qzigp {ZIGP} | R Documentation |
'qzigp' calculates the quantiles of the ZIGP distribution.
qzigp(p, mu, phi, omega)
p |
vector of probabilities |
mu |
mean |
phi |
dispersion parameter |
omega |
zero inflation parameter |
Calculates a vector of the same length as of p containing quantiles of the ZIGP distribution.
p <- seq(0, 1, 0.1) qzigp(p, 2, 1.5, 0.2) #[1] 0 0 0 0 0 1 1 2 3 4 75 ## The function is currently defined as function(p, mu = stop("no mu arg"), phi = stop("no phi arg"), omega = stop("no omega arg")) { # check if parameters are valid if(omega < 0) {return("omega has to be in [0,1]!")} if(omega > 1) {return("omega has to be in [0,1]!")} p.in <- p upper <- max(p.in) s <- double(1000) q <- double(length(p.in)) p <- double(1) #P(X=0) p <- omega + (1-omega) * exp(-mu/phi) s[1] <- p if (upper > 0) { rekursive <- FALSE i <- 1 while (s[i] < upper) { #P(X=x) if (rekursive==FALSE) { p <- (1-omega)*mu*(mu+(phi-1)*i)^(i-1)/exp(lgamma(i+1))* phi^(-i)*exp(-1/phi*(mu+(phi-1)*i))} if (p==Inf) { rekursive <- TRUE log.p.alt <- log( (1-omega)*mu*(mu+(phi-1)*(i-1))^(i-2)/exp(lgamma(i-1+1))* phi^(-(i-1))*exp(-1/phi*(mu+(phi-1)*(i-1)))) } if (rekursive==TRUE) { log.p <- log( (mu+(i-1)*(phi-1))/(phi*i)* (1+(phi-1)/(mu+(i-1)*(phi-1)))^(i-1)* exp(1/phi-1) ) + log.p.alt log.p.alt <- log.p p <- exp(log.p) } if (ceiling(i/1000)==floor(i/1000)) { temp <- double(1000) s <- c(s,temp) } s[i+1] <- s[i] + p i <- i+1 } } for (j in 1:length(p.in)) { i <- 1 while (p.in[j] > s[i]) { i <- i+1 } q[j] <- i-1 } return(q) }