
Time Series Database Interface: R SQLite

(TSSQLite)

October 31, 2007

1 Introduction

The code from the vignette that generates this guide can be loaded into an
editor with edit(vignette(”TSSQLite”)). This uses the default editor, which can
be changed using options(). It should be possible to view the pdf version of the
guide for this package with print(vignette(”TSSQLite”)).

WARNING: running these example will overwrite tables in the SQLite ”test”
database on the server.

In SQLite there does not seem to be any need to set user or password infor-
mation, and examples here all use the localhost.

Once R is started, the functions in this package are made available with

> library("TSSQLite")

This will also load required packages TSdbi, DBI, RSQLite, methods, and
tframe. Some examples below also require zoo, and tseries.

The next small section of code is necessary to setup database tables. It
needs to be done only once for a database and might typically be done by
an administrator rather than an end user. A more detailed description of the
instructions is given in the last section of this guide.

> m <- dbDriver("SQLite")

> con <- dbConnect(m, dbname = "test")

> source(system.file("TSsql/CreateTables.TSsql", package = "TSdbi"))

> dbDisconnect(con)

2 Using the Database - TSdbi Functions

This section gives several simple examples of putting series on and reading them
from the database. (If a large number of series are to be loaded into a database,
one would typically do this with a batch process using the database program’s
utilities for loading data.) The first thing to do is to establish a connection to
the database:

1

> m <- dbDriver("SQLite")

> con <- TSconnect(m, dbname = "test")

TSconnect uses dbConnect from the DBI package, but checks that the database
has expected tables, and checks for additional features. (It cannot be used before
the tables are created, as done in the previous section.)

This puts a series called vec on the database and then reads is back

> z <- ts(rnorm(10), start = c(1990, 1), frequency = 1)

> seriesNames(z) <- "vec"

> if (TSexists("vec", con)) TSdelete("vec", con)

> TSput(z, con)

> z <- TSget("vec", con)

If the series is printed it is seen to be a ”ts”time series with some extra attributes.
TSput fails if the series already exists on the con, so the above example

checks and deletes the series if it already exists. TSreplace does not fail if the
series does not yet exist, so examples below use it instead. Several plots below
show original data and the data retrieved after it is written to the database.
One is added to the original data so that both lines are visible.

And now more examples:

> z <- ts(matrix(rnorm(20), 10, 2), start = c(1990, 1), frequency = 1)

> seriesNames(z) <- c("matc1", "matc2")

> TSreplace(z, con)

[1] TRUE

> TSget("matc1", con)

Time Series:
Start = 1990
End = 1999
Frequency = 1

1 2 3 4 5 6 7
-2.0263124 -0.9808394 0.5043470 -0.4387119 -0.3575975 -1.6170385 -2.3179034

8 9 10
-0.2972649 1.1390135 0.5244727
attr(,"seriesNames")
[1] matc1
attr(,"TSmeta")
<S4 Type Object>
attr(,"serIDs")
[1] "matc1"
attr(,"dbname")
[1] "test"
attr(,"con")

2

[1] "TSSQLiteConnection"
attr(,"con")attr(,"package")
[1] "TSSQLite"
attr(,"ExtractionDate")
[1] "2007-10-31 10:05:27 EDT"
attr(,"TSdescription")
[1] ""
attr(,"TSdoc")
[1] ""
attr(,"class")
[1] "TSmeta"
attr(,"class")attr(,"package")
[1] "TSdbi"

> TSget("matc2", con)

Time Series:
Start = 1990
End = 1999
Frequency = 1

1 2 3 4 5 6
-0.06080199 1.06841351 1.40816722 -0.45387667 -0.15632559 -0.49977510

7 8 9 10
0.44689424 -0.03695242 1.33855452 -0.93950371
attr(,"seriesNames")
[1] matc2
attr(,"TSmeta")
<S4 Type Object>
attr(,"serIDs")
[1] "matc2"
attr(,"dbname")
[1] "test"
attr(,"con")
[1] "TSSQLiteConnection"
attr(,"con")attr(,"package")
[1] "TSSQLite"
attr(,"ExtractionDate")
[1] "2007-10-31 10:05:27 EDT"
attr(,"TSdescription")
[1] ""
attr(,"TSdoc")
[1] ""
attr(,"class")
[1] "TSmeta"
attr(,"class")attr(,"package")
[1] "TSdbi"

3

> TSget(c("matc1", "matc2"), con)

Time Series:
Start = 1990
End = 1999
Frequency = 1

matc1 matc2
1990 -2.0263124 -0.06080199
1991 -0.9808394 1.06841351
1992 0.5043470 1.40816722
1993 -0.4387119 -0.45387667
1994 -0.3575975 -0.15632559
1995 -1.6170385 -0.49977510
1996 -2.3179034 0.44689424
1997 -0.2972649 -0.03695242
1998 1.1390135 1.33855452
1999 0.5244727 -0.93950371
attr(,"seriesNames")
[1] matc1 matc2
attr(,"TSmeta")
<S4 Type Object>
attr(,"serIDs")
[1] "matc1" "matc2"
attr(,"dbname")
[1] "test"
attr(,"con")
[1] "TSSQLiteConnection"
attr(,"con")attr(,"package")
[1] "TSSQLite"
attr(,"ExtractionDate")
[1] "2007-10-31 10:05:27 EDT"
attr(,"TSdescription")
[1] ""
attr(,"TSdoc")
[1] ""
attr(,"class")
[1] "TSmeta"
attr(,"class")attr(,"package")
[1] "TSdbi"

> tfplot(z + 1, TSget(c("matc1", "matc2"), con), lty = c("solid",

"dashed"), col = c("black", "red"))

4

1990 1992 1994 1996 1998

−
1.

0
0.

5
2.

0

m
at

c1

1990 1992 1994 1996 1998

−
1

1
2

3

m
at

c2

> z <- ts(matrix(rnorm(20), 10, 2), start = c(1990, 1), frequency = 4)

> seriesNames(z) <- c("matc1", "matc2")

> TSreplace(z, con)

[1] TRUE

> TSget(c("matc1", "matc2"), con)

matc1 matc2
1990 Q1 1.5782189 0.9975592
1990 Q2 0.5823056 0.7837664
1990 Q3 0.9192500 -2.1814976
1990 Q4 -2.1524540 1.3732599
1991 Q1 0.7464186 0.2877386
1991 Q2 1.6133384 0.8796452
1991 Q3 1.6805765 -0.2531776
1991 Q4 0.5004499 -1.2044644
1992 Q1 -1.0566226 -0.1796151
1992 Q2 1.3337242 0.4817806
attr(,"seriesNames")
[1] matc1 matc2
attr(,"TSmeta")
<S4 Type Object>

5

attr(,"serIDs")
[1] "matc1" "matc2"
attr(,"dbname")
[1] "test"
attr(,"con")
[1] "TSSQLiteConnection"
attr(,"con")attr(,"package")
[1] "TSSQLite"
attr(,"ExtractionDate")
[1] "2007-10-31 10:05:31 EDT"
attr(,"TSdescription")
[1] ""
attr(,"TSdoc")
[1] ""
attr(,"class")
[1] "TSmeta"
attr(,"class")attr(,"package")
[1] "TSdbi"

> tfplot(z + 1, TSget(c("matc1", "matc2"), con), lty = c("solid",

"dashed"), col = c("black", "red"))

1990.0 1990.5 1991.0 1991.5 1992.0

−
1

0
1

m
at

c1

1990.0 1990.5 1991.0 1991.5 1992.0

−
1.

5
0.

0
1.

5

m
at

c2

6

> z <- ts(matrix(rnorm(200), 100, 2), start = c(1995, 1), frequency = 12)

> seriesNames(z) <- c("mat2c1", "mat2c2")

> TSreplace(z, con)

[1] TRUE

> tfplot(z + 1, TSget(c("mat2c1", "mat2c2"), con), lty = c("solid",

"dashed"), col = c("black", "red"))

1996 1998 2000 2002

−
2

0
2

m
at

2c
1

1996 1998 2000 2002

−
2

0
2

4

m
at

2c
2

The following extract information about the series from the database, al-
though not much information has been added for these examples.

> TSmeta("mat2c1", con)

> TSmeta("vec", con)

> TSdates("vec", con)

> TSdescription("vec", con)

> TSdoc("vec", con)

Below are exampoles that make more use of TSdescription and codeTSdoc.
Often it is convenient to set the default connection:

> options(TSconnection = con)

and then the con specification can be omitted from the function calls unless
another connection is needed. The con can still be specified, and some examples
below do specify it, just to illustrate the alternative syntax.

7

> z <- TSget("mat2c1")

> TSmeta("mat2c1")

serIDs: mat2c1 from dbname: test
description:
documentaion:

Data documentation can be in two forms, a description specified by TSde-
scription or longer documentation specified by TSdoc. These can be added to
the time series object, in which case they will be written to the database when
TSput or TSreplace is used to put the series on the database. Alternatively,
they can be specified as arguments to TSput or TSreplace. The description or
documentation will be retrieved as part of the series object with TSget only if
this is specified with the logical arguments TSdescription and TSdoc. They can
also be retrieved directly from the database with the functions TSdescription
and TSdoc.

> z <- ts(matrix(rnorm(10), 10, 1), start = c(1990, 1), frequency = 1)

> TSreplace(z, serIDs = "Series1", con)

[1] TRUE

> zz <- TSget("Series1", con)

> TSreplace(z, serIDs = "Series1", con, TSdescription = "short rnorm series",

TSdoc = "Series created as an example in the vignette.")

[1] TRUE

> zz <- TSget("Series1", con, TSdescription = TRUE, TSdoc = TRUE)

> start(zz)

[1] 1990 1

> end(zz)

[1] 1999 1

> TSdescription(zz)

[1] "short rnorm series"

> TSdoc(zz)

[1] "Series created as an example in the vignette."

> TSdescription("Series1", con)

[1] "short rnorm series"

> TSdoc("Series1", con)

8

[1] "Series created as an example in the vignette."

> z <- ts(rnorm(10), start = c(1990, 1), frequency = 1)

> seriesNames(z) <- "vec"

> TSreplace(z, con)

[1] TRUE

> zz <- TSget("vec", con)

> z <- ts(matrix(rnorm(20), 10, 2), start = c(1990, 1), frequency = 1)

> seriesNames(z) <- c("matc1", "matc2")

> TSreplace(z, con)

[1] TRUE

> tfplot(z + 1, TSget(c("matc1", "matc2"), con), lty = c("solid",

"dashed"), col = c("black", "red"))

1990 1992 1994 1996 1998

−
1.

0
0.

5

m
at

c1

1990 1992 1994 1996 1998

−
1

1
2

3

m
at

c2

> z <- ts(matrix(rnorm(20), 10, 2), start = c(1990, 1), frequency = 4)

> seriesNames(z) <- c("matc1", "matc2")

> TSreplace(z, con)

[1] TRUE

9

> tfplot(z + 1, TSget(c("matc1", "matc2"), con), lty = c("solid",

"dashed"), col = c("black", "red"))

1990.0 1990.5 1991.0 1991.5 1992.0

−
1

1
2

m
at

c1

1990.0 1990.5 1991.0 1991.5 1992.0

−
2

0
2

m
at

c2

> z <- ts(matrix(rnorm(200), 100, 2), start = c(1995, 1), frequency = 12)

> seriesNames(z) <- c("mat2c1", "mat2c2")

> TSreplace(z, con)

[1] TRUE

> tfplot(z + 1, TSget(c("mat2c1", "mat2c2"), con), lty = c("solid",

"dashed"), col = c("black", "red"))

10

1996 1998 2000 2002

−
2

0
2

m
at

2c
1

1996 1998 2000 2002

−
2

0
2

m
at

2c
2

The following examples use dates and times which are not handled by ts, so
the zoo time representation is used.

> require("zoo")

> z <- zoo(matrix(rnorm(200), 100, 2), as.Date("1990-01-01") +

0:99)

> seriesNames(z) <- c("zooc1", "zooc2")

> TSreplace(z, con, Table = "D")

[1] TRUE

> tfplot(z + 1, TSget(c("zooc1", "zooc2"), con), lty = c("solid",

"dashed"), col = c("black", "red"))

11

−
2

0
2

4

zo
oc

1

Jan Mar

−
2

0
2

zo
oc

2

Jan Mar

> z <- zoo(matrix(rnorm(200), 100, 2), as.Date("1990-01-01") +

0:99 * 7)

> seriesNames(z) <- c("zooWc1", "zooWc2")

> TSreplace(z, con, Table = "W")

[1] TRUE

> tfplot(z + 1, TSget(c("zooWc1", "zooWc2"), con), col = c("black",

"red"), lty = c("dashed", "solid"))

12

−
2

0
2

zo
oW

c1

1990 1991

−
2

0
2

zo
oW

c2

1990 1991

> dbDisconnect(con)

2.1 Examples Using TSdbi with ets

The database called ”ets” is available at the Bank of Canada. These exam-
ples are illustrated in the TSMySQL and TSpadi packages, but ets is not yet
implemented under TSSQLite.

3 Examples Using get.hist.quote

This section illustrates fetching data from elsewhere and loading it into the
database. This would be a very slow way to load a database, but provides
examples of different kinds of time series data.

The fetches are wrapped in try() and a flag quote.ok set because the fetch
attempt may fail due to lack of an Interenet connection or delays.

> con <- TSconnect(dbDriver("SQLite"), dbname = "test")

> options(TSconnection = con)

> require("tseries")

> quote.ok <- !inherits(try(x <- get.hist.quote(instrument = "^gspc",

start = "1998-01-01", quote = "Close"), silent = TRUE), "try-error")

13

time series starts 1998-01-02

> if (quote.ok) plot(x)

> if (quote.ok) {

TSrefPeriod(x) <- "Close"

TSreplace(x, serIDs = "gspc", Table = "B", TSdescription. = "gspc Close",

TSdoc. = paste("gspc Close retrieved with get.hist.quote on ",

Sys.Date()))

tfplot(TSget(serIDs = "gspc"))

}

80
0

10
00

12
00

14
00

gs
pc

1998 2000 2002 2004 2006 2008

> quote.ok <- !inherits(try(x <- get.hist.quote(instrument = "ibm",

quote = c("Cl", "Vol"))), "try-error")

> if (quote.ok) {

TSreplace(x, serIDs = c("ibm.Cl", "ibm.Vol"), Table = "B",

TSdescription. = c("IBM Close", "IBM Volume"), TSdoc. = paste(c("IBM Close retrieved with get.hist.quote on ",

"IBM Volume retrieved with get.hist.quote on "),

Sys.Date()))

z <- TSget(serIDs = c("ibm.Cl", "ibm.Vol"), TSdescription = TRUE)

tfplot(z, xlab = TSdescription(z))

}

14

50
15

0
25

0

IBM Close

ib
m

.C
l

1995 2000 2005

0e
+

00
4e

+
07

IBM Volume

ib
m

.V
ol

1995 2000 2005

> if (quote.ok) {

tfplot(z, Title = "IBM", start = "2007-01-01")

}

> quote.ok <- !inherits(try(x <- get.hist.quote(instrument = "EUR/USD",

provider = "oanda", start = "2004-01-01")), "try-error")

> if (quote.ok) {

TSreplace(x, serIDs = "EUR/USD", Table = "D")

z <- TSget(serIDs = "EUR/USD")

tfplot(z, Title = "EUR/USD")

}

15

1.
30

1.
35

1.
40

E
U

R
/U

S
D

Jan Mar May Jul Sep Nov

IBM

> if (quote.ok) {

tfplot(z, Title = "EUR/USD", start = "2007-01-01")

}

16

1.
30

1.
35

1.
40

E
U

R
/U

S
D

Jan Mar May Jul Sep Nov

EUR/USD

> if (quote.ok) {

tfplot(z, Title = "EUR/USD", start = "2007-03-01")

}

17

1.
32

1.
34

1.
36

1.
38

1.
40

1.
42

1.
44

E
U

R
/U

S
D

Mar May Jul Sep Nov

EUR/USD

> if (quote.ok) {

tfplot(z, Title = "EUR/USD", start = Sys.Date() - 14, end = Sys.Date(),

xlab = format(Sys.Date(), "%Y"))

}

18

1.
42

0
1.

42
5

1.
43

0
1.

43
5

1.
44

0

2007

E
U

R
/U

S
D

Oct 18 Oct 20 Oct 22 Oct 24 Oct 26 Oct 28 Oct 30

EUR/USD

> dbDisconnect(options()$TSconnection)

> options(TSconnection = NULL)

4 Examples Using DBI and direct SQL Queries

The following examples are queries using the underlying ”DBI” functions. They
should not often be needed to access time series, but may be useful to get at
more detailed information, or formulate special queries.

> m <- dbDriver("SQLite")

> con <- TSconnect(m, dbname = "test")

> options(TSconnection = con)

> dbListTables(con)

[1] "A" "B" "D" "I" "M" "Meta" "Q" "S" "T" "U"
[11] "W"

If schema queries are supported then table information can be obtained
in a (almost) generic SQL way. On some systems this will fail because users
do not have read priveleges on the INFORMATION SCHEMA table. This
does not seem to be an issue in SQLite, but I have not figured out the SQLite
implementation so the following are wrapped in try().

19

Table 1: Data Tables

Table Contents
Meta meta data and index to series data tables
A annual data
Q quarterly data
M monthly data
S semiannual data
W weekly data
D daily data
B business data
U minutely data
I irregular data with a date
T irregular data with a date and time

> try(dbGetQuery(con, paste("SELECT COLUMN_NAME FROM INFORMATION_SCHEMA.Columns ",

" WHERE TABLE_SCHEMA=’test’ AND table_name=’A’ ;")))

> try(dbGetQuery(con, paste("SELECT COLUMN_NAME, COLUMN_DEFAULT, COLLATION_NAME, DATA_TYPE,",

"CHARACTER_SET_NAME, CHARACTER_MAXIMUM_LENGTH, NUMERIC_PRECISION",

"FROM INFORMATION_SCHEMA.Columns WHERE TABLE_SCHEMA=’test’ AND table_name=’A’ ;")))

> try(dbGetQuery(con, paste("SELECT COLUMN_NAME, DATA_TYPE, CHARACTER_MAXIMUM_LENGTH, NUMERIC_PRECISION",

"FROM INFORMATION_SCHEMA.Columns WHERE TABLE_SCHEMA=’test’ AND table_name=’M’;")))

Finally, to disconnect gracefully, one should

> dbDisconnect(options()$TSconnection)

> options(TSconnection = NULL)

5 Administration: Database Table Setup

The instructions in this section can be done in R using instructions in the file
CreateTables.TSsql in the TSdbi package (distributed in TSdbi/inst/TSsql/).
A simple way to do this was illustrated in the Introduction. Below the plain
SQL instruction are shown. These could be executed in the mysql standalone
client. This might be convenient when bulk loading data. (Example makefiles
might sometime be available from the author.)

The database tables are shown in the Data Tables table. The Meta table
is used for storing meta data about series, such as a description and longer
documentation, and also includes an indication of what table the series data is
stored in. To retrieve series it is not necessary to know which table the series is
on, since this can be found on the Meta table. Putting data on the database may
require specifying the table, if it cannot be determined from the R representation
of the series.

20

The tables can be set up with the following commands. (Please note that this
documentation is not automatically maintained, and could become out-of-date.
The instructions in the file TSsql/CreateTables.TSsql are tested automatically,
and thus guaranteed to be current.)

DROP TABLE IF EXISTS Meta;

create table Meta (
id VARCHAR(40) NOT NULL,
tbl CHAR(1),
refPeriod VARCHAR(10) default NULL,
description TEXT,
documentation TEXT,
PRIMARY KEY (id)
);

DROP TABLE IF EXISTS A;

create table A (
id VARCHAR(40),
year INT,
v double DEFAULT NULL
);

DROP TABLE IF EXISTS B;

create table B (
id VARCHAR(40),
date DATE,
period INT,
v double DEFAULT NULL
);

DROP TABLE IF EXISTS D;

create table D (
id VARCHAR(40),
date DATE,
period INT,
v double DEFAULT NULL
);

DROP TABLE IF EXISTS M;

create table M (
id VARCHAR(40),

21

year INT,
period INT,
v double DEFAULT NULL
);

DROP TABLE IF EXISTS U;

create table U (
id VARCHAR(40),
date DATETIME,
tz VARCHAR(4), #not tested
period INT,
v double DEFAULT NULL
);

DROP TABLE IF EXISTS Q;

create table Q (
id VARCHAR(40),
year INT,
period INT,
v double DEFAULT NULL
);

DROP TABLE IF EXISTS S;

create table S (
id VARCHAR(40),
year INT,
period INT,
v double DEFAULT NULL
);

DROP TABLE IF EXISTS W;

create table W (
id VARCHAR(40),
date DATE,
period INT,
v double DEFAULT NULL
);

DROP TABLE IF EXISTS I;

create table I (
id VARCHAR(40),

22

date DATE,
v double DEFAULT NULL
);

DROP TABLE IF EXISTS T;

create table T (
id VARCHAR(40),
date DATETIME,
v double DEFAULT NULL
);

Indexes can be generated as follows. (It may be quicker to load data before
generating indices.)

CREATE INDEX Metaindex_tbl ON Meta (tbl);

CREATE INDEX Aindex_id ON A (id);
CREATE INDEX Aindex_year ON A (year);
CREATE INDEX Bindex_id ON B (id);
CREATE INDEX Bindex_date ON B (date);
CREATE INDEX Bindex_period ON B (period);
CREATE INDEX Dindex_id ON D (id);
CREATE INDEX Dindex_date ON D (date);
CREATE INDEX Dindex_period ON D (period);
CREATE INDEX Mindex_id ON M (id);
CREATE INDEX Mindex_year ON M (year);
CREATE INDEX Mindex_period ON M (period);
CREATE INDEX Uindex_id ON U (id);
CREATE INDEX Uindex_date ON U (date);
CREATE INDEX Uindex_period ON U (period);
CREATE INDEX Qindex_id ON Q (id);
CREATE INDEX Qindex_year ON Q (year);
CREATE INDEX Qindex_period ON Q (period);
CREATE INDEX Sindex_id ON S (id);
CREATE INDEX Sindex_year ON S (year);
CREATE INDEX Sindex_period ON S (period);
CREATE INDEX Windex_id ON W (id);
CREATE INDEX Windex_date ON W (date);
CREATE INDEX Windex_period ON W (period);
CREATE INDEX Iindex_id ON I (id);
CREATE INDEX Iindex_date ON I (date);

CREATE INDEX Tindex_id ON T (id);
CREATE INDEX Tindex_date ON T (date);

23

In SQLite you can check table information (eg. table A) with

describe A;

In sqlite3 data might typically be loaded into a table with command like

LOAD DATA LOCAL INFILE ’A.csv’ INTO TABLE A FIELDS TERMINATED BY ’,’;
.import ’A.csv’ A

Of course, the corresponding Meta table entries also need to be made.

24

