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Abstract

Genomic DNA copy number alterations (CNAs) are associated with
complex diseases, including cancer: CNAs are indeed related to tumoral
grade, metastasis, and patient survival. CNAs discovered from array-
based Comparative Genomic Hybridization (aCGH) data have been in-
strumental for identifying disease-related genes and potential therapeutic
targets. To be immediately useful in both clinical and basic research
scenarios, aCGH data analysis requires accurate methods that do not im-
pose unrealistic biological assumptions and that provide direct answers
to the key question “What is the probability that this gene/region has
CNAs?”. Current approaches fail, however, to meet these requirements.
Here, we introduce a new method for identifying CNAs from aCGH;
we use a non-homogeneous Hidden Markov Model fitted via Reversible
Jump Markov Chain Monte Carlo, and we incorporate model uncertainty
through Bayesian Model Averaging. RJaCGH provides an estimate of
the probability that a gene/region has CNAs while incorporating inter-
gene distance and the capability to analyze data on a chromosome or
genome-wide basis. RJaCGH outperforms alternative methods, and the
performance difference is even larger with noisy data and highly-variable
inter-gene distance, both commonly found features in aCGH data. Fur-
thermore, our probabilistic method allows identifying minimal common
regions of CNAs among samples and could incorporate expression data.
In summary, we provide a rigorous statistical framework for locating genes
and chromosomal regions with CNAs with potential applications to cancer
and other complex human diseases.

1 Introduction

Alterations in the number of copies (gains, losses) of genomic DNA have been
associated with several hereditary anomalies and are involved in human can-
cers (reviews and examples in [PA05, LCCL06, UKS+06, MPN+05a, ABB+04,
SLT+04,FMM+00]). For example, amplification of some genes, especially onco-
genes, is one well known mechanism for tumor activation [HBC+00,HKS+04]
and it is involved in the deregulation of cellular control [VFP+03,VK04]. Copy
number alterations have been associated with tumoral grade, metastasis de-
velopment, and patient survival [PA05,LCCL06,UKS+06,MPN+05a,ABB+04,
SLT+04,FMM+00], and studies about copy number changes have been instru-
mental for identifying relevant genes for cancer development and patient classi-
fication [PA05,LCCL06,PSP+02].

A widely used technique to identify copy number changes in genomic DNA
is array-based Comparative Genomic Hybridization (aCGH). Two DNA sam-
ples (e.g., problem and control) are differentially labeled (often with fluorescent
dyes) and competitively hybridized to chromosomal DNA targets. After hy-
bridization, emission from each of the two fluorescent dyes is measured, and the
signal intensity ratios are indicative of the relative copy number of the two sam-
ples (see reviews in [PA05,LCCL06]). Therefore, a key step in any study of the
relationship between altered copy numbers and disease is using the fluorescence
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ratio data to identify genes and contiguous chromosomal regions with altered
copy numbers.

The main biomedical problem, both for the study of the copy number al-
terations per se and for downstream analysis (e.g., relationship with gene ex-
pression changes or patient classification), is the accurate identification of the
genes/chromosomal regions that have an altered copy number. Satisfactorily
dealing with this problem requires a method that: a) provides direct answers
that can be used in different settings (e.g., clinical vs. basic research); b) reflects
the underlying biology and accounts for key features of the technological plat-
form; c) can accommodate the different levels of analysis (types of questions)
addressed with these data.

First, estimates of the probabilities of alteration (instead of p-values or
smoothed means) are the most direct and usable answer to this problem [EMLB06,
BR06]. Probabilities can be used in contexts that cover from basic research to
clinical applications [PA05, LCCL06] so that, for instance, a clinician might
require high certainty of alteration of a specific gene before more invasive pro-
cedures, whereas a basic researcher can consider for further study genes that
show only moderate probability of alteration (e.g., probability > 0.5). Finally,
appropriately used, probabilities of alteration can account for uncertainty in
model building [SXD+06,HMRV99].

Second, the analysis should incorporate distance between probes [MTT06,
FSPA04,LJKP05,BR06,HWLZ05,LCCL06]: widely used aCGH platforms like
those based on cDNA microarrays and ROMA lead to variable coverage across
chromosomes, with very unequal distances between probes (i.e., some regions
have probes that are very close to each other, whereas in other regions probes
are very far apart). As copy number changes involve chromosome segments,
contiguous loci will have the same copy number, unless there is an abrupt change
to another copy number [PA05,DRO+04]: the further apart two loci are, the
more likely it is that a copy number event will have taken place in between them.
Thus, in densely covered regions the copy number of a probe is a good predictor
of the copy number of the neighboring probes. In contrast, in poorly covered
regions, contiguous probes or loci might be many thousands of kilobases apart,
making it more likely that at least one copy number change has taken place,
and consequently a probe provides less information about the likely state of its
neighboring probes. Therefore, unless we use a platform where all probes are
equally spaced, we need to use the distance between probes (and not just the
order), so that the information that consecutive probes provide is adequately
accounted for.

Third, depending on the focus of the study, the analysis should be conducted
either chromosome by chromosome, or genome-wide [SXD+06,BR06,EMLB06].
Analysis at the chromosome level are appropriate to detect alterations in copy
number of loci relative to the rest of the loci in that same chromosome, regard-
less of that chromosome’s ploidy (a trivial example would be detection of copy
number changes in loci of the human Y chromosome in an otherwise diploid
genome). On the other hand, detection of copy number changes that affect
most of a chromosome often require genome-wide analysis (in chromosome-wide
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analysis, as the mean or median chromosome level is used as the reference, detec-
tion of such changes is virtually impossible). Moreover, the use of genome-wide
analysis can offer statistical advantages (e.g., reduced variance of estimation).
As both types of analysis offer complementary information, because they focus
on different biological phenomena (chromosomal gains/losses vs. gains of loci
within chromosome), a suitable method should allow these two approaches.

1.1 Previous approaches

Available methods for the analysis of aCGH fail some or most of these require-
ments. Smoothing techniques [HST+04,OVLW04,PRM+05,HSG+05,LBL+05,
HWLZ05, PRL+05] do not use gene distance nor provide posterior estimates
of the likely state of each gene/clone, and data from each chromosome are
analyzed independently of each other. Hidden Markov Models (HMMs) and
related techniques offer a flexible modeling framework, and can provide prob-
abilities of alteration [EMLB06, SXD+06, BR06]. Some HMM-based methods
[FSPA04, SXD+06], however, do not incorporate distance between genes, as-
suming instead that inter-gene distance is constant. In addition, most of them
do not deal satisfactorily with the unknown number of hidden states (the true
number of states of copy number). Some methods fix in advance the number of
hidden states (three: [BR06,EMLB06]; four: [SXD+06]): pre-specification of the
number of states has the consequence of jumbling all changes involving multiple
gains into a single state with a common mean, which is biologically question-
able [DRO+04], specially as the resolution of the technology improves. A better
approach would provide posterior probabilities of the number of states; using
such a procedure over many different experiments will tell us whether three-
or four-state models are a reasonable simplification. Of those methods that do
not assume a fixed number of hidden states [FSPA04,MTT06,DRO+04], one of
them [DRO+04] cannot be used for questions about the number of hidden states,
or for breaking the data into more categories than gained/lost/no-change, which
are increasingly important questions with higher-resolution techniques and are
needed for distinguishing regions of moderate copy gains from regions of large
copy gains. The remaining two [FSPA04,MTT06] fit HMMs for a range of num-
ber of states and then use AIC-based model selection, but AIC-based selection
with HMMs has not been theoretically justified [CMR05], does not provide a
probability of the likely number of states, and selecting a single model leads to
underestimation of the true variability in the data; these two methods, in addi-
tion, use a final clustering step of hidden states that introduces several ad-hoc
decisions, and do not return probabilities of alteration.

1.2 Statistical model: overview

We have developed a method, RJaCGH, that fulfills the three requirements
above, and does not suffer from the limitations discussed for other methods.
We start our modeling by noting that, for a given chromosome or genome, the
copy numbers of genomic DNA (e.g., 0, 1, 2 copies, . . .) of different genes or
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segments are an unknown finite number. Thus, genes or segments could be
classified into several groups with respect to their (unknown) copy number. In
addition, as mentioned above, we expect that the copy number of a gene will be
similar to the copy number of its closest neighbors, with that expected similarity
decreasing when genes are further apart. Finally, for a given copy number, the
aCGH fluorescence ratios should be centered around a log2 value, with some
random noise. We want to use the observed log-ratios to identify regions with
altered copy number.

The biological features of this model (a finite number of unknown or hid-
den states that are indirectly measured, with states of close elements likely
to be similar, and variable distances between genes) can be modelled with
a non-homogeneous Hidden Markov Model (HMM) [CMR05]. To provide a
direct estimate of the probability that a given gene or region has an altered
copy number we will use a Bayesian model computed via Markov Chain Monte
Carlo (MCMC). Since we do not know the true number of hidden states, we
fit models with varying number of hidden states and, to allow for transdimen-
sional moves between models with different numbers of states, we use Reversible
Jump [Gre95]. After running a large number of MCMC iterations, we can sum-
marize the posterior probabilities. First, we will obtain posterior probabili-
ties for the number of states. Conditional on a given number of states, each
model will provide posterior distributions of the parameters of interest (e.g.,
means, variances, transition matrices). From the later, we can obtain poste-
rior probabilities that a gene is gained or lost. To obtain our final estimates, we
incorporate the uncertainty in model selection by using Bayesian Model Averag-
ing [HMRV99] (estimates are weighted by posterior probability of each number
of states), for the probabilities of genes being gained or lost. The complete
statistical method we will call RJaCGH (from Reversible Jump-based analysis
of aCGH data).

2 Results and discussion

We have applied RJaCGH and several alternative methods (including the best-
performing ones [WF05,LJKP05]) to 500 simulated data sets [WF05] (see Sup-
porting Information). These are data “(...) simulated to emulate the complexity
of real tumor profiles” and designed to become “(...) a standard for systematic
comparisons of computational segmentation approaches” [WF05] and, are not
data simulated under our own model. To assess the effect of variable inter-gene
distance, we randomly deleted data points (see details in supplementary ma-
terial) so that each original simulated data set gives rise to another four data
sets with (an average of) 10%, 25%, 50% and 65% of observations missing. The
length of these gaps is modeled by a Poisson distribution, so larger percentages
of missing data correspond to larger variability in inter-gene distances.

Results in Figure 1 (see also Supporting Information Fig. 1) show the ex-
cellent performance of RJaCGH, and how it outperforms alternative methods.
Moreover, Figure 2 (see also Supporting Information Figs. 2 and 3) shows that
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the difference between RJaCGH and alternative approaches is accentuated when
we consider jointly the effects of noise and variability in inter-gene distance.
Analysis using three other performance statistics (False Discovery Rate, Sensi-
tivity, and Specificity) show the same overall patterns (see Supporting Informa-
tion, Figs. 2 and 3): for some specific statistics, RJaCGH can be second (but
very close) to another approach; this other approach, however, performs poorly
with respect to the remaining statistics.

Similar results are obtained when applying these methods to a real data
set of nine cell lines [SNS+01], and comparing the predicted ploidy with the
known ploidy [SNS+01] (see Supplementary Material, Fig. 4). Overall, there-
fore, RJaCGH is the best performing method when considering the four available
statistics.

The excellent performance of RJaCGH is a result of the statistical method
used, which incorporates inter-gene distance, and adapts to variable noise in
the data (without the need for fine-tuning of parameters, contrary to some
other methods). Moreover, one of the main features of RJaCGH, its returning
of posterior probabilities of CNAs, cannot be compared to most alternative
methods as they do not provide this type of output. What most alternative
approaches return are smoothed means, p-values, or a classification into states
without any assessment of the uncertainty of this assignment to states. But a
probability of alteration (which RJaCGH returns) is much easier to interpret and
to use (with possibly different thresholds depending on the type of research) and
is, often, the direct answer to the basic biomedical question. (The few alternative
approaches that return probabilities of alteration [EMLB06,SXD+06,BR06] all
make the untenable assumption that the true number of biological states of
alteration are three [EMLB06,BR06] or four [SXD+06]).

3 Conclusion

We have developed a method to analyze aCGH for copy number changes that in-
corporates distance between genes, does not fix in advance the number of hidden
states, accounts for model selection uncertainty, and allows to analyze one or
more chromosomes simultaneously. We have shown that our method performs
as well as, or better than, alternative approaches when there is no variation in
inter-clone distance, but that it clearly outperforms alternative methods as the
variability in inter-gene distance increases and when noise in the data increases.
Our method provides clear answers to biological questions using a sound statis-
tical approach, that allows the biologist to answer in an objective way questions
about the probability of a gene or region having an altered copy number.

As RJaCGH provides posterior probabilities of alteration of contiguous genes
(segments), it is relevant to recent efforts in aCGH methodology [RSH+06,
DEG+06]. We can use the probabilities to identify regions with consistent
alterations across samples (in a statistically rigorous way, including control
of False Discovery Rate), and detect subgroups of samples according to re-
currence patterns [MPN+05b]. Likewise, posterior probabilities of being in
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a specific state together with the estimated posterior mean of each state can
be used as the basis for identifying breakpoints of biological significance. Fi-
nally, the model of RJaCGH can be extended to provide a rigorous downstream
analysis of aCGH including the integration of gene expression and proteomic
data [PSP+02,WF05].

4 Material and methods

4.1 Model

We use a non-homogeneous Hidden Markov Model with Gaussian emissions.
We can either fit one model to all the chromosomes of an array or we can fit a
different model for each chromosome of an array. Let n be the number of genes,
and k the number of different copy numbers in the collection of genes. Let Si

be the true state (copy number) of the gene i: Si = {1, . . . k}i=1,...,n. Let Yi

be the relative copy number of the gene i, that is the log ratio of fluorescence
intensities between tumor and control samples. Let Xi be the distance in bases
between gene i and gene i + 1 (we normalize these distances between 0 and
1 to increase numerical stability). How distance is measured depends on the
platform: distance can be the distance from the end of the spot to the start
of the next, if the length of the spots is proportional to the length of the gene
(so we have the same information for every gene), or the distance between the
midpoint of the spots, if the length of the spots is not proportional to the length
of the gene.

We assume that {Si} follows a non-homogeneous 1st order Markov process,
as: P (Si = si|Si−1 = si−1, Xi−1 = xi−1) = Qsi−1,si,xi−1

. Biologically, we
expect that QSi−1=r,Si=r,Xi−1

, the probability of staying in the same hidden
state, is a decreasing function of Xi−1, so the dependence of the state of a
gene onto the next one is lower the further the genes are. We also expect that
when the distance between two genes is maximal, the state of a gene should be
independent from the state of its predecessor. Thus, we model the transition
probabilities as:

Qi,j,x =
exp{−βi,j + βi,jx}

∑k
p=1 exp{−βi,p + βi,px}

(1)

Where β has the form:

β =











0 β1,2 . . . β1,k

β2,1 0 . . . β2,k

...
...

. . .
...

βk,1 βk,2 . . . 0











(2)

With all βi,j ≥ 0 ∀i, j. Finally, conditioned on {Si}, {Yi} follows a Gaussian
process: (Yi|Si = si) ∼ N(µsi

, σ2
si

).
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For computational reasons and modeling flexibility, we opted for Bayesian
methods using Markov Chain Monte Carlo. To fit models with varying num-
ber of hidden states we use Reversible Jump. Suppose that we have a collec-
tion of K HMM models, and each of them has a number of k hidden states,
from k = {1, . . . , K}. Let θ(k) be the HMM associated to k, that is θ(k) =
{µ(k), σ2(k), β(k)}. The prior distributions for the model are the usual ones in
mixture problems [RG97]: p(k) is the prior for the number of hidden states with
p(k) ∼ U(1, k), p(θ(k)/k) is the prior of the HMM conditioned to k, the number
of hidden states with µ(k) ∼ N(α, ̺2), where α and ̺ are the median and range
of Yi; σ2(k) ∼ IG(ka, g), where ka is 2 and g is ̺2(Yi)/50; β(k) ∼ Γ(1, 1).
The likelihood of the model, L(y; k, θ(k)), can be computed by Forward Filter-
ing [CMR05], so the joint distribution is p(k)p(θ(k)/k)L(y; k, θ(k)).

4.2 Estimation and fitting

We can draw samples from the posterior distribution through a Reversible Jump
Markov Chain Monte Carlo (RJMCMC) algorithm [Gre95]. In RJMCMC, we
explore the posterior distribution of possible models, jumping not only within
a model but also between models with a different number of parameters. To
match the difference between degrees of freedom, some random numbers u with
density P (u) are generated, so if we are in state x, the new one is proposed in
a deterministic way x′(x, u). The reverse move is the inverse of that function:
x(x′, u′). This way, the usual Metropolis-Hastings acceptance probability can
be computed [RG97]:

min

{

1,
L(y/x)p(x′)p(u′/x′)

L(y/x)p(x)p(u/x)
|J |

}

(3)

where L(y/x) is the likelihood, p(x) are the priors, p(u/x) are the densities of

the candidates, and J = | ∂x′

∂(x,u) |, the determinant of the Jacobian of the change

of variable. We combine several Metropolis steps in a sweep [CMR05,RRT00]:

1. Update HMM of a model using a series of Metropolis-Hastings moves. (We
do not use Gibbs Sampler to avoid the hidden state sequence from becom-
ing part of the state space of the sampler, so dimensionality is reduced
and reaching convergence is easier).

2. Update model (birth/death). When we have r states, a birth/death move
is chosen with probabilities pbirth(r) and pdeath(r) (these are 1/2 except
in the cases when no movement of that type can be made, e.g. a death
move when there is only one state). If a birth move is selected a new state
is created from the prior distributions and accepted with probability:
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min{1, p} where

p =
L(y; r + 1, θ(r + 1))p(k = r + 1)pdeath(r + 1)

L(y; r, θ(r))p(k = r)pbirth(r)

×|Jbirth|

and Jbirth = 1 (4)

If a death move is chosen, a random state is deleted with a probability
inverse to eq.[4].

3. Update model (split/combine). A split/combine move is attempted with
probabilities psplit(r) and pcombine(r) (again, 1/2 except when a move can
not be made). If a split move is selected, an existing state i0 is split into
two, i1, i2:

µi1 = µi0 − ǫµ, µi2 = µi0 + ǫµ, ǫµ ∼ N(0, τµ) (5)

σ2
i1

= σ2
i0

ǫσ, σ2
i2

= σ2
i0

(1 − ǫσ), ǫσ ∼ β(2, 2) (6)

Split column

i0 : βi,i1 = βi,i0ǫβ, βi,i2 = βi,i0/ǫβ,

ǫβ ∼ LN(0, τβ) for i 6= i0 (7)

Split row

i0 : βi1,j = βi0,jUj , βi2,j = βi0,j(1 − Uj),

where Uj ∼ β(2, 2) for j 6= i0

βi1,i2 ∼ Γ(1, 1) (8)

This move is accepted with probability

min{1, p} where

p =
L(y; r + 1, θ(r + 1))(r + 1)

L(y; r, θ(r))

×
P (k = r + 1)P (θ(r + 1))Pcombine(r + 1)r

P (k = r)P (θ(r))Psplit(r)(r + 1)

×
1

2P (ǫµ)P (ǫσ)
∏

P (ǫβ)
∏

P (Uj)
|Jsplit|

and |Jsplit| = |2rσ2
i0

∏

j 6=i0

βi0,j

∏

i6=i0

βi,i0

ǫβ

| (9)
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The split move must follow the adjacency condition [RG97] (the resulting
states must be closer between them than to any other of the existing ones).
If a combine step is selected, the symmetric move is performed and the
inverse probability of acceptance is computed.

The combination of birth and split moves makes it possible not only to visit
models with different number of parameters, but also to explore more thoroughly
the posterior probability in the case of a parameter with a multi-modal density.

These moves are common ones [CMR05,RRT00], but we have changed sev-
eral aspects of their design to improve the probability of acceptance, which is the
most difficult step in Reversible Jump [CMR05,Gre95,RRT00]. We constraint
the variance of every state so that it can not be greater than the variance of the
whole data. Also, we have added the adjacency condition mentioned before, and
used centering proposals. To prevent label-switching of states we have ordered
the states according to means after every iteration of the sweep [RG97].

4.3 Inference

We run the former algorithm a large number of times (e.g., 50000) and, after
discarding the first iterations as burn-in, we keep the last (e.g., 10000) samples
as observations from the joint distribution, so we can make inferences from
it. For every model that has been visited we obtain the posterior probabilities
of the mean copy number of every state, the variance of the copy number of
every state, and the function of transitions between hidden states. By counting
the number of times that each model has been visited we obtain an estimate
of the posterior probability of each model (i.e., we avoid using BIC or AIC).
Then, applying the Viterbi algorithm [CMR05] to every sample obtained from
the MCMC, and as this sample is a function of the HMM, we can obtain its
posterior probability, something that usual Viterbi can not. From the Viterbi
paths for all the samples, we can then compute the posterior probability that a
gene belongs to every state or the probability that a sequence of genes is in a
given state.

When obtaining posterior probabilities of copy number change, we use Bayesian
Model Averaging [HMRV99] over all models visited. Let Si be the lost, gained,
no-change status of gene i, K the set of the models considered (in our case, that
would be HMMs with 1, . . . , K number of states), Mk the model with k number
of states and Si/Mk the state of gene i according to model k. We compute the
unconditional (with respect to model selection) probability for the gene i as:

p(Si = si|y) =
∑

k∈K

p(Mk|y)p(Si = si|Mk, y) (10)

When analyzing multiple arrays, it is straightforward to use our approach
to identify genes that show consistent copy number alterations across samples
as

p(Si = si|y) =

N
∑

j=1

∑

k∈K

p(Mk|yj)p(Si = si|Mk, yj)p(yj) (11)
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where yj are the data from array j and we have N arrays. If we have
information about the reliability/representativeness of an array, that can be
incorporated via p(yj); otherwise we set p(yj) = 1/N .

4.4 Checking convergence and influence of priors

As in any MCMC approach, it is crucial to assess convergence of the sam-
pler. We follow common practice [BG98] of running several chains in parallel.
The convergence of the sampler depends strongly on the distribution of the
candidates in Metropolis-Hastings. That is, every iteration a new value for the
parameters is proposed from a distribution centered in their current values. The
standard deviation of that distribution must be chosen in a way that samples
explore all the parameter space. These standard deviations are not parameters
of the model in the sense that different values give different fits, but values that
can speed up convergence of the algorithm. The convergence of the posterior
probability of the number of hidden states is reached when a large enough num-
ber of transdimensional moves is made. This number need not to be large if
the likelihood is substantially higher in a particular model and data size is big
enough. The birth and death moves only depend on the priors, but the split
and combine moves depend also on their own design and the values of τµ and
τβ (see eq. [5] and eq. [7]). The priors chosen have been extensibly tested in
mixture models [RG97]. In addition, the priors and rest of the parameters have
very little effects: even small CGH arrays contain thousands of points so that
the likelihood from the data dominates any prior. With the 2500 simulated data
sets analyzed, we have only needed to specify the number of burn-in —50000—
and to-keep samples —10000— and the number of chains —4— and only in 9
cases was there evidence of non-convergence —which was solved by re-running
the samplers again.

4.5 Implementation and analysis

We have implemented RJaCGH using C (for the sweep algorithm) and R [R
D06], and all analysis and comparisons have been done in R. See Supplementary
Material.
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Figure 1: Correct classification: effects of variability in inter-gene distance (per-
centage of genes missing). Shown are the mean and 95% confidence interval
around the mean of the correct classification error rate. Each mean and confi-
dence interval is computed from 500 data sets [WF05] (see text and Supporting
Information for generation of inter-gene distance variability).
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1 Method comparisons: general

1.1 Methods compared

We have examined the performance of our method and compared it two four other
methods: DNA copy [1] and ACE [2], two competing approaches that have been
shown to be among the best performers in recent reviews [3, 4], and the HMM [5]
and non-homogeneous HMM [6] approaches, two methods that share some common
features with our method (but see discussion). All of these approaches, except ACE,
are available as R/BioConductor packages. ACE is available as a Java program from
[2]; however, this Java program is not suitable for batch processing of simulations;
thus, we implemented it as a loadable C module, and call it from R. Other promising
methods (specially [7]) could not be included in the comparative study because code
is not available or directly implementable from the available published descriptions.

1.2 Settings of methods

All methods were run with their default parameters. Details and modifications follow.
For DNA copy, and following the recommendations in [3], we have used the“merge

levels” proposal of [3]. The methods of Fridlyand et al. [5] and Marioni et al. [6]
include an internal, implicit, merge levels-like algorithm.

For ACE [2] the FDR used is the minimal one of the available (experimenting
with the method in these data set showed that other, larger, FDRs lead to much
poorer performance).

RJaCGH was run with six parallel chains, each with 60000 iterations of which the
first 50000 were discarded as burn-in. For each run, two full chains were discarded
by trimming (i.e., eliminating the two most extreme observations, one on each tail,
with respect to the average estimated number of states of each chain). The parame-
ters of the distributions of the candidates were selected automatically by a heuristic
approach that, within model, leads to an acceptance probability near 0.23 [8]. The
parameters of the jumps between models were taken as the mean of the within model
parameters.

1.3 Mapping of methods’ output to gain/loss/no-change

Only ACE provides, directly, output labels that correspond to “gain/loss/no change”
status of the genes. For DNAcopy, and as in [3], we post-processed the merge levels
output, so the level with mean closest to zero, which is also the level with the largest
number of observations, was assigned to the “no change” class (which is consistent
with all assumptions in the normalization step, and most in the analysis step, that
most genes/clones are not affected by copy number changes). The remaining levels
were assigned to either “gain” or ”lost” depending on whether there smoothed value
was larger or smaller, respectively, than the “no change” class. Similar procedure was
followed with HMM and BIOHMM after these methods returned their output.
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Table 1: Confusion matrix

Predicted
Gained No change Lost

True Gained TG Gnc Gl

State No change NCg TNC NCl

Lost Lg Lnc TL

For RJaCGH, our method includes a some what similar approach. We consider
as “no change” all states whose IQR (interquartile range) includes 0. After this step,
we add the groups with posterior mean closes to 0 to the “no change” class until
the proportion of observations in the no change class is no less than a pre-specified
level (by default 0.65). This procedure is consistent with the assumptions in the
normalization step that most genes/clones are not affected by copy number changes.

1.4 Statistics used to evaluate performance

We have evaluated performance of each method using four different statistics. To
understand the statistics, it is useful to refer to table 1.

Correct classification rate The percentage of genes that are assigned to the right
class. In table 1, the sum of all diagonal terms divided by the total number
of clones. This is an overall estimate of how well a method is doing. This
is likely to be the most relevant measure in every day usage, as it combines
the measures below (and incorporates, for instance, trade-offs between False
Discovery Rate and Sensitivity).

False Discovery Rate We define it in here as the number or mistakes made when
we call something a gain or a loss: the number of no-changes among the clones
Predicted to be gains or losses. In the table above,

FDR = NCg+NCl

TG+NCg+Lg+Gl+NCl+TL

(i.e., the sum of NCg and NCl divided by the total number of those predicted
to be “gained”or “lost”). (Note that, in our comparisons, there was not a single
case, for any method, were a true gain was predicted to be a lost, or vice-versa).

Specificity The probability of predicting no change when the true state is no change.
In terms of table 1:

Specificity = TNC
NCg+TNC+NCl

Sensitivity The probability of predicting a gain (loss) outcome when the true state
is gained (lost). Here we sum over both possible deviations from no change:

Sensitivity = TG+TL
TG+Gnc+Gl+Lg+Lnc+TL

3



It should be noted that there are ways to achieve, e.g., great False Discovery
Rate, without being a good overall performer. For instance, by requiring very strong
evidence to call something a loss, we can reduce the False Discovery Rate, at the
expense of not identifying many changes as such (i.e., at the expense of lowering
the sensitivity). Similarly, if a method predicts no change most of the time, the
Specificity will be high at the expense of a low sensitivity.

2 Simulations

2.1 Simulation settings

We have used the same simulated data sets as Willenbrock and Fridlyand [3] used
in their recent comparison of methods of aCGH analysis [3]. Details of the data are
provided in the original paper [3]; briefly, these are data “(...) simulated to emulate
the complexity of real tumor profiles” and designed to become “(...) a standard for
systematic comparisons of computational segmentation approaches” [3, p. 4]. The
authors simulated five hundred data sets based on the profiles of real tumor samples,
and a sample-specific variance (between 0.1 and 0.2) was added to each sample. It is
unlikely that these data were simulated under a model that is specifically well suited
for our method. Other simulated data sets (or simulation approaches) did not seem
appropriate to compare alternative approaches; most papers that present simulated
data do simulate the data under models that are the same (or very similar to) the
model used to analyze the data. The simulations in [1] are useful for examining
breakpoint detection, but not for questions related to the recovery of the correct
“gained, lost, no change” label, and the simulations in [4] are too simplistic in their
settings (only a single type of alteration added) and the number of points generated
is too short (100). The 500 data sets of Willenbrock and Fridlyand [3], however, are
suitable for examining recovery of true labels, are simulated based on real profiles to
which varying levels of noise are added, and provide a sufficiently large and diverse
data set to gain valuable information about the relative performance of different
methods.

We downloaded the data [3] from http://www.cbs.dtu.dk/~hanni/aCGH/, and
the actual file used was
http://www.cbs.dtu.dk/~hanni/aCGH/20chromosome.simulated.data.RData.
Each of the 500 simulations consisted of 20 chromosomes, with 100 clones in each
chromosome. One hundred clones per chromosome are too few points (at least for
most aCGH data for human samples) and make it hard to assess the effect of differ-
ences in spacing between clones. Thus, instead of using the 2000 clones as if divided
in 20 chromosomes, we just regarded all the 2000 clones as if they came from the
very same single chromosome which allows us to introduce fairly large numbers of
missing data (i.e., variability in spacing).

None of the data sets above included variability in inter-gene distances which,
as we argue in the paper, is an important feature of many real aCGH data sets,
and a specific problem we try to address with our method. Therefore, to assess if
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our method does perform reasonably under varying inter-gene distance (and how
it performs compared to other methods) we need to add inter-gene distance to the
data set. Instead of modifying the original simulation models of [3], we have instead
introduced “holes” (or missings) in the data thus replicating a situation where the
data are generated according to the models in [3], but the actual observed data is
a sample from the generated data (such as is the case with many aCGH platforms
that show unequal coverage of different parts of the genome).

The “holes”or missing fragments in the data have been created with a very simple
model: we choose at random 100 locations in the genome, and eliminate a contiguous
segment of clones. The length of this segment is modeled with a Poisson distribution
(so the actual length of the segment that is missing is drawn, randomly, from a
Poisson distribution with parameter λ). This λ parameter determines the average
number of missing points; in addition, as this is a Poisson distribution (where the
variance is = λ), increasing λ results in an increase in the variance of the length of
the missing fragments. We have used, for the λ parameter, the values 2, 5, 10, or 13.
Thus, for each original data set, we obtain another four data sets, with a different
number of missing data points. On average, the derived data sets have 10%, 25%,
50% and 65%. In other words, from the 500 data sets, we generate another 2000
data sets. Thus, of the 2500 data sets, each subset of 500 has an average number
of missing points of 0% (in this case, 0 is not an average, but the actual number),
10%, 25%, 50% and 65%. To minimize the variability in methods’ comparisons, the
derived data sets analyzed by all methods were the same.

2.2 Results and discussion

Results are shown in Figures 1, 2, 3.

Overall performance: Correct Classification Rate RJaCGH is better than any
of the alternative approaches:

• The difference in performance between RJaCGH and alternative approaches
increases as the variability in spacing between clones increases (i.e., as the
proportion of missing genes increases). These patterns are seen in Figure
1 (a).

• The difference between RJaCGH and alternative approaches, is accen-
tuated in Figures 2 and Figure 3: contrary to other methods, RJaCGH
does not suffer the same decrease in performance as the noise in the data
increases.

False Discovery Rate The best performer is DNAcopy, and RJaCGH is the second
best; all other methods suffer from much greater False Discovery Rates (Figure
1, (b)). As the noise in the data increases, however, the difference between
RJaCGH and DNAcopy becomes smaller with RJaCGH being the method
with smallest FDR at the highest noise levels (Figure 3 (b)). For all practical
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Figure 1: Comparative performance on the simulated data from [3] (see text for details).
Relationship between the average value of the statistic and the variability in inter-gene
distance (increases in the percentage of genes missing are directly related to increases in
the variability in inter-gene distance). Shown are the mean and 95% confidence interval
around the mean (based on 500 data sets). In panels (a), (c), (d), higher is better; in panel
(b) lower is better.
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usages, however, differences between RJaCGH and DNAcopy in terms of FDR
are probably negligible.

Note, however, that the good performance of DNAcopy with respect to False
Discovery Rate is at the expense of a reduced Sensitivity (see next).

Sensitivity The largest sensitivity is achieved by BIOHMM at small values of noise
in the data and by RJaCGH with higher noise levels (see panel (c) in all Fig-
ures). Over all levels of noise in the data, however, the performance between
RJaCGH and BIOHMM (Figure 1 (c)) is indistinguishable, but clearly superior
to other methods. The good performance of BIOHMM with respect to Sensi-
tivity, however, is achieved at the expense of its high False Discovery Rate and
low Specificity (see below).

Specificity As could be expected from the definition of Specificity and False Dis-
covery Rate, the patterns of Specificity are similar to those commented above
for False Discovery Rate.

In summary, RJaCGH has the largest correct classification. For some specific
statistics, RJaCGH can be second (but very close) to some approaches; these other
approaches, however, perform poorly in the other performance statistics. Overall,
therefore, RJaCGH is the best performing method when considering the four avail-
able statistics.
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Figure 2: Analysis of simulated data: conditioning on variability of inter-gene distance. Analysis of data from Willenbrock and
Fridlyand [3] (see text for details on addition of gaps). For each level of average number of missing genes (0, 10, 25, 50, 65 %) or,
equivalently, for increasing levels of variance in the distance between clones, we compute the mean of the statistic at ten equally spaced
levels of noise in the data (i.e., the 500 data sets have been divided in 10 groups according to their noise, so that the midpoints of each
interval are 0.105, 0.115, 0.125, . . . , 0.185, 0.195). Therefore, each point in the figure corresponds to the mean from about 50 samples.
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Figure 3: Analysis of simulated data: conditioning on sample noise. Analysis of data from Willenbrock and Fridlyand [3] (see text and
Figure 2 for details). The noise (standard deviation) of each sample is split into ten non-overlapping ranges, and each panel shows the
average value of the statistic vs. the proportion of missing genes (i.e., increasing levels of variance in inter-gene distance) for a given
sample noise.
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3 Real data from Snijders et al.

We have also analyzed the well known nine cell lines from Snijders et al. [9] available
from
http://www.nature.com/ng/journal/v29/n3/suppinfo/ng754 S1.html and we have com-
pared the results from our method with the known ploidy, as provided by Snijders
et al.

Figure 4 shows the comparative performance of each of the methods. From the
figure we see that RJaCGH has performance comparable to that of the best method
for each statistic.

As an example of the type of output provided by RJaCGH, Figure 5 shows the
results of one analysis for the complete genome of the cell line gm03563. Panel a)
indicates a large posterior probability of a model with four hidden states; two of the
states of the four-state model, however, are extremely close to each other (panel b)
and, because of their posterior means (panel b) and variances (panel c) we consider
them to represent the same biological state of no change in copy number. The other
two states are well separated, with posterior means clearly negative or positive, so
we regard them as biological states of loss and gain of copy number. Note that the
component that represents the hidden state of loss is assigned to only two genes
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Figure 4: Comparative performance on the nine cell lines from Snijders et al. [9]. We
show the value of the performance statistics for each cell line (numbered 1 to 9, which
correspond to gm01524, gm01535, gm01750, gm03134, gm03563, gm05296, gm07081,
gm13031,gm13330, respectively). In all these figures, “larger is better” (note we use 1-
FDR, not FDR). Only three values are shown for BIOHMM, as the rest of data lead to
crashes in the program.
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Figure 5: Results of the RJaCGH analysis of gm03563 cell line from Snijders. Results
shown are from four parallel chains; see text for details about other parameters. The lower
panel shows the results from the Bayesian Model Averaging step (see text); black dots
correspond to genes classified as ’normal’ or non-changed, red dots to genes classified as
’gained’ and green dots to genes classified as ’losses’; the lower blue line shows the posterior
probability for every gene of belonging to the predicted state. The vertical alternating white
and grey bars denote the different chromosomes with the chromosome number shown at
bottom.

(panel e, green dots), exactly the same two genes whose true state is loss [9]. Panel
d) shows that the probability of remaining on the same state decreases as distance
increases, eventually becoming 0.25(= 1/Number hidden states). Finally, panel e)
shows the results from the Bayesian Model Averaging. This is a particularly clear-cut
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model, as the posterior probabilities that each gene belongs to the state with highest
posterior is very high (the lower blue line is > 0.9 for almost all genes).

4 Implementation and analysis

We have implemented RJaCGH using C (for the sweep algorithm) and R [10]. The
code is available from CRAN
(http://cran.r-project.org/src/contrib/Descriptions/RJaCGH.html)
and from the Asterias site (http://www.asterias.info). All analysis and compar-
isons have been done in R, using the BioConductor (http://www.bioconductor.
org) packages DNAcopy by by E. S. Venkatraman and Adam Olshen and aCGH by
Jane Fridlyand and Peter Dimitorv, and a version of ACE implemented by O.M.R.
in R and C.
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