.

winName window from which to select GUI widget values. The default takes the window
that has most recently received new user input.

Details

The vars argument expects a list or vector with named elements. Every element name corresponds
to the widget name which will be updated with the supplied element value.

The vector, matrix, and data widgets can be updated in several ways. If more than one
name is specified for the names argument of these widgets, each element is treated like an entry
widget.

If however, a single name describes any of these three widgets, the entire widget can be updated by
passing an appropriately sized object.

Alternatively, any element can be updated by appending its index in square brackets to the end of
the name. The data widget is indexed differently than the matrix widget by adding "d" after
the brackets. This tweak is necessary for the internal coding (bookkeeping) of PBS Modelling.
Example: "foo[1,1]d".

See Also

getWinVal, createWin

Examples

Not run:
winDesc <- c("vector length=3 name=vec",

"matrix nrow=2 ncol=2 name=mat",
"slideplus name=foo");

createWin(winDesc, astext=TRUE)
setWinVal(list(vec=1:3, "mat[1,1]"=123, foo.max=1.5, foo.min=0.25, foo=0.7))
End(Not run)

show0 111

show0 Convert Numbers into Text with Specified Decimal Places

Description

Return a character representation of a number with added zeroes out to a specified number of deci-
mal places.

Usage

show0(x, n, add2int = FALSE)

Arguments

x numeric data (scalar, vector, or matrix).

n number of decimal places to show, including zeroes.

add2int If TRUE, add zeroes on the end of integers.

Value

A scalar/vector of strings representing numbers. Useful for labelling purposes.

Note

This function does not round or truncate numbers. It simply adds zeroes if n is greater than the
available digits in the decimal part of a number.

Examples

frame()

#do not show decimals on integers
addLabel(0.25,0.75,show0(15.2,4))
addLabel(0.25,0.7,show0(15.1,4))
addLabel(0.25,0.65,show0(15,4))

#show decimals on integers
addLabel(0.25,0.55,show0(15.2,4,TRUE))
addLabel(0.25,0.5,show0(15.1,4,TRUE))
addLabel(0.25,0.45,show0(15,4,TRUE))

112 sortHistory

showArgs Display Expected Widget Arguments

Description

Display the order and default values of all widget arguments. The list can be shortened by specifying
a single widget name.

Usage

showArgs(widget="")

Arguments

widget If specified, information about this one widget only is displayed. The default
displays information about all widgets.

Value

A text stream to the R console. Cannot be directed to a file or other device.

sortHistory Sort an Active or Saved History

Description

Utility to sort history. When called without any arguments, an interactive GUI is used to pick which
history to sort. When called with hisname, sort this active history widget. When called with
file and outfile, sort the history located in file and save to outfile.

Usage

sortHistory(file="", outfile=file, hisname="")

Arguments

file file name of saved history to sort.

outfile file to save sorted history to.

hisname name of active history widget and window it is located in, given in the form
WINDOW.HISTORY.

testCol 113

Details

After selecting a history to sort (either from given arguments, or interactive GUI) the R data editor
window will be displayed. The editor will have one column named n̈ewẅhich will have numbers
1,2,3,...,n. This represents the current ordering of the history. You may change the numbers around
to define a new order. The list is sorted by reassigning the index in row i as index i.

For example, if the history had three items 1,2,3. Reordering this to 3,2,1 will reverse the order;
changing the list to 1,2,1,1 will remove entry 3 and create two duplicates of entry 1.

See Also

importHistory, initHistory

testCol Display Named Colours Available Based on a Set of Strings

Description

Display colours as patches in a plot. Useful for programming purposes. Colours can be specified in
any of 3 different ways: (i) by colour name, (ii) by hexidecimal colour code created by rgb(), or
(iii) by an index to the color() palette.

Usage

testCol(cnam=colors()[sample(length(colors()),15)])

Arguments

cnam vector of colour names to display. Defaults to 15 random names from the color
palette.

See Also

pickCol

Examples

testCol(c("sky","fire","sea","wood"))

testCol(c("plum","tomato","olive","peach","honeydew"))

testCol(substring(rainbow(63),1,7))

#display all colours set in the colour palette
testCol(1:length(palette()))

#they can even be mixed
testCol(c("#9e7ad3", "purple", 6))

114 testLwd

testLty Display Line Types Available

Description

Display line types available.

Usage

testLty(newframe = TRUE)

Arguments

newframe if TRUE, create a new blank frame, otherwise overlay current frame.

Note

Quick representation of first 20 line types for reference purposes.

testLwd Display Line Widths

Description

Display line widths. User can specify particular ranges for lwd. Colours can also be specified and
are internally repeated as necessary.

Usage

testLwd(lwd=1:20, col=c("black","blue"), newframe=TRUE)

Arguments

lwd line widths to display. Ranges can be specified.

col colours to use for lines. Patterns are repeated if length(lwd) > length(col)

newframe if TRUE, create a new blank frame, otherwise overlay current frame.

Examples

testLwd(3:15,col=c("salmon","aquamarine","gold"))

testPch 115

testPch Display Plotting Symbols and Backslash Characters

Description

Display plotting symbols. User can specify particular ranges (increasing continuous integer) for
pch.

Usage

testPch(pch=1:100, ncol=10, grid=TRUE, newframe=TRUE, bs=FALSE)

Arguments

pch symbol codes to view.

ncol number of columns in display (can only be 2, 5, or 10). Most sensibly this is set
to 10.

grid logical; if TRUE, grid lines are plotted for visual aid.

newframe logical; if TRUE reset the graph, otherwise overlay on top of the current graph.

bs logical; if TRUE, show backslash characters used in text statements (e.g., 30\272C
= 30◦C).

Examples

testPch(123:255)
testPch(1:25,ncol=5)
testPch(41:277,bs=TRUE)

testWidgets Displays Sample GUIs and their Source Code

Description

Display an interactive GUI to demonstrate the available widgets in PBS Modelling. A text win-
dow displays the Window Description File source code. The user can modify this sample code and
recreate the test GUI by pressing the button below.

The Window Description Files can be found in the directory PBSmodelling/testWidgets
located in the R directory library.

Usage

testWidgets()

116 testWidgets

Details

Following are the widgets and default values supported by PBS Modelling. See Appendix A in
“PBSModelling-UG.pdf” for detailed descriptions.

button text="Calculate" font="" fg="black" bg="" width=0
function="" action="button" sticky="" padx=0 pady=0

check name mode=logical checked=FALSE text="" font="" fg="black" bg=""
function="" action="check" sticky="" padx=0 pady=0

data nrow ncol names modes="numeric" rowlabels="" collabels=""
rownames="X" colnames="Y" font="" fg="black" bg="" entryfont=""
entryfg="black" entrybg="white" values="" byrow=TRUE function=""
enter=TRUE action="data" width=6 sticky="" padx=0 pady=0

entry name value="" width=20 label="" font="" fg="" bg=""
entryfont="" entryfg="black" entrybg="white" function=""
enter=TRUE action="entry" mode="numeric" sticky="" padx=0 pady=0

grid nrow=1 ncol=1 toptitle="" sidetitle="" topfont="" sidefont=""
byrow=TRUE borderwidth=1 relief="flat" sticky="" padx=0 pady=0

history name="default" function="" import="" sticky="" padx=0 pady=0

label text="" font="" fg="black" bg="" sticky="" justify="left"
wraplength=0 padx=0 pady=0

matrix nrow ncol names rowlabels="" collabels="" rownames=""
colnames="" font="" fg="black" bg="" entryfont="" entryfg="black"
entrybg="white" values="" byrow=TRUE function="" enter=TRUE
action="matrix" mode="numeric" width=6 sticky="" padx=0 pady=0

menu nitems=1 label font=""

menuitem label font="" function action="menuitem"

null padx=0 pady=0

object name font="" fg="black" bg="" entryfont=""
entryfg="black" entrybg="white" vertical=FALSE function=""
enter=TRUE action="data" width=6 sticky="" padx=0 pady=0

radio name value text="" font="" fg="black" bg="" function=""
action="radio" mode="numeric" selected=FALSE sticky="" padx=0 pady=0

slide name from=0 to=100 value=NA showvalue=FALSE
orientation="horizontal" font="" fg="black" bg="" function=""
action="slide" sticky="" padx=0 pady=0

unpackList 117

slideplus name from=0 to=1 by=0.01 value=NA function=""
enter=FALSE action="slideplus" sticky="" padx=0 pady=0

text name height=8 width=30 edit=FALSE scrollbar=TRUE
fg="black" bg="white" mode="character" font="" value=""
borderwidth=1 relief="sunken" sticky="" padx=0 pady=0

vector names length=0 labels="" values="" vecnames="" font=""
fg="black" bg="" entryfont="" entryfg="black" entrybg="white"
vertical=FALSE function="" enter=TRUE action="vector"
mode="numeric" width=6 sticky="" padx=0 pady=0

window name="window" title="" vertical=TRUE bg="#D4D0C8"
fg="#000000" onclose=""

See Also

createWin, showArgs

unpackList Unpack List Elements into Variables

Description

Make local or global variables (depending on the scope specified) from the named components of a
list.

Usage

unpackList(x, scope="L")

Arguments

x named list to unpack.

scope If "L", create variables local to the parent frame that called the function. If
"G", create global variables.

Value

A character vector of unpacked variable names.

See Also

readList

118 vbpars

Examples

x <- list(a=21,b=23);
unpackList(x);
print(a);

vbdata Dataset: Length-at-Age Data for a von Bertalanffy Curve

Description

Lengths-at-age for freshwater mussels (Anodonta kennerlyi).

Usage

data(vbdata)

Format

A data frame with 16 rows and 2 columns c("age","len").

Details

Data for demonstartion of the von Bertalanffy model used in the calcMin example.

Source

Mittertreiner, A., and Schnute, J. 1985. Simplex: a manual and software package for easy nonlinear
parameter estimation and interpretation in fishery research. Canadian Technical Report of Fisheries
and Aquatic Sciences 1384: xi + 90 p.

vbpars Dataset: Initial Parameters for a von Bertalanffy Curve

Description

Starting parameter values for Linf, K, and t0 for von Bertalanffy minimization using length-at-age
data (vbdata) for freshwater mussels (Anodonta kennerlyi).

Usage

data(vbpars)

Format

A matrix with 3 rows and 3 columns c("Linf","K","t0"). Each row contains the starting
values, minima, and maxima, respectively, for the three parameters.

view 119

Details

Data for demonstration of the von Bertalanffy model used in the calcMin example.

Source

Mittertreiner, A., and Schnute, J. 1985. Simplex: a manual and software package for easy nonlinear
parameter estimation and interpretation in fishery research. Canadian Technical Report of Fisheries
and Aquatic Sciences 1384: xi + 90 p.

view Display First n Rows of an Object

Description

View the first n rows of a data frame or matrix or the first n elements of a vector or list. All other
objects are simply reflected.

Usage

view(obj, n = 5)

Arguments

obj object to view.

n first n rows (matrix/data frame) or elements (vector/list) of obj to view.

writeList Write a List to a File in PBS Modelling Format

Description

Write an ASCII text representation in either "D" format or "P" format. The "D" format makes
use of dput and dget, and produces an R representation of the list. The "P" format represents a
simple list in an easy-to-read, ad hoc PBSmodelling format.

Usage

writeList(x, fname, format="D", comments="")

Arguments

x R list object to write to an ASCII text file.

fname file name of the text file containing the list.

format format of the file to create: "D" or "P".

comments vector of character strings to use as initial-line comments in the file.

120 writeList

Details

The "D" format is equivalent to using R’s base functions dput and dget, which support all R
objects.

The "P" format only supports named lists of vectors, matrices, and data frames. Scalars are treated
like vectors. Nested lists are not supported.

The "P" format writes each named element in a list using the following conventions: (i) $ followed
by the name of the data object to denote the start of that object’s description; (ii) $$ on the next
line to describe the object’s structure - object type, mode(s), names (if vector), rownames (if matrix
or data), and colnames (if matrix or data); and (iii) subsequent lines of data (one line for vector,
multiple lines for matrix or data).

Multiple rows of data for matrices or data frames must have equal numbers of entries (separated by
whitespace).

For complete details, see “PBSmodelling-UG.pdf” in R’s directory library/PBSmodelling.

See Also

readList, openFile

Examples

Not run:
test <- list(a=10,b=euro,c=view(WorldPhones),d=view(USArrests))
writeList(test,"test.txt",format="P",

comments=" Scalar, Vector, Matrix, Data Frame")
openFile("test.txt")
End(Not run)

Index

∗Topic arith
calcFib, 72
calcGM, 73

∗Topic array
genMatrix, 85

∗Topic color
pickCol, 95
testCol, 111
testLty, 112
testLwd, 112
testPch, 113

∗Topic datasets
CCA.qbr, 68
vbdata, 116
vbpars, 116

∗Topic device
chooseWinVal, 75
expandGraph, 82
getChoice, 85
resetGraph, 103

∗Topic file
openFile, 92
readList, 102
unpackList, 115
writeList, 117

∗Topic graphs
plotACF, 96
plotDens, 99
plotTrace, 100

∗Topic hplot
drawBars, 81
GT0, 69
plotAsp, 96
plotBubbles, 97
plotCsum, 98

∗Topic iplot
addArrows, 70
addLabel, 71
addLegend, 72

∗Topic list
readList, 102
unpackList, 115
writeList, 117

∗Topic methods
clearAll, 77
clearWinVal, 77
focusWin, 84
getPBSext, 87
getPBSoptions, 87
getWinAct, 88
getWinFun, 88
getWinVal, 89
setPBSext, 106
setPBSoptions, 107
setWinAct, 107
setWinVal, 108

∗Topic misc
exportHistory, 82
importHistory, 90
parseWinFile, 94
pause, 95
promptOpenFile, 100
promptSaveFile, 101
sortHistory, 110

∗Topic nonlinear
calcMin, 73

∗Topic optimize
calcMin, 73
restorePar, 103
scalePar, 105

∗Topic package
PBSmodelling, 70

∗Topic print
pad0, 93
show0, 109
view, 117

∗Topic utilities
chooseWinVal, 75

121

122 INDEX

closeWin, 78
compileDescription, 78
createVector, 79
createWin, 80
findPat, 83
getChoice, 85
initHistory, 90
runDemos, 104
runExamples, 105
showArgs, 110
testCol, 111
testLty, 112
testLwd, 112
testPch, 113
testWidgets, 113

addArrows, 70, 71, 72
addHistory (initHistory), 90
addLabel, 71, 71, 72
addLegend, 71, 72

backHistory (initHistory), 90

calcFib, 72
calcGM, 73
calcMin, 69, 73, 75, 103, 106
CCA.qbr, 68
chooseWinVal, 75, 86
clearAll, 77
clearHistory (initHistory), 90
clearWinVal, 77, 89
closeWin, 78, 80
compileDescription, 78, 80, 94
createVector, 79, 80
createWin, 78, 79, 80, 94, 108, 115

drawBars, 81

expandGraph, 82
exportHistory, 82, 90, 91

findPat, 83
firstHistory (initHistory), 90
focusWin, 84
forwHistory (initHistory), 90

genMatrix, 85, 98
getChoice, 76, 85
getPBSext, 87, 88, 93, 106
getPBSoptions, 87, 107

getWinAct, 88
getWinFun, 88
getWinVal, 76, 78, 80, 86, 89, 108
GT0, 69, 75, 103, 106

importHistory, 83, 90, 91, 111
initHistory, 80, 83, 90, 90, 111

jumpHistory (initHistory), 90

lastHistory (initHistory), 90

openFile, 87, 92, 106, 118

pad0, 93
parseWinFile, 79, 80, 89, 94
pause, 95
PBSmodelling, 70
PBSmodelling-package

(PBSmodelling), 70
pickCol, 95, 111
plotACF, 96
plotAsp, 96
plotBubbles, 85, 97
plotCsum, 98
plotDens, 99
plotTrace, 100
promptOpenFile, 90, 100, 102
promptSaveFile, 83, 101, 101

readList, 102, 115, 118
resetGraph, 82, 103, 103
restorePar, 69, 75, 103, 106
rmHistory (initHistory), 90
runDemos, 104, 105
runExamples, 104, 105

scalePar, 69, 75, 103, 105
setPBSext, 87, 93, 106
setPBSoptions, 107
setWinAct, 107
setWinVal, 76, 80, 86, 89, 108
show0, 109
showArgs, 110, 115
sortHistory, 110

testCol, 95, 111
testLty, 112
testLwd, 112
testPch, 113

INDEX 123

testWidgets, 113

unpackList, 102, 115

vbdata, 116, 116
vbpars, 116
view, 117

widgets (testWidgets), 113
writeList, 102, 117

	PBSmodelling.pdf
	CCA.qbr
	GT0
	PBSmodelling
	addArrows
	addLabel
	addLegend
	calcFib
	calcGM
	calcMin
	chooseWinVal
	clearAll
	clearWinVal
	closeWin
	compileDescription
	createVector
	createWin
	drawBars
	expandGraph
	exportHistory
	findPat
	focusWin
	genMatrix
	getChoice
	getPBSext
	getPBSoptions
	getWinAct
	getWinFun
	getWinVal
	importHistory
	initHistory
	openFile
	pad0
	parseWinFile
	pause
	pickCol
	plotACF
	plotAsp
	plotBubbles
	plotCsum
	plotDens
	plotTrace
	promptOpenFile
	promptSaveFile
	readList
	resetGraph
	restorePar
	runDemos
	runExamples
	scalePar
	setPBSext
	setPBSoptions
	setWinAct
	setWinVal
	show0
	showArgs
	sortHistory
	testCol
	testLty
	testLwd
	testPch
	testWidgets
	unpackList
	vbdata
	vbpars
	view
	writeList
	Index

