
S4 Classes for Distributions—a manual for packages "distr",

"distrEx", "distrSim", "distrTEst", version 1.9

Peter Ruckdeschel∗
Matthias Kohl†
Thomas Stabla‡

Florian Camphausen§

Mathematisches Institut
Universität Bayreuth
D-95440 Bayreuth

Germany
e-Mail: peter.ruckdeschel@uni-bayreuth.de

July 27, 2007

Abstract
"distr" is a package for R from version 1.8.1 onwards that is distributed under

GPL license 2.0. Its own current version is 1.9. The aim of this package is to provide
a conceptual treatment of random variables (r.v.’s) by means of S4–classes. A mother
class Distribution is introduced with slots for a parameter and for functions r, d,
p, and q for simulation, respectively for evaluation of density / c.d.f. and quantile
function of the corresponding distribution. All distributions of the "stats" package are
implemented as subclasses of either AbscontDistribution or DiscreteDistribution,
which themselves are again subclasses of UnivariateDistribution. By means of these
classes, we may automatically generate new objects of these classes for the laws of
r.v.’s under standard mathematical univariate transformations and under convolution
of independent r.v.’s. From version 1.6 on, "distr" has been split up into the smaller
packages "distr" (only distribution-classes and -methods), "distrSim" (standardized
treatment of simulations, also under contaminations) and "distrTEst"
(classes and methods for evaluations of statistical procedures on such simulations).
The latter two of them require package "setRNG" by Paul Gilbert to be installed from
CRAN.
Additionally, mainly contributed by [4], in "distrEx" we extend the functionality of
"distr", providing functionals like expectation or variance and distances for distri-
butions. Also, this package contains some first steps to multivariate distributions,

∗Universität Bayreuth
†SIRS-Lab GmbH, Jena
‡Hans-Sachs-Gymnasium Nürnberg
§West-LB, Düsseldorf

1

mailto:pgilbert@bank-banque-canada.ca
http://cran.r-project.org/mirrors.html

providing classes for discrete multivariate distributions and for factorized, conditional
distributions.

Contents

0 Motivation 4

1 Concept 6

2 Organization in classes 7
2.1 Distribution classes . 7

2.1.1 Subclasses . 8
2.1.2 Classes for multivariate distributions and for conditional distributions 9
2.1.3 Parameter classes . 11

2.2 Simulation classes . 11
2.3 Evaluation class . 14
2.4 EvaluationList class . 15

3 Methods 15
3.1 Affine linear transformations . 16
3.2 The group math of unary mathematical operations 16
3.3 Construction of d, p, and q from r . 17
3.4 Convolution . 17
3.5 Overloaded generic functions . 17
3.6 liesInSupport . 20
3.7 Simulation (in package distrSim) . 20
3.8 Evaluate (in package distrTEst) . 26
3.9 Is-Relations . 26
3.10 Further methods . 27
3.11 Functionals (in package distrEx) . 27

3.11.1 Expectation . 27
3.11.2 Variance . 29
3.11.3 Further functionals . 30

3.12 Truncated moments (in package distrEx) . 30
3.13 Distances (in package distrEx) . 31
3.14 Functions for demos (in package distrEx) 31

3.14.1 CLT for arbitrary summand distribution 31
3.14.2 LLN for arbitrary summand distribution 31
3.14.3 Deconvolution example . 32

2

4 Options 32
4.1 Options for distr . 32
4.2 Options for distrEx . 33
4.3 Options for distrSim . 34
4.4 Options for distrTEst . 34

5 Startup Messages 34

6 System/version requirements 35
6.1 System requirements . 35
6.2 Required version of R . 35
6.3 Dependencies . 35
6.4 License . 36

7 Details to the implementation 36

8 A general utility 37

9 Odds and Ends 37
9.1 What should be done and what we could do 37
9.2 What should be done but for which we lack the know-how 37

10 Acknowledgement 38

11 Examples 38
11.1 12-fold convolution of uniform (0, 1) variables 38
11.2 Comparison of exact convolution to FFT for normal distributions 40
11.3 Comparison of FFT to RtoDPQ . 43
11.4 Comparison of exact and approximate stationary regressor distribution . . . 46
11.5 Truncation and Huberization/winsorization 49
11.6 Distribution of minimum and maximum of two independent random variables 56
11.7 Instructive destructive example . 61
11.8 A simulation example . 62
11.9 Expectation of a given function under a given distribution 68
11.10n-fold convolution of absolutely continuous distributions 69

This document appeared in an abridged form in R-News, 6(2) as“S4 Classes for Distributions”, c.f.
[8], which in its published form refers to package versions 1.6, resp. 0.4-2. This document takes into
account the subsequent revisions and versions.

3

0 Motivation

R up to now contains powerful techniques for virtually any useful distribution using the
suggestive naming convention [prefix]<name> as functions where [prefix] stands for r,
d, p, or q and <name> is the name of the distribution.
There are limitations of this concept, however: You can only use distributions which are
implemented in some library already or for which you yourself have provided an implemen-
tation. In many natural settings you want to formulate algorithms once for all distributions,
so you should be able to treat the actual distribution <name> as sort of a variable.
You may of course paste together prefix and the value of <name> as a string and then use
eval(parse(....)). This is neither very elegant nor flexible, however.
Instead, we would rather like to implement the algorithm by passing an object of some
distribution class as argument to the function. Even better though, we would use a generic
function and let the S4-dispatching mechanism decide what to do at run-time. In partic-
ular, we would like to automatically generate the corresponding functions r, d, p, and q
for the law of expressions like X+3Y for objects X and Y of class Distribution, or, more
general, of a transformation of X, Y under a function f : R2 → R which is already realized
as a function in R.
This is possible with package "distr". As an example, try

> library(distr)

> N <- Norm(mean = 2, sd = 1.3)

> P <- Pois(lambda = 1.2)

> Z <- 2*N + 3 + P

> Z

Distribution Object of Class: AbscontDistribution

> plot(Z, withSweave = TRUE)

> p(Z)(0.4)

[1] 0.002404514

> q(Z)(0.3)

[1] 6.709

> Zs <- r(Z)(50)

> Zs

[1] 6.241509 4.255878 10.157096 6.552644 10.408005 9.139607 9.492226
[8] 4.719508 9.590499 11.083819 7.460663 9.521220 3.986724 10.073012
[15] 6.074737 8.801221 8.959170 4.500947 6.326799 10.237874 11.903103

4

[22] 11.580105 6.946968 4.408885 9.964763 5.276061 15.118674 10.536000
[29] 4.825118 10.905699 8.768601 7.477989 3.450973 13.651364 5.504031
[36] 10.865972 10.360069 7.676843 9.748552 9.973526 7.946040 8.641474
[43] 9.838526 9.240986 9.799410 7.288146 10.473106 5.972859 13.561151
[50] 8.286181

−5 0 5 10 20

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

0.
12

0.
14

x

d(
x)

Density of AbscontDistribution()

−5 0 5 10 20

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

q

p(
q)

CDF of AbscontDistribution()

0.0 0.4 0.8

0
5

10
15

20

p

q(
p)

Quantile function of AbscontDistribution()

Comment:
Let N an object of class "Norm" with parameters mean=2, sd=1.3 and let P an object of class "Pois"
with parameter lambda=1.2. Assigning to Z the expression 2*N+3+P, a new distribution object is
generated —of class "AbscontDistribution" in our case— so that identifying N, P, Z with random
variables distributed according to N, P, Z, L(Z) = L(2 ∗ N + 3 + P), and writing p(Z)(0.4) we get
P (Z ≤ 0.4), q(Z)(0.3) the 30%-quantile of Z, and with r(Z)(50) we generate 50 pseudo random
numbers distributed according to Z, while the plot command generates the above figure.

5

1 Concept

In developing our packages, we had the following principles in mind: We wanted to be
open in our design so that our classes could easily be extended by any volunteer in the R
community to provide more complex classes of distributions as multivariate distributions,
times series distributions, conditional distributions. As an exercise, the reader is encour-
aged to implement extrem value distributions from the package "evd"1. The largest effort
will in fact be the documentation. . .
We also wanted to preserve naming and notation from R-"stats" as far as possible so that
any programmer used to S could quickly use our package. Even more so, as the distribu-
tions already implemented to R are all well tested and programmed with skills we lack, we
use the existing r, d, p, and q-functions wherever possible, only wrapping them by small
code sniplets to our class hierarchy.
Third we wanted to use a suggestive notation for our automatically generated methods r,
d, p, and q, which we think is now largely achieved. All this should make intensive use
of object orientation in order to be able to use inheritance and method overloading. Let
us briefly explain why we decided to realize r, d, p, and q as part of our class definitions:
Doing so, we place ourselves somewhere between pure object orientation where methods
would be slots —in the language of the S4-concept, confer [2]— and the S4 paradigm where
methods “live their own life” apart from the classes, or, to q, which should be regarded use
[1]’s terminology, we use COOP2-style for r, d, p, and q methods, and FOOP3 -style for
”normal” methods.
The S4-paradigm with methods which are not attached to an object but rather behave dif-
ferently according to the classes of their arguments is fine if there are particular user-written
methods for only some few general distribution classes like AbscontDistribution, as in
the case for plot or "+" (c.f. [5], Section 2.2). During a typical R session with "distr",
however, there will be a lot of, mostly automatically generated objects of our distribution
classes, each with its own r, d, p, and q; this even applies to intermediate expressions like
2*N, 2*N+3 to eventually produce Z in the example in the motivation. Treating r, d, p,
and q as generic functions, we would need to generate new classes for each expression 2*N,
2*N+3, Z and, correspondingly, particular S4-methods for r, d, p, and q for each of these
new classes; apparently, this would produce overly many classes for an effective inheritance
structure.
In providing arithmetics for distributions, we have to deviate a little from the paradigm of
S as a functional language: For operators like “+”, additional parameters controlling the
precision of the results cannot be handily passed as arguments. For this purpose we provide

1a solution to this “homework” may be found in the sources to "distrEx"
2class-object-orientated programming, as e.g. in C++
3function-object-orientated programming, as in the S4-concept

6

global options which may be inspected and modified by distroptions, getdistrOption4

in complete analogy to options, getOption. Finally our concept as to parameters: Con-
trary to the standard R-functions like rnorm we only permit length 1 for parameters like
mean, because we see the objects as implementations of univariate random variables, for
which vector-valued parameters make no sense; rather one could gather several objects
with possibly different parameters to a vector/list of distributions. Of course, the origi-
nal functions rnorm etc. remain unchanged and still allow for vector-valued parameters.
Kouros Owzar in an off-list mail raised the point, that in case of multiple parameters as
in case of the normal or the Γ-distribution, it might be useful to be able to pass these
multiple parameters in vectorized form to the generating function. We, too, think that this
is a good idea, but even more plan to introduce a further extension package to "distr"
which will cover statistical models. In this package, this issue will be solved by requiring
a map θ 7→ Pθ or, in S, a function function(theta).... which returns an object of class
distribution or subclass, which realizes Pθ. So it will be up to the programmer or user how
to realize this map.

2 Organization in classes

Loosely speaking we have three large groups of classes: distribution classes (in "distr"),
simulation classes (in "distrSim") and an evaluation class (in "distrTEst"), where the
latter two are to be considered only as tools which allow a unified treatment of simulations
and evaluation of statistical estimation (perhaps also tests and predictions later) under
varying simulation situations. Additionally, package "distrEx" provides classes for discrete
multivariate distributions and for factorized, conditional distributions, as well as a bundle
of functionals and distances (see below).

2.1 Distribution classes

The purpose of the classes derived from the class Distribution is to implement the concept
of a r.v./distribution as such in R.
All classes derived from Distribution have a slot param for a parameter, a slot img for
the range and the constitutive slots r, d, p, and q.
From version 1.9 on, up to arguments referring to a parameter of the distribution (like
mean for the normal distribution), these function slots have the same arguments as those
of package "stats", i.e.; for a distribution object X we may call these functions as

• r(X)(n) —except for objects of class Hyper, where there is a slot n already, so
here the argument name to r is nn.

4Upto version 0.4-4, we used a different mechanism to inspect/modify global options of "distrEx"

(see section 4.2); corresponding functions distrExoptions, getdistrExOption for package "distrEx" are
available from version 1.9 on.

7

• d(X)(x, log = FALSE)

• p(X)(q, lower.tail = TRUE, log.p = FALSE)

• q(X)(p, lower.tail = TRUE, log.p = FALSE)

For the arguments of these function slots see e.g. rnorm from package "stats". Note
that, as usual, slots d, p, and q are vectorized in their first argument, but are not on the
subsequent ones. The idea is to gain higher precision for the upper tails or when multiplying
probabilities.

2.1.1 Subclasses

To begin with, we have considered univariate distributions giving the S4-class Univari-
ateDistribution, and as typical subclasses, we have introduced classes for absolutely
continuous and discrete distributions —AbscontDistribution and DiscreteDistribu-
tion.

The former, from version 1.9 on, has a slot gaps of class OptionalMatrix, i.e.; an ob-
ject which may either be NULL or a matrix. This slot, if non-NULL, contains left and right
endpoints of intervals where the density of the object is 0. This slot may be inspected by
the accessor gaps() and modified by a corresponding replacement method. It may also
be filled automatically by setgaps(object, exactq = 6, ngrid = 50000), where upon
evaluation of the d-slot on a grid of length ngrid, all regions in the range5 of the distribu-
tion where the density is smaller than 10−exactq are set to gaps.
For saved objects from earlier versions, we provide the functions isOldVersion and
conv2NewVersion to check whether the object was generated by an older version of this
package and to convert such an object to the new format, respectively.

Class DiscreteDistribution has a slot support, a vector containing the support of the
distribution, which is truncated to the lower/upper TruncQuantile in case of an infinite
support. TruncQuantile is a global option of "distr" described in section 4. From
version 1.9 on, there are methods p.l and q.r for the left-continuous variant of the cdf,
i.e.; t 7→ p.l(t) = P (X < t)), and the right-continuous variant of the quantile function, i.e.;

s 7→ q.r(s) = sup{t |P (object ≤ t) ≤ s}

Also from version 1.9 on, class DiscreteDistribution has a subclass LatticeDistribu-
tion for supports consisting of6 an affine linear lattice of form p + iw for p ∈ R, w ∈ R,

5more precisely: between lower and upper TruncQuantile; TruncQuantile is a global option of "distr"
described in section 4

6or at least if filled with points carrying no mass have a representation as an affine linear lattice

8

w 6= 0 and i = 0, 1, . . . , L, L ∈ N ∪ ∞. This class gains a slot lattice of class Lat-
tice (see below). The purpose of this class is mainly its use in DFT/FFT methods for
convolution. Slot lattice may be inspected by the usual accessor function lattice().
As by inheritance, all subclasses of LatticeDistribution which prior to version 1.9 were
direct subclasses of DiscreteDistribution gain a slot lattice, too, we provide again
isOldVersion and conv2NewVersion methods to check whether the object was generated
by an older version of this package and to convert such an object to the new format, re-
spectively. Also note that internally, we suppress lattice points from the support where the
probability is 0.

Objects of classes LatticeDistribution resp. DiscreteDistribution may be gen-
erated using the generating functions LatticeDistribution() resp. DiscreteDistribu-
tion(); see also the corresponding help.
As subclasses of these absolutely continuous and discrete classes, we have implemented
all parametric families which already exist in the "stats" package of R in form of [pre-
fix]<name> functions —by just providing wrappers to the original R-functions.
Schematically, the inheritance relations as well as the slots of the corresponding classes
may be read off from figure 1. Class LatticeDistribution and slot gaps, as well as addi-
tional classes AffLinAbscontDistribution, AffLinDiscreteDistribution, AffLinLat-
ticeDistribution (c.f. section 3.1) are still lacking in this graphic so far, however.

The most powerful use of our package probably consists in operations to automatically
generate new slots r, d, p, and q —induced by mathematical transformations. This is
discussed in some detail in subsection 3.

2.1.2 Classes for multivariate distributions and for conditional distributions

In "distrEx", we provide the following classes for handling multivariate distributions:

Lists of distributions As a first step, we allow distributions to be gathered in lists,
giving classes DistrList and UnivarDistrList, where in case of the latter, all elements
must be univariate distributions. For these, the usual indexing operations with [[.]] are
available. As we will use these lists to construct more general mixture distributions in some
subsequent versions, we have moved these routines to package "distr" from version 1.9
on.

Multivariate distribution classes Multivariate distributions are much more compli-
cated than univariate ones, which is why but a few exceptional ones have already been
implemented to R in packages like "multnorm". In particular it is not so clear what a
slot q should mean and, in higher dimensions slot p, and possibly also slot d may become

9

Figure 1: Inheritance relations and slots of the corresponding (sub-)classes for Distribution where we

do not repeat inherited slots

awkward. So, for multivariate distributions, realized as class MultivariateDistribution,
we only insist on slot r, while the other functional slots may be left void.

The easiest case is the case of a discrete multivariate distribution with finite support
which is implemented as class DiscreteMVDistribution.

10

Conditional distribution classes Also arising in multivariate settings only are condi-
tional distributions. In our approach, we realize factorized, conditional distributions where
the (factorized) condition is in fact treated as an additional parameter to the distribution.
The condition is realized as an object of class Condition, which is a slot of corresponding
classes UnivariateCondDistribution. This latter is the mother class to classes Abscon-
tCondDistribution and DiscreteCondDistribution. The most important application
of these classes so far is regression, where the distribution of the observation given the
covariates is just realized as a UnivariateCondDistribution.

2.1.3 Parameter classes

As most distributions come with a parameter which often is of own interest, we endow the
corresponding slots of a distribution class with an own parameter class, which allows for
some checking like “Is the parameter lambda of an exponential distribution non-negative?”,
“Is the parameter size of a binomial a positive integer?”
Consequently, we have a method liesIn that may answer such questions by a TRUE/FALSE
statement. Schematically, the inheritance relations of class Parameter as well as the slots of
the corresponding (sub-)classes may be read off in figure 2 where we do not repeat inherited
slots. The most important set to be used as parameter domain/sample space (rSpace) will
be an Euclidean space. So rSpace and EuclideanSpace are also implemented as classes,
the structure of which may be read off in figure 3.

From version 1.9 on, we also have a subclass Lattice, which is still lacking in the
preceding figure. It has slots pivot (of class ”numeric”), width (of class ”numeric” but
tested against “==0”) and Length (of class ”numeric” but tested to be an integer “>0” or
Inf). All slots may be inspected/modified by the usual accessor/replacement functions.

2.2 Simulation classes

From version 1.6 on, the classes and methods of this subsection are available in package
"distrSim".

The aim of simulation classes is to gather all relevant information about a simulation
in a correspondingly designed class. To this end we introduce the class Dataclass that
serves as a common mother class for both ”real” and simulated data. As derived classes
we then have a simulation class where we also gather all information needed to reconstruct
any particular simulation.
From version 1.8 of this package on, we have changed the format how data / simulations
are stored: In order to be able to cope with multivariate, regression and (later) time se-
ries distributions, we have switched to the common array format samplesize x obsDim
x runs where obsDim is the dimension of the observations. For saved objects from earlier
versions, we provide the functions isOldVersion and conv2NewVersion to check whether
the object was generated by an older version of this package and to convert such an object

11

Figure 2: Inheritance relations and slots of the corresponding (sub-)classes for Parameter

to the new format, respectively. For objects generated from version 1.8 on, you get the
package version of package "distrSim", under which they have been generated by a call
to getVersion().
Finally, coming from robust statistics we also consider situations where the majority of the
data stems from an ideal situation/distribution whereas a minority comes from a contam-

12

rSpace
+name: character

EuclideanSpace
+dimension: numeric

Reals

Naturals

Figure 3: Inheritance relations and slots of the corresponding (sub-)classes for rSpace

inating source. To be able to identify ideal and contaminating observations, we also store
this information in an indicator variable.
As the actual values of the simulations only play a secondary role, and as the number of
simulated variables can become very large, but still easily reproducible, it is not worth
storing all simulated observations but rather only the information needed to reproduce the
simulation. This can be done by savedata.
Schematically, the inheritance relations of class Dataclass as well as the slots of the corre-
sponding (sub-)classes may be read off in figure 4 where we do not repeat inherited slots.
Also, analogously to package "distr", global options for the output by methods plot and

Dataclass
+filename: vectororNULL
+Data: vectororNULL
+runs: numeric
+samplesize: numeric

Simulation
+seed: list
+distribution: UnivariateDistribution

Contsimulation
+ind: vectororNULL
+Data.id: vectororNULL
+Data.c: vectororNULL
+rate: numeric
+seed: list
+distribution.c: UnivariateDistribution
+distribution.id: UnivariateDistribution

Figure 4: Inheritance relations and slots of the corresponding (sub-)classes for Dataclass

13

summary are controlled by distrSimoptions() and getdistrSimoptions()

2.3 Evaluation class

From version 1.6 on, the class and methods of this subsection are available in package
"distrTEst".
When investigating properties of a new procedure (e.g. an estimator) by means of simu-
lations, one typically evaluates this procedure on a large set of simulation runs and gets a
result for each run. These results are typically not available within seconds, so that it is
worth storing them. To organize all relevant information about these results, we introduce
a class Evaluation the slots of which is filled by method evaluate —see subsection 3.8.
Schematically, the slots of this class may be read off in figure 5. A corresponding savedata

Evaluation
+name: character
+filename: character
+call.ev: call
+result: vectororNULL
+estimator: OptionalFunction

Figure 5: Slots of class Evaluation

method saves the object of class Evaluation in two files in the R-working directory: one
using the filename <filename> also stores the results; the other one, designed to be “hu-
man readable”, comes as a comment file with filename <filename>.comment only stores
the remaining information. The filename can be specified in the optional argument fileN
to savedata; by default it is concatenated from the filename slot of the Dataclass ob-
ject and <estimatorname>, which you may either pass as argument estimatorName or by
default is taken as the R-name of the corresponding R-function specified in slot estimator.

From version 1.8 on, slot result in class Evaluation is of class DataframeorNULL,
i.e.; may be either a data frame or NULL, and slot call.ev in class Evaluation is of class
”CallorNULL”, i.e.; may be either a call or NULL. Also, we want to gather Evaluation
objects in a particular data structure EvaluationList (see below), so we have to be able
to check whether all data sets in the gathered objects coincide. For this purpose, from this
version on, class Evaluation has an additional slot Data of class Dataclass. In order not
to burden the objects of this class too heavily with uninformative simulated data, in case
of a slot Data of one of the simulation-type subclasses of Dataclass, this Data itself has
an empty Data-slot.

14

2.4 EvaluationList class

The class and methods of this subsection are available in package "distrTEst".
In order to compare different procedures / estimators for the same problem, it is natural
to gather several Evaluation objects with results of the same range (e.g. a parameter
space) generated on the same data, i.e.; on the same Dataclass object. To this end, from
version 1.8 on, we have introduced class EvaluationList. Schematically, the slots of this
class may be read off in figure 6. The common Data slot of the Evaluation objects in an

 EvaluationList

+name: character

+Elist: list

Figure 6: Slots of class EvaluationList

EvaluationList object may be accessed by the accessor method Data.

3 Methods

We have made available quite general arithmetical operations to our distribution objects,
generating new image distributions automatically.

Caveat: These arithmetics operate on the corresponding r.v.’s and not on
the distributions.

(For the latter, they only would make sense in restricted cases like convex combinations).

Martin Mächler pointed out that this might be confusing. So, this warning is also issued
on attaching package "distr", and, by default, again whenever a Distribution object,
produced by such arithmetics is shown or printed; this also applies to the last line in

> A1 <- Norm(); A2 <- Unif()

> A1 + A2

Distribution Object of Class: AbscontDistribution

Warning message:
arithmetics on distributions are understood as operations on r.v.'s
see 'distrARITH()'; for switching off this warning see '?distroptions' in:
print(object)

15

This behaviour will soon be annoying so you may switch it off setting the global option
WarningArith to FALSE (see section 4).

3.1 Affine linear transformations

We have overloaded the operators "+", "-", "*", "/" such that affine linear transformations
which involve only single univariate r.v.’s are available; i.e. is expressions like Y=(3*X+5)/4
are permitted for an object X of class AbscontDistribution or DiscreteDistribution (or
some subclass), giving again an object Y of class AbscontDistribution or
DiscreteDistribution (in general). Here the corresponding transformations of the d,
p, and q-functions are done analytically.
From version 1.9 on, we use subclasses AffLinAbscontDistribution, AffLinDiscrete-
Distribution, AffLinLatticeDistribution as classes of the return values to enhance
accuracy of functinals like E, var, etc. in package "distrEx". These classes in addition
to their counterparts without prefix “AffLin” have slots a, b, and X0, to capture the fact
that an object of this class is distributed as a * X0 + b. Also, we introduce a class union
AffLinDistribution of classes AffLinAbscontDistribution and
AffLinDiscreteDistribution. Consequently, the result Y of Y <- a1 * X + b1 for an
object X of (a subclass of) class AffLinDiscreteDistribution (if a != 0) is of the same
class as X but with slots Y@a = a1 * X@a, Y@b = b1 + X@b, Y@X0 = X@X0.

3.2 The group math of unary mathematical operations

Also the group math of unary mathematical operations is available for distribution classes;
so expressions like exp(sin(3*X+5)/4) are permitted. The corresponding r method con-
sists in simply performing the transformation to the simulated values of X. The corre-
sponding (default-) d, p and q-functions are obtained by simulation, using the technique
described in the following subsection.
By means of substitute, the bodies of the r, d, p, q-slots of distributions show the param-
eter values with which they were generated; in particular, convolutions and applications of
the group math may be traced in the r-slot of a distribution object, compare
r(sin(Norm()) + cos(Unif() * 3 + 2)).

Initially, it might be irritating that the same “arithmetic” expression evaluated twice in
a row gives two different results, compare

> A1 <- Norm(); A2 <- Unif()

> d(sin(A1 + A2))(0.1)

[1] 0.3797933

> d(sin(A1 + A2))(0.1)

[1] 0.3786348

16

> sin(A1 + A2)

Distribution Object of Class: AbscontDistribution

This is due to the fact, that all slots are filled starting from simulations. To explain this, a
warning is issued by default, whenever a Distribution object, filled by such simulations
is shown or printed; this also applies to the last line in the preceding code sniplet. This
behaviour may again be switched off by setting the global option WarningSim to FALSE
(see section 4).

As they are frequently needed, from version 1.9 on, math operations abs(), exp(), and
—if an R-version ≥ 2.6.0 is used— also log() are implemented in an analytically exact
form, i.e.; with exact expressions for slots d, p, and q.

3.3 Construction of d, p, and q from r

In order to facilitate automatic generation of new distributions, in particular those arising
as image distributions under transformations of correspondingly distributed random vari-
ables, we provide ad hoc methods that should be overloaded by more exact ones wherever
possible: By means of the function RtoDPQ we first generate 10RtoDPQ.e random numbers
where RtoDPQ.e is a global option of this package and is discussed in section 4. A den-
sity estimator is evaluated along this sample, the distribution function is estimated by the
empirical c.d.f. and, finally, the quantile function is produced by numerical inversion. Of
course the result is rather crude as it relies on the law of large numbers only, but this way
all transformations within the group math become available. Where laws under transfor-
mations can easily be computed exactly —as for affine linear transformations— we replace
this procedure by the exactly transformed d, p, q-methods.

3.4 Convolution

A convolution method for two independent r.v.’s is implemented by means of explicit cal-
culations for discrete summands, and by means of DFT/FFT7 if one of the summands is
absolutely continuous or (from version 1.9 on:) both are lattice distributed with a common
lattice as support. This method automatically generates the law of the sum of two inde-
pendent variables/distributions X and Y of any univariate distributions —or in S4-jargon:
the addition operator "+" is overloaded for two objects of class UnivariateDistribution
and corresponding subclasses.

3.5 Overloaded generic functions

Methods print, plot, show and summary have been overloaded for classes Distribution,
Dataclass, Simulation, ContSimulation, as well as Evaluation and EvaluationList

7Details to be found in [5]

17

to produce “pretty” output. print, plot, show and summary have additional, optional
arguments for plotting subsets of the simulations / results: index vectors for the dimensions,
the runs, the observations, and the evaluations may be passed using arguments obs0, runs0,
dims0, eval0, confer help("<mthd>-methods",package=<pkg>) where <mthd> stands for
plot, show, print, or plot, and <pkg> stands for either "distrSim" or "distrTEst".

For an object of class Distribution, plot displays the density/probability function,
the c.d.f. and the quantile function of a distribution. Note that all usual parameters of
plot remain valid. For instance, you may increase the axis annotations and so on. More
important, you may also override the automatically chosen x-region by passing an xlim
argument:

> plot(Cauchy(),withSweave = TRUE)

−20000 0 10000

0e
+

00
2e

−
04

4e
−

04
6e

−
04

8e
−

04

x

d(
x)

Density of Cauchy(0, 1)

−20000 0 10000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

q

p(
q)

CDF of Cauchy(0, 1)

0.0 0.4 0.8

−
15

00
0

−
10

00
0

−
50

00
0

50
00

10
00

0
15

00
0

p

q(
p)

Quantile function of Cauchy(0, 1)

> plot(Cauchy(),xlim=c(-4,4),withSweave = TRUE)

18

−4 −2 0 2 4

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

x

d(
x)

Density of Cauchy(0, 1)

−4 −2 0 2 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

q

p(
q)

CDF of Cauchy(0, 1)

0.2 0.4 0.6 0.8

−
4

−
2

0
2

4

p

q(
p)

Quantile function of Cauchy(0, 1)

Moreover you may control optional main, inner titles and subtitles with arguments
main / sub / inner. To this end there are preset strings substituted in both expression
and character vectors (where in the following x denotes the argument with which plot()
was called)

%A deparsed argument x

%C class of argument x

%P comma-separated list of parameter values of slot param of argument x

%Q comma-separated list of parameter values of slot param of argument x in parenthesis
unless this list is empty; then ""

%N comma-separated <name> = <value> - list of parameter values of slot param of ar-
gument x

%D time/date at which plot is/was generated

19

As usual you may control title sizes and colors with cex.main / cex.inner / cex.sub
respectively with col / col.main / col.inner / col.sub. Additionally it may be helpful
to control top and bottom margins with arguments bmar, tmar. plot() can also cope with
log-arguments. We provide different default symbols for unattained [pch.u] / attained
[pch.a] one-sided limits, which may be overridden by corresponding arguments pch / pch.a
/ pch.u.

For objects of class AbscontDistribution, you may set the number of grid points used
by an ngrid argument; also the “quantile”-panel takes care of finite left/right endpoints of
support and optionally tries to identify constancy region of the p-slot.

For objects of class DiscreteDistributions, we use stepfun() from package "base"
as far as possible and (also for panel“q”for AbscontDistributions) consequently take over
its arguments do.points, verticals, col.points / col.vert / col.hor and cex.points.

As examples consider the following 10 plots:
For objects of class Dataclass —or of a corresponding subclass— plot plots the sample

against the run index and in case of ContSimulation the contaminating variables are
highlighted by a different color. Additional arguments controlling the plot as in the default
plot command may be passed, confer help("plot-methods",package="distrSim").

For an object of class Evaluation, plot yields a boxplot of the results of the evaluation.
For an object of class EvaluationList, plot regroups the list according to the different
columns/coordinates of the result of the evaluation; for each such coordinate, a boxplot is
generated, containing possibly several procedures, and, if evaluated at a Contsimulation,
the plots are also grouped into evaluations on ideal and real data. As for the usual boxplot
function you may pass additional “plot-type” arguments to this particular plot method,
confer help("plot-methods",package="distrTEst"). In particular, the plot-arguments
main and ylim, however, may also be transmitted coordinatewise, i.e.; a vector of the same
length as the dimension of the result resDim (e.g. parameter dimension), respectively a 2
x resDim matrix, or they may be transmitted globally, using the usual S recycling rules.

3.6 liesInSupport

For all discrete distribution classes, we have methods liesInSupport to check whether a
given vector/ a matrix of points lies in the support of the distribution.

3.7 Simulation (in package "distrSim")

From version 1.6 on, simulation is available in package "distrSim".
For the classes Simulation and ContSimulation, we normally will not save the current

values of the simulation, as they can easily be reproduced knowing the values of the other
slots of this class. So when declaring a new object of either of the two classes, the slot Data
will be empty (NULL). To fill it with the simulated values, we have to apply the method
simulate to the object. This has to be redone whenever another slot of the object is

20

> plot(Binom(size = 4, prob = 0.3), withSweave = TRUE)

0 1 2 3 4

0.
0

0.
1

0.
2

0.
3

0.
4

x

d(
x)

Probability function of Binom(4, 0.3)

●

●

●

●

●

−1 0 1 2 3 4 5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

q

p(
q)

●

●

●

● ●

CDF of Binom(4, 0.3)

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

4

p
q(

p)

●

●

●

●

Quantile function of Binom(4, 0.3)

●

●

●

●

> plot(Binom(size = 4, prob = 0.3), do.points = FALSE, verticals = FALSE,

+ withSweave = TRUE)

0 1 2 3 4

0.
0

0.
1

0.
2

0.
3

0.
4

x

d(
x)

Probability function of Binom(4, 0.3)

−1 0 1 2 3 4 5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

q

p(
q)

CDF of Binom(4, 0.3)

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

4

p

q(
p)

Quantile function of Binom(4, 0.3)

21

> plot(Binom(size = 4, prob = 0.3), main = TRUE, inner = FALSE, cex.main = 1.6,

+ tmar = 6, withSweave = TRUE)

0 1 2 3 4

0.
0

0.
1

0.
2

0.
3

0.
4

x

d(
x)

●

●

●

●

●

−1 0 1 2 3 4 5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

q

p(
q)

●

●

●

● ●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

4
p

q(
p)

●

●

●

●

●

●

●

●

Distribution Plot for Binom(size = 4, prob = 0.3)

> plot(Binom(size = 4, prob = 0.3), cex.points = 1.2, pch = 20, lwd = 2,

+ withSweave = TRUE)

0 1 2 3 4

0.
0

0.
1

0.
2

0.
3

0.
4

x

d(
x)

Probability function of Binom(4, 0.3)

●

●

●

●

●

−1 0 1 2 3 4 5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

q

p(
q)

●

●

●

● ●

CDF of Binom(4, 0.3)

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

4

p

q(
p)

●

●

●

●

Quantile function of Binom(4, 0.3)

●

●

●

●

22

> B <- Binom(size = 4, prob = 0.3)

> plot(B, col="red", col.points = "green", main = TRUE, col.main="blue",

+ col.sub = "orange", sub = TRUE, cex.sub = 0.6, col.inner = "brown",

+ withSweave = TRUE)

0 1 2 3 4

0.
0

0.
1

0.
2

0.
3

0.
4

x

d(
x)

Probability function of Binom(4, 0.3)

●

●

●

●

●

−1 0 1 2 3 4 5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

q

p(
q)

●

●

●

● ●

CDF of Binom(4, 0.3)

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0
0

1
2

3
4

p

q(
p)

●

●

●

●

Quantile function of Binom(4, 0.3)

●

●

●

●

Distribution Plot for B

generated Fri Jul 27 14:33:32 2007

> plot(Nbinom(size = 4,prob = 0.3), cex.points = 1.2, pch.u = 20, pch.a = 10,

+ withSweave = TRUE)

0 10 20 30 40 50

0.
00

0.
02

0.
04

0.
06

0.
08

x

d(
x)

Probability function of Nbinom(4, 0.3)

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●

0 10 20 30 40 50

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

q

p(
q)

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●
●●

●●
●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●

CDF of Nbinom(4, 0.3)

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

0.0 0.2 0.4 0.6 0.8 1.0

0
10

20
30

40
50

p

q(
p)

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

Quantile function of Nbinom(4, 0.3)

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

23

> plot(Chisq(), log = "xy", ngrid = 100, withSweave = TRUE)

0.2 0.5 1.0 2.0 5.0 20.0

1e
−

05
1e

−
03

1e
−

01

x

d(
x)

Density of Chisq(1, 0)

0.2 0.5 1.0 2.0 5.0 20.0

0.
4

0.
6

0.
8

1.
0

q

p(
q)

CDF of Chisq(1, 0)

0.4 0.5 0.6 0.8 1.0

0.
2

0.
5

1.
0

2.
0

5.
0

10
.0

20
.0

p
q(

p)

Quantile function of Chisq(1, 0)

> plot(Norm(), lwd=3, col = "red", ngrid = 200, lty = 3, las = 2,

+ withSweave = TRUE)

−
4

−
2 0 2 4

0.0

0.1

0.2

0.3

0.4

x

d(
x)

Density of Norm(0, 1)

−
4

−
2 0 2 4

0.0

0.2

0.4

0.6

0.8

1.0

q

p(
q)

CDF of Norm(0, 1)

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

−4

−2

0

2

4

p

q(
p)

Quantile function of Norm(0, 1)

24

> plot(Norm(), main = "my Distribution: \%A",

+ inner = list(expression(paste(lambda, "-density of \%C(\%P)")), "CDF",

+ "Pseudo-inverse with param's \%N"),

+ sub = "this plot was correctly generated on \%D",

+ cex.inner = 0.9, cex.sub = 0.8, withSweave = TRUE)

−4 −2 0 2 4

0.
0

0.
1

0.
2

0.
3

0.
4

x

d(
x)

λλ−density of Norm(0, 1)

−4 −2 0 2 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

q

p(
q)

CDF

0.0 0.2 0.4 0.6 0.8 1.0

−
4

−
2

0
2

4

p

q(
p)

Pseudo−inverse with param's mean = 0, sd = 1

my Distribution: Norm()

this plot was correctly generated on Fri Jul 27 14:33:33 2007

> Ch <- Chisq(); setgaps(Ch, exactq = 3)

> plot(Ch, cex = 1.2, pch.u = 20, pch.a = 10, col.points = "green",

+ col.vert = "red", withSweave = TRUE)

0 5 10 15 20

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

x

d(
x)

Density of Chisq(1, 0)

0 5 10 15 20

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

q

p(
q)

CDF of Chisq(1, 0)

0.2 0.4 0.6 0.8 1.0

0
5

10
15

p

q(
p)

Quantile function of Chisq(1, 0)

●

●

25

changed. To guarantee reproducibility, we use the slot seed.
This slot is controlled and set through Paul Gilbert’s "setRNG" package. By default, seed is
set to setRNG(), which returns the current“state”of the random number generator (RNG).
So the user does not need to specify a value for seed, and nevertheless may reproduce his
samples: He simply uses simulate to fill the Data slot. If the user wants to, he may also
set the seed explicitly via the replacement function seed(), but has to take care of the
correct format himself, confer the documentation of setRNG. One easy way to fill the Data
slot of a simulation X with “new” random numbers is

> have.distrSim <- suppressWarnings(require("distrSim"))

> if (have.distrSim)

+ {X <- Simulation()

+ seed(X) <- setRNG()

+ simulate(X)

+ print(Data(X)[1:10])

+ } else {

+ cat("\n functionality not (yet) available; ")

+ cat("you have to install package \"distrSim\" first.\n")

+ }

[1] -0.37071086 0.80980890 1.74966290 -0.02922246 2.24155515 2.59616560
[7] 1.51202959 -0.71274533 0.51371994 1.03078964

3.8 Evaluate (in package "distrTEst")

From version 1.6 on evaluate is available in "distrTEst".
In an object of class Evaluation we store relevant information about an evaluation of a

statistical procedure (estimator/test/predictor) on an object of class Dataclass, including
the concrete results of this evaluation. An object of class Evaluation is generated by an
application of method evaluate which takes as arguments an object of class Dataclass
and a procedure of type function. As an example, confer Example 11.8. For data of class
Contsimulation, the result takes a slightly different, combining evalations on ideal and
real data.

3.9 Is-Relations

By means of setIs, we have “told” R that a distribution object obj of class

• "Unif" with Min
.= 0 and Max

.= 1 also is a Beta distribution with parameters shape1
= 1, shape2 = 1

• "Geom" also is a negative Binomial distribution with parameters size = 1, prob =
prob(obj)

26

mailto:pgilbert@bank-banque-canada.ca

• "Cauchy" with location
.= 0 and scale

.= 1 also is a T distribution with parameters
df = 1, ncp = 0

• "Exp" also is a Gamma distribution with parameters shape = 1, scale = 1/rate(obj)
and a Weibull distribution with parameters shape = 1, scale = 1/rate(obj)

• "Chisq" with non-centrality ncp
.= 0 also is a Gamma distribution with parameters

shape = df(obj)/2, scale = 2

• "DiscreteDistribution" (from version 1.9 on) with an equally spaced support also
is a "LatticeDistribution"

3.10 Further methods

When iterating/chaining mathematical operations on a univariate distribution, generation
process of random variables can become clumsy and slow. To cope with this, we introduce
a sort of “Forget-my-past”-method simplifyr that replaces the chain of mathematical
operations in the r-method by drawing with replacement from a large sample (10RtoDPQ.e)
of these.

3.11 Functionals (in package "distrEx")

3.11.1 Expectation

The most important contribution of package "distrEx" is a general expectation operator.
In basic statistic courses, the expectation E may come as E [X], E [f(X)], E [X|Y = y], or
E [f(X)|Y = y]. Our operator (or in S4-language “generic function”) E covers all of these
situtations (or signatures).

default call The most frequent call will be E(X) where X is an (almost) arbitrary distri-
bution object. More precisely, if X is of a specific distribution class like Pois, it is evaluated
exactly using analytic terms. Else if it is of class DiscreteDistribution we use a sum over
the support of X, and if it is of class AbscontDistribution we use numerical integration8;
if we only know that X is of class UnivariateDistribution we use Monte-Carlo integra-
tion. This also is the default method in for class MultivariateDistribution, while for
DiscreteMVDistribution we again use sums. For an object Y of a subclass of class union
AffLinDistribution, we determine the expectation as Y@a * E(Y@X0) + Y@b and hence
use analytic terms for X0 if available.

8i.e., we first try (really(!): try) integrate and if this fails we use Gauß-Legendre integration according
to [6], see also ?distrExIntegrate

27

with a function as argument we proceed just as without: if X is of class
DiscreteDistribution, we use a sum over the support of X, and if X is of class
AbscontDistribution we use numerical integration; else we use Monte-Carlo integration.

in addition: with a condition as argument we simply use the corresponding d
respective r slots with the additional argument cond.

exact evaluation is available for X of class Beta (for noncentrality 0), Binom, Cauchy,
Chisq, Dirac, Exp, Fd, Gammad, Geom, Hyper, Logis, Lnorm, Nbinom, Norm, Pois, Td, Unif,
Weibull.

examples

> have.distrEx <- suppressWarnings(require("distrEx"))

> if (have.distrEx)

+ {D4 <- LMCondDistribution(theta = 1)

+ D4 # corresponds to Norm(cond, 1)

+ N <- Norm(mean = 2)

+

+ print(E(D4, cond = 1))

+ print(E(D4, cond = 1, useApply = FALSE))

+ print(E(as(D4, "UnivariateCondDistribution"), cond = 1))

+ print(E(as(D4, "UnivariateCondDistribution"), cond = 1,

+ useApply = FALSE))

+ print(E(D4, function(x){x^2}, cond = 2))

+ print(E(D4, function(x){x^2}, cond = 2, useApply = FALSE))

+ print(E(N, function(x){x^2}))

+ print(E(as(N, "UnivariateDistribution"), function(x){x^2},

+ useApply = FALSE)) # crude Monte-Carlo

+ print(E(D4, function(x, cond){cond*x^2}, cond = 2,

+ withCond = TRUE))

+ print(E(D4, function(x, cond){cond*x^2}, cond = 2,

+ withCond = TRUE, useApply = FALSE))

+ print(E(N, function(x){2*x^2}))

+ print(E(as(N, "UnivariateDistribution"), function(x){2*x^2},

+ useApply = FALSE)) # crude Monte-Carlo

+ Y <- 5 * Binom(4, .25) - 3

+ print(Y); print(E(Y))

+ } else {

+ cat("\n functionality not (yet) available; ")

28

+ cat("you have to install package \"distrEx\" first.\n")

+ }

[1] 0.9999998
[1] 0.9999998
[1] 1.003117
[1] 1.004277
[1] 4.999993
[1] 4.999993
[1] 4.999993
[1] 4.994825
[1] 9.999987
[1] 9.999987
[1] 9.999987
[1] 9.954926
Distribution Object of Class: AffLinLatticeDistribution
[1] 2

3.11.2 Variance

The next-common functional is the variance. In order to keep a unified notation we will
use the same name as for the empirical variance, i.e., var.

masking "stats"-method var To cope with the different argument structure of the
empirical variance, i.e. var(x, y = NULL, na.rm = FALSE, use) and our functional vari-
ance, i.e., var(x, fun = function(t) t, cond, withCond = FALSE, useApply = TRUE,
...) we have to mask the original "stats"-method:

> var <- function(x , ...)

+ {dots <- list(...)

+ if(hasArg(y)) y <- dots$"y"

+ na.rm <- ifelse(hasArg(na.rm), dots$"na.rm", FALSE)

+ if(!hasArg(use))

+ use <- ifelse (na.rm, "complete.obs","all.obs")

+ else use <- dots$"use"

+ if(hasArg(y))

+ stats::var(x = x, y = y, na.rm = na.rm, use)

+ else

+ stats::var(x = x, y = NULL, na.rm = na.rm, use)

+ }

before registering var as generic function. Doing so, if the x (or the first) argument of var
is not of class UnivariateDistribution, var behaves identically to the "stats" package

29

default method if x is of class UnivariateDistribution, var just returns the variance
of distribution X — or of fun(X) if a function is passed as argument fun, or, if a condition
argument cond (for Y = y), Var [X|Y = y] respectively Var [f(X)|Y = y] — just as for E.
For an object Y of a subclass of class union AffLinDistribution, we determine the variance
as Y@a^2 * var(Y@X0) and hence use analytic terms for X0 if available.

exact evaluation is provided for specific distributions if no function and no condition
argument is given: this is available for X of class Beta (for noncentrality 0), Binom, Cauchy,
Chisq,Dirac, Exp, Fd, Gammad, Geom, Hyper, Logis, Lnorm, Nbinom, Norm, Pois, Unif, Td,
Weibull.

3.11.3 Further functionals

By the same techniques we provide the following functionals for univariate distributions:

• standard deviation: sd

• skewness: skewness (code contributed by G. Jay Kerns, gkerns@ysu.edu)

• kurtosis: kurtosis (code contributed by G. Jay Kerns, gkerns@ysu.edu)

• median: median (not for function/condition arguments)

• median of absolute deviations: mad (not for function/condition arguments)

• interquartile range: IQR (not for function/condition arguments)

3.12 Truncated moments (in package "distrEx")

For Robust Statistics, the first two truncated moments are very useful. These are realized as
generic functions m1df and m2df: They use the expectation operator for general univariate
distributions, but are overloaded for most specific distributions:

• Binom

• Pois

• Norm

• Exp

• Chisq

30

3.13 Distances (in package "distrEx")

For several purposes like Goodness-of-fit tests or minimum-distance estimators, distances
between distributions are useful. This applies in particular to Robust Statistics. In package
"distrEx", we provide the follwoing distances:

• Kolmogoroff distance

• total variation distance

• Hellinger distance

• convex-contamination “distance” (asymmetric!) defined as

d(Q,P) := inf{r > 0 | ∃ probability H : Q = (1− r)P + rH}

3.14 Functions for demos (in package "distrEx")

To illustrate the possibilities with packages "distr" and "distrEx" we include two major
demos, each with extra code to it

3.14.1 CLT for arbitrary summand distribution

By means of our convolution algortithm as well as with the operators E and sd an illustra-
tion for the CLT is readily written: function illustrateCLT, respectively demo illustCLT.
For plotting, we have particular methods for discrete and absolute continuous distributions.
The user may specify a given summand distribution, an upper limit for the consecutive
sums to be considered and a pause between the corresponding plots in seconds. From ver-
sion 1.9 on, we also include a TclTk-based version of this demo, where the user may enter
the distribution argument (i.e.; the summands’ distribution) into a text line and control
the sample size by a slider in some widget: illustCLT_tcl

3.14.2 LLN for arbitrary summand distribution

From version 1.9 on, similarly, we provide an illustration for the LLN: function illustrateLLN,
respectively demo illustLLN. The user may specify a vector of sample sizes to be consid-
ered, the number of replicates to be drawn and a pause between the corresponding plots in
seconds, also, optionally, the limiting expectation (in case of class Cauchy: the non-limiting
median) is drawn as a line and Chebyshev/CLT-based (pointwise) confidence bands and
their respective empirical coverages are displayed.

31

3.14.3 Deconvolution example

To illustrate conditional distributions and their implementation in
"distrEx", we consider the following situation: We consider a signal X ∼ PX which is dis-
turbed by noise ε ∼ P ε, independent from X; in fact we observe Y = X +ε and want to re-
construct X by means of Y . By means of the generating function PrognCondDistribution
of package "distrEx", for absolutely continuous PX , P ε, we may determine the factorized
conditional distribution PX|Y =y, and based on this either its (posterior) mode oder (pos-
terior) expectation; also see demo(Prognose, package="distrEx").

4 Options

4.1 Options for "distr"

Analogously to the options command in R you may specify a number of global “constants”
to be used within the package. These include

• DefaultNrFFTGridPointsExponent: the binary logarithm of the number of grid-
points used in FFT —default 12

• DefaultNrGridPoints: number of grid-points used for a continuous variable —
default 4096

• DistrResolution: the finest step length that is permitted for a grid for a discrete
variable —default 1e−06

• RtoDPQ.e: For simulational determination of d, p and q, 10RtoDPQ.e random variables
are simulated —default 5

• TruncQuantile: to work with compact support, random variables are truncated to
their lower/upper TruncQuantile-quantile —default 1e−05.
From version 1.9 on, for ε = TruncQuantile, we use calls of form q(X)(eps,
lower.tail = FALSE) instead of q(X)(1-eps) to gain higher precision.

• warningSim: controls whether a warning issued at printing/showing a Distribution
object the slots of which have been filled starting with simulations —default TRUE

• warningArith: controls whether a warning issued at printing/showing a Distribution
object produced by arithmetics operating on distributions —default TRUE

All current options may be inspected by distroptions() and modified by
distroptions("<options-name>"=<value>).
As options, distroptions("<options-name>") returns a list of length 1 with the value of
the corresponding option, so here, just as getOption, getdistrOption("<options-name>")
will be preferable, which only returns the value.

32

4.2 Options for "distrEx"

Up to version 0.4-4 we used the function distrExOptions(arg = "missing", value =
-1) to manage some global options for "distrEx", i.e.:
distrExOptions() returns a list of these options, distrExOptions(arg=x) returns option
x, and distrExOptions(arg=x,value=y) sets the value of option x to y.
From version 1.9 on, we use a mechanism analogue to the distroptions/getdistrOption
commands: You may specify certain global output options to be used within the package
with distrExoptions/getdistrExOption. These include

• MCIterations: number of Monte-Carlo iterations used for crude Monte-Carlo inte-
gration.

• GLIntegrateTruncQuantile: If integrate fails and there are infinite integration
limits, the function GLIntegrate is called inside of distrExIntegrate with the corre-
sponding quantiles GLIntegrateTruncQuantile resp. 1-GLIntegrateTruncQuantile
as finite integration limits.

• GLIntegrateOrder: The order used for the Gauß-Legendre integration inside of
distrExIntegrate.

• ElowerTruncQuantile: The lower limit of integration used inside of E which corre-
sponds to the ElowerTruncQuantile-quantile.

• EupperTruncQuantile: The upper limit of integration used inside of E which corre-
sponds to the (1-ElowerTruncQuantile)-quantile.

• ErelativeTolerance: The relative tolerance used inside of E when calling
distrExIntegrate.

• m1dfLowerTruncQuantile: The lower limit of integration used inside of m1df which
corresponds to the m1dfLowerTruncQuantile-quantile.

• m1dfRelativeTolerance: The relative tolerance used inside of m1df when calling
distrExIntegrate.

• m2dfLowerTruncQuantile: The lower limit of integration used inside of m2df which
corresponds to the m2dfLowerTruncQuantile-quantile.

• m2dfRelativeTolerance: The relative tolerance used inside of m2df when calling
distrExIntegrate.

33

4.3 Options for "distrSim"

Just as with to the distroptions/getdistrOption commands you may specify certain
global output options to be used within the package with distrSimoptions/
getdistrSimOption. These include

• MaxNumberofPlottedObs the maximal number of observation plotted in a plot of an
object of class Dataclass; defaults to 4000

• MaxNumberofPlottedObsDims: the maximum number of observations to be plotted
in a plot of an object of class Dataclass and descendants; defaults to 6.

• MaxNumberofPlottedRuns: the maximum number of runs to be plotted in a plot of
an object of class Dataclass and descendants (one run/panel); defaults to 6.

• MaxNumberofSummarizedObsDims: the maximum number of observations to be sum-
marized of an object of class Dataclass and descendants; defaults to 6.

• MaxNumberofSummarizedRuns: the maximum number of runs to be summarized of
an object of class Dataclass and descendants; defaults to 6.

4.4 Options for "distrTEst"

Just as with to the distroptions/getdistrOption commands you may specify certain
global output options to be used within the package with distrTEstoptions/
getdistrTEstOption. These include

• MaxNumberofPlottedEvaluations: the maximal number of evaluations to be plotted
in a plot of an object of class EvaluationList; defaults to 6

• MaxNumberofPlottedEvaluationDims: the maximal number of evaluation dimen-
sions to be plotted in a plot of an object of class Evaluation; defaults to 6

• MaxNumberofSummarizedEvaluations: the maximal number of evaluations to be
summarized of an object of class EvaluationList; defaults to 15

• MaxNumberofPrintedEvaluations: the maximal number of evaluations printed of
an object of class EvaluationList; defaults to 15

5 Startup Messages

For the management of startup messages, from version 1.7, we use package "startupmsg":
When loading/attaching packages "distr", "distrEx", "distrSim", or "distrTEst" for
each package a disclaimer is displayed.

34

You may suppress these start-up banners/messages completely by setting
options("StartupBanner"="off") somewhere before loading this package by library
or require in your R-code / R-session.

If option "StartupBanner" is not defined (default) or setting
options("StartupBanner" = NULL) or options("StartupBanner" = "complete") the
complete start-up banner is displayed.

For any other value of option "StartupBanner" (i.e., not in c(NULL, "off", "complete"))
only the version information is displayed.

The same can be achieved by wrapping the library or require call into either
onlytypeStartupMessages(<code>, atypes="version") or
suppressStartupMessages(<code>).

6 System/version requirements, license, etc.

6.1 System requirements

As our package is completely written in R, there are no dependencies on the underlying
OS; of course, there is the usual speed gain possible on recent machines. We have tested
our package on a Pentium II with 233 MHz, on Pentium III’s with 0.8–2.1 GHz, and on an
Athlon with 2.5 GHz giving a reasonable performance.

6.2 Required version of R

Contrary to the hardware required, if you want to use library or require to use "distr"
within R code, you need at least R Version 1.8.1, as we make use of name space operations
only available from that version on; also, the command setClassUnion, which is used in
some sources, is only available from that version on.
On the other hand, if the package may be pasted in by source, the code works with R from
version 1.7.0 on —but without using name-spaces, which is only available from 1.8.0 on.
Due to some changes in R from version 1.8.1 to 1.9.0 and from 1.9.1 to 2.0.0, we have
to provide different zip/tar.gz-Files for these versions.
Versions of "distr" from version number 1.5 onwards are only supplied for R Version 2.0.1
patched and later. After a reorganization, versions of "distr" from version number 1.6
onwards are only supplied for R Version 2.2.0 patched and later.

6.3 Dependencies

In package "distrEx", we need Alec Stephenson’s package "evd" for the extreme value
distributions implemented therein. In package "distrSim", and conseqently also in pack-
age "distrTEst" we use Paul Gilbert’s package "setRNG" to be installed from CRAN for
the control of the seed of the random number generator in our simulation classes. More

35

mailto:alec_stephenson@hotmail.com
mailto:pgilbert@bank-banque-canada.ca
http://cran.r-project.org/mirrors.html

precisely, for our version ≤ 1.6 we need his version < 2006.2-1, and for our version ≥ 1.7
we need his version ≥ 2006.2-1.

From package version 1.7/0.4-3 on, we also need package "startupmsg" by the first
of the present authors, which also is available on CRAN.

6.4 License

This software is distributed under the terms of the GNU GENERAL PUBLIC LICENSE
Version 2, June 1991, confer
http://www.gnu.org/copyleft/gpl.html

7 Details to the implementation

• As the normal distribution is closed under affine transformations, we have overloaded
the corresponding methods.

• For the general convolution algorithm for univariate probability distribution func-
tions/densities by means of FFT, which we use in the overloaded "+"-operator, con-
fer [5].

• Exact convolution methods are implemented for the normal, the Poisson, the bino-
mial, the negative binomial, the Gamma (and the Exp), and the χ2 distribution

• Exact formulae for scale transformations are implemented for the Exp-/Gamma-
distribution, the Weibull and the log-normal distribution (the latter two from version
1.9 on).

• Exact formulae for affine linear transformations are available for the normal, the
logistic and the Cauchy distribution (the latter two from version 1.9 on).

• Instances of any class transparent to the user are initialized by
<classname>([<slotname>=<value>,...]) where except for class DataClass in
package "distrSim" all classes have default values for all their slots; in DataClass,
the slot Data has to be specified.

• As suggested in [3] all slots are accessed and modified by corresponding accessor- and
replacement functions —templates for which were produced by standardMethods.

We strongly discourage the use of the @-operator to modify or even access
slots r, d, p, and q, confer Example 11.7.

36

http://cran.r-project.org/mirrors.html
http://www.gnu.org/copyleft/gpl.html

8 A general utility

Following [3], the programmer of S4-classes should provide accessor and replacement func-
tions for the inspection/modification of any newly introduced slot. This can be quite a
task when you have a lot of classes/slots. As these functions all have the same structure,
it would be nice to automatically generate templates for them. Faced with this problem
in developing this package, Thomas Stabla has written such a utility, standardMethods
—which the authors of this package recommend for any developer of S4-classes. For more
details, see ?standardMethods.

9 Odds and Ends

9.1 What should be done and what we could do —for version >1.9

• application of analytic FourierTransforms instead of FFT where appropriate —perhaps
also to be controlled by a parameter/option

• use the q-slot applied to runif in simplifyr for continuous distributions

• further exact formulae for binary arithmetic operations like "*"

• redo the math-method for discrete distributions when only slot r is given

• generating function for new distribution classes to ease inclusion of new distributions

• goodness of fit tests for distribution-objects

• use of \S4method in documentation

• overloading binary operators of group Math2 for independent distributions

• defining a subgroup of Math2 of invertible binary operators

9.2 What should be done but for which we lack the know-how

• multivariate distributions

• conditional distributions

• copula

37

10 Acknowledgement

In order to give our acknowledgements their due place in the manual, we insert them before
some rather extensive presentation of examples, because otherwise they would probably get
lost or overseen by most of the readers.

We thank Martin Mächler and Josef Leydold for their helpful suggestions in conceiving
the package. John Chambers also gave several helpful hints and insights when responding
to our requests concerning the S4-class concept in r-devel/ r-help. We got stimulating
replies to an RFC on r-devel by Duncan Murdoch and Gregory Warnes. We also thank
Paul Gilbert for drawing our attention to his package setRNG and making it available as
stand-alone version. In the last few days before the release on CRAN, Kurt Hornik and Uwe
Ligges were very kind, helping us to find the clue how to pass all necessary checks by R CMD
check. We also thank G. Jay Kerns for contributing code for the skewness and kurtosis
functionals.

Last not least a big ”thank you”to Torsten Hothorn as editor of R-News, for his patience
with our endless versions until we finally came to a publishable version.

11 Examples

11.1 12-fold convolution of uniform (0, 1) variables

Code also available under

http://www.uni-bayreuth.de/departments/math/org/

/mathe7/DISTR/NormApprox.R

This example shows how easily we may get the distribution of the sum of 12 i.i.d. ufo(0, 1)–variables
minus 6— which was used as a fast generator of N (0, 1)–variables in times when evaluations of exp,
log, sin and tan were expensive, confer [7], example C, p. 163. The user should not be confused by
expressions like U+U: this does not mean 2U but rather convolution of two independent identically
distributed random variables.

> require(distr)

[1] TRUE

> N <- Norm(0,1)

> U <- Unif(0,1)

> U2 <- U + U

> U4 <- U2 + U2

> U8 <- U4 + U4

> U12 <- U4 + U8

> NormApprox <- U12 - 6

> x <- seq(-4,4,0.001)

38

http://www.uni-bayreuth.de/departments/math/org/mathe7/DISTR/NormApprox.R

> opar <- par()

> par(mfrow = c(2,1))

> plot(x, d(NormApprox)(x),

+ type = "l",

+ xlab = "",

+ ylab = "Density",

+ main = "Exact and approximated density")

> lines(x, d(N)(x),

+ col = "red")

> legend("topleft",

+ legend = c("NormApprox", "Norm(0,1)"),

+ fill = c("black", "red"))

> plot(x, d(NormApprox)(x) - d(N)(x),

+ type = "l",

+ xlab = "",

+ ylab = "\"black\" - \"red\"",

+ col = "darkgreen",

+ main = "Error")

> lines(c(-4,4), c(0,0))

> par(opar)

39

−4 −2 0 2 4

0.
0

0.
2

0.
4

Exact and approximated density

D
en

si
ty

NormApprox
Norm(0,1)

−4 −2 0 2 4

−
0.

00
4

0.
00

2

Error

"b
la

ck
"

−
 "

re
d"

11.2 Comparison of exact convolution to FFT for normal distributions

Code also available under

http://www.uni-bayreuth.de/departments/math/org/

/mathe7/DISTR/ConvolutionNormalDistr.R

This example illustrates the exactness of the numerical algorithm used to compute the convolution:
We know that L(A + B) = N (5, 13) — if the second argument of N is the variance

> require(distr)

[1] TRUE

> ## initialize two normal distributions

> A <- Norm(mean=1, sd=2)

> B <- Norm(mean=4, sd=3)

40

http://www.uni-bayreuth.de/departments/math/org/mathe7/DISTR/ConvolutionNormalDistr.R

> ## convolution via addition of moments

> AB <- A+B

> ## casting of A,B as absolutely continuous distributions

> ## that is, ``forget'' that A,B are normal distributions

> A1 <- as(A, "AbscontDistribution")

> B1 <- as(B, "AbscontDistribution")

> ## for higher precision we change the global variable

> ## "TruncQuantile" from 1e-5 to 1e-8

> oldeps <- getdistrOption("TruncQuantile")

> eps <- 1e-8

> distroptions("TruncQuantile" = eps)

> ## support of A1+B1 for FFT convolution is

> ## [q(A1)(TruncQuantile),

> ## q(B1)(TruncQuantile, lower.tail = FALSE)]

>

> ## convolution via FFT

> AB1 <- A1+B1

> #############################

> ## plots of the results

> #############################

> par(mfrow=c(1,3))

> low <- q(AB)(1e-15)

> upp <- q(AB)(1e-15, lower.tail = FALSE)

> x <- seq(from = low, to = upp, length = 10000)

> ## densities

> plot(x, d(AB)(x), type = "l", lwd = 5)

> lines(x , d(AB1)(x), col = "orange", lwd = 1)

> title("Densities")

> legend("topleft", legend=c("exact", "FFT"),

+ fill=c("black", "orange"))

> ## cdfs

> plot(x, p(AB)(x), type = "l", lwd = 5)

> lines(x , p(AB1)(x), col = "orange", lwd = 1)

> title("CDFs")

> legend("topleft", legend=c("exact", "FFT"),

+ fill=c("black", "orange"))

> ## quantile functions

> x <- seq(from = eps, to = 1-eps, length = 1000)

> plot(x, q(AB)(x), type = "l", lwd = 5)

> lines(x , q(AB1)(x), col = "orange", lwd = 1)

> title("Quantile functions")

41

> legend("topleft", legend=c("exact", "FFT"),

+ fill=c("black", "orange"))

> ## Since the plots of the results show no

> ## recognizable differencies, we also compute

> ## the total variation distance of the densities

> ## and the Kolmogorov distance of the cdfs

>

> ## total variation distance of densities

> total.var <- function(z, N1, N2){

+ 0.5*abs(d(N1)(z) - d(N2)(z))

+ }

> dv <- integrate(total.var, lower=-Inf, upper=Inf, rel.tol=1e-8, N1=AB, N2=AB1)

> cat("Total variation distance of densities:\t")

Total variation distance of densities:

> print(dv) # 4.25e-07

4.250016e-07 with absolute error < 1.8e-09

> ### meanwhile realized in package "distrEx"

> ### as TotalVarDist(N1,N2)

>

> ## Kolmogorov distance of cdfs

> ## the distance is evaluated on a random grid

> z <- r(Unif(Min=low, Max=upp))(1e5)

> dk <- max(abs(p(AB)(z)-p(AB1)(z)))

> cat("Kolmogorov distance of cdfs:\t", dk, "\n")

Kolmogorov distance of cdfs: 2.028446e-07

> # 2.03e-07

>

> ### meanwhile realized in package "distrEx"

> ### as KolmogorovDist(N1,N2)

>

> ## old distroptions

> distroptions("TruncQuantile" = oldeps)

42

−20 0 10 30

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

x

d(
A

B
)(

x)

Densities

exact
FFT

−20 0 10 30

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

p(
A

B
)(

x)

CDFs

exact
FFT

0.0 0.4 0.8

−
10

0
10

20

x

q(
A

B
)(

x)

Quantile functions

exact
FFT

11.3 Comparison of FFT to RtoDPQ

Code also available under

http://www.uni-bayreuth.de/departments/math/org/

/mathe7/DISTR/ComparisonFFTandRtoDPQ.R

This example illustrates the exactness (or rather not–so–exactness) of the simulational default
algorithm used to compute the distribution of transformations of group math.

> require(distr)

[1] TRUE

> ################################

> ## Comparison 1 - FFT and RtoDPQ

> ################################

43

http://www.uni-bayreuth.de/departments/math/org/mathe7/DISTR/ComparisonFFTandRtoDPQ.R

>

> N1 <- Norm(0,3)

> N2 <- Norm(0,4)

> rnew1 <- function(n) r(N1)(n) + r(N2)(n)

> X <- N1 + N2

> # exact formula -> N(0,5)

> Y <- N1 + as(N2, "AbscontDistribution")

> # appoximated with FFT

> Z <- new("AbscontDistribution", r = rnew1)

> # appoximated with RtoDPQ

>

> # density-plot

>

> x <- seq(-15,15,0.01)

> plot(x, d(X)(x),

+ type = "l",

+ lwd = 3,

+ xlab = "",

+ ylab = "density",

+ main = "Comparison 1",

+ col = "black")

> lines(x, d(Y)(x),

+ col = "yellow")

> lines(x, d(Z)(x),

+ col = "red")

> legend("topleft",

+ legend = c("Exact", "FFT-Approximation",

+ "RtoDPQ-Approximation"),

+ fill = c("black", "yellow", "red"))

> ##

> ## Comparison 2 - "Exact" Formula and RtoDPQ

> ##

>

> B <- Binom(size = 6, prob = 0.5) * 10

> N <- Norm()

> rnew2 <- function(n) r(B)(n) + r(N)(n)

> Y <- B + N

> # "exact" formula

> Z <- new("AbscontDistribution", r = rnew2)

> # appoximated with RtoDPQ

>

44

> # density-plot

>

> x <- seq(-5,65,0.01)

> plot(x, d(Y)(x),

+ type = "l",

+ xlab = "",

+ ylab = "density",

+ main = "Comparison 2",

+ col = "black")

> lines(x, d(Z)(x),

+ col = "red")

> legend("topleft",

+ legend = c("Exact", "RtoDQP-Approximation"),

+ fill = c("black", "red"))

−15 −10 −5 0 5 10 15

0.
00

0.
02

0.
04

0.
06

0.
08

Comparison 1

de
ns

ity

Exact
FFT−Approximation
RtoDPQ−Approximation

45

11.4 Comparison of exact and approximate stationary regressor distri-
bution

Code also available under

http://www.uni-bayreuth.de/departments/math/org/

/mathe7/DISTR/StationaryRegressorDistr.R

Another illustration for the use of package "distr". In case of a stationary AR(1)–model, for
non–normal innovation distribution, the stationary distribution of the observations must be ap-
proximated by finite convolutions. That these approximations give fairly good results for approx-
imations down to small orders is exemplified by the Gaussian case where we may compare the
approximation to the exact stationary distribution.

> require(distr)

[1] TRUE

> ## Approximation of the stationary regressor

> ## distribution of an AR(1) process

> ## X_t = phi X_{t-1} + V_t

> ## where V_t i.i.d N(0,1) and phi\in(0,1)

> ## We obtain

> ## X_t = \sum_{j=1}^\infty phi^j V_{t-j}

> ## i.e., X_t \sim N(0,1/(1-phi^2))

> phi <- 0.5

> ## casting of V as absolutely continuous distributions

> ## that is, ``forget'' that V is a normal distribution

> V <- as(Norm(), "AbscontDistribution")

> ## for higher precision we change the global variable

> ## "TruncQuantile" from 1e-5 to 1e-8

> oldeps <- getdistrOption("TruncQuantile")

> eps <- 1e-8

> distroptions("TruncQuantile" = eps)

> ## Computation of the approximation

> ## H=\sum_{j=1}^n phi^j V_{t-j}

> ## of the stationary regressor distribution

> ## (via convolution using FFT)

> H <- V

> n <- 15

> ## may take some time

> for(i in 1:n){Vi <- phi^i*V; H <- H + Vi }

> ## the stationary regressor distribution (exact)

> X <- Norm(sd=sqrt(1/(1-phi^2)))

46

http://www.uni-bayreuth.de/departments/math/org/mathe7/DISTR/StationaryRegressorDistr.R

> #############################

> ## plots of the results

> #############################

> par(mfrow=c(1,3))

> low <- q(X)(1e-15)

> upp <- q(X)(1e-15, lower.tail = FALSE)

> x <- seq(from = low, to = upp, length = 10000)

> ## densities

> plot(x, d(X)(x),type = "l", lwd = 5)

> lines(x , d(H)(x), col = "orange", lwd = 1)

> title("Densities")

> legend("topleft", legend=c("exact", "FFT"),

+ fill=c("black", "orange"))

> ## cdfs

> plot(x, p(X)(x),type = "l", lwd = 5)

> lines(x , p(H)(x), col = "orange", lwd = 1)

> title("CDFs")

> legend("topleft", legend=c("exact", "FFT"),

+ fill=c("black", "orange"))

> ## quantile functions

> x <- seq(from = eps, to = 1-eps, length = 1000)

> plot(x, q(X)(x),type = "l", lwd = 5)

> lines(x , q(H)(x), col = "orange", lwd = 1)

> title("Quantile functions")

> legend("topleft",

+ legend=c("exact", "FFT"),

+ fill=c("black", "orange"))

> ## Since the plots of the results show no

> ## recognizable differencies, we also compute

> ## the total variation distance of the densities

> ## and the Kolmogorov distance of the cdfs

>

> ## total variation distance of densities

> total.var <- function(z, N1, N2){

+ 0.5*abs(d(N1)(z) - d(N2)(z))

+ }

> dv <- integrate(f = total.var, lower = -Inf,

+ upper = Inf, rel.tol = 1e-5,

+ N1=X, N2=H)

> cat("Total variation distance of densities:\t")

47

Total variation distance of densities:

> print(dv) # <1.0e-05

6.552639e-05 with absolute error < 5.5e-06

> ### meanwhile realized in package "distrEx"

> ### as TotalVarDist(N1,N2)

>

>

> ## Kolmogorov distance of cdfs

> ## the distance is evaluated on a random grid

> z <- r(Unif(Min=low, Max=upp))(1e5)

> dk <- max(abs(p(X)(z)-p(H)(z)))

> cat("Kolmogorov distance of cdfs:\t", dk, "\n")

Kolmogorov distance of cdfs: 6.538083e-05

> # ~5e-06

>

> ### meanwhile realized in package "distrEx"

> ### as KolmogorovDist(N1,N2)

>

>

> ## old distroptions

> distroptions("TruncQuantile" = oldeps)

48

−5 0 5

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

0.
35

x

d(
X

)(
x)

Densities

exact
FFT

−5 0 5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

p(
X

)(
x)

CDFs

exact
FFT

0.0 0.4 0.8

−
6

−
4

−
2

0
2

4
6

x

q(
X

)(
x)

Quantile functions

exact
FFT

11.5 Truncation and Huberization/winsorization

Code also available under

http://www.uni-bayreuth.de/departments/math/org/

/mathe7/DISTR/huberize.R

http://www.uni-bayreuth.de/departments/math/org/

/mathe7/DISTR/truncate.R

The operations of truncation and Huberization play a crucial role in Robust Statistics, but also arise
in many other contexts like censoring etc; they may now be formulated quite generally as shown in
this example. With the slots d, p and q of class UnivariateDistribution being OptionalFunction

from version 1.4 on, it would be no problem to return a corresponding distribution object now.

> require(distr)

[1] TRUE

49

http://www.uni-bayreuth.de/departments/math/org/mathe7/DISTR/huberize.R
http://www.uni-bayreuth.de/departments/math/org/mathe7/DISTR/truncate.R

> if(!isGeneric("Huberize"))

+ setGeneric("Huberize",

+ function(object, lower, upper)

+ standardGeneric("Huberize")

+)

[1] "Huberize"

> setMethod("Huberize",

+ signature(object = "AbscontDistribution",

+ lower = "numeric", upper = "numeric"),

+ function(object, lower, upper){

+ ## new random number function

+ rnew = function(n){

+ rn = r(object)(n)

+ ifelse(rn < lower, lower,

+ ifelse(rn >= upper, upper, rn))

+ }

+

+ ## new cdf

+ pnew = function(x)

+ ifelse(x < lower, 0,

+ ifelse(x >= upper, 1, p(object)(x)))

+

+ ## new quantile function

+ plower = p(object)(lower)

+ pupper = p(object)(upper)

+ qnew = function(x)

+ ifelse(x < plower,

+ ifelse(x < 0, NA, -Inf),

+ ifelse(x >= pupper,

+ ifelse(x > 1, NA, upper),

+ q(object)(x)))

+

+ new("UnivariateDistribution",

+ r = rnew, p = pnew, q = qnew, d = NULL)

+ })

[1] "Huberize"

> # Example

> # Normal(0,1)-Distribution huberized at -0.5 and 1

50

> N = Norm()

> HN = Huberize(N, -0.5, 1)

> # some huberized randomnumbers

> r(HN)(10)

[1] 0.2322964 0.6596313 -0.5000000 1.0000000 1.0000000 0.2558002
[7] 0.4347652 0.9595039 0.2010964 -0.5000000

> ## plot is not (yet) available for class

> ## UnivariateDistribution, i.e. distrib's
> ## which are neither a.c. nor discrete

> ## (here HN is a mixture of a.c. and discrete

> ## distributions)

>

> # cdf of huberized Normal-Distribution

> # and of Normal-Distribution

> oldpar = par()

> par(mfrow = c(1,2))

> x = seq(-1.5, 1.5, length = 1000)

> plot(x, p(HN)(x),

+ type = "l",

+ lwd = 5,

+ ylab = "CDF")

> points(c(-0.5,1),p(HN)(c(-0.5,1)),pch=16, cex=2)

> points(c(-0.5,1),c(0,p(HN)(0.999)),pch=21,cex=2)

> lines(x, p(N)(x),

+ lwd = 2,

+ col = "red")

> legend("topleft",

+ legend = c("N(0,1)", "N(0,1) huberized"),

+ fill = c("red", "black"))

> # quantile functions

> x = seq(0, 1, length = 1000)

> plot(x, q(HN)(x),

+ type = "l",

+ lwd = 5,

+ ylab = "Quantiles",

+ ylim = c(-2.5,3))

> lines(c(0,p(HN)(-0.5)),-c(1,1)*0.5, lwd = 5)

> points(0,-0.5,pch=20,cex=2)

> lines(x, q(N)(x),

51

+ lwd = 2,

+ col = "red")

> legend("topleft",

+ legend = c("N(0,1)", "N(0,1) huberized"),

+ fill = c("red", "black"))

> par(oldpar)

−1.5 −0.5 0.5 1.5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

C
D

F

●

●

●

●

N(0,1)
N(0,1) huberized

0.0 0.4 0.8

−
2

−
1

0
1

2
3

x

Q
ua

nt
ile

s

●

N(0,1)
N(0,1) huberized

> require(distr)

[1] TRUE

> if(!isGeneric("Truncate"))

+ setGeneric("Truncate",

+ function(object, lower, upper)

+ standardGeneric("Truncate")

+)

52

[1] "Truncate"

> setMethod("Truncate",

+ signature(object = "AbscontDistribution",

+ lower = "numeric", upper = "numeric"),

+ function(object, lower, upper){

+ ## new random number function

+ rnew = function(n){

+ rn = r(object)(n)

+ while(TRUE){

+ rn[rn < lower] = NA

+ rn[rn > upper] = NA

+ index = is.na(rn)

+ if(!(any(index))) break

+ rn[index] = r(object)(sum(index))

+ }

+ rn

+ }

+

+ ## new cdf

+ plower = p(object)(lower)

+ pupper = p(object)(upper)

+ pnew = function(x)

+ ifelse(x < lower, 0,

+ ifelse(x >= upper, 1,

+ (p(object)(x) - plower)/(pupper - plower)))

+

+

+ ## new density

+ lostmass = plower + 1 - pupper

+

+ dnew = function(x)

+ ifelse(x < lower, 0,

+ ifelse(x >= upper, 0,

+ d(object)(x)/(1-lostmass)))

+

+ # new quantile

+ qfun1 <- function(x){

+ if(x == 0) return(lower)

+ if(x == 1) return(upper)

+ fun <- function(t) pnew(t) - x

53

+ uniroot(f = fun, interval = c(lower, upper))$root

+ }

+ qfun2 <- function(x)

+ sapply(x, qfun1)

+

+ return(new("AbscontDistribution", r = rnew,

+ d = dnew, p = pnew, q = qfun2))

+ })

[1] "Truncate"

> # Example

> # Normal(0,1)-Distribution truncated at -0.5 and 1

>

> N = Norm()

> Z = Truncate(N, -0.5, 1)

> # the truncated Distribution

>

> plot(Z, lwd=5, withSweave = TRUE)

> # some truncated randomnumbers

>

> r(Z)(10)

[1] -0.3951692 0.9185585 0.6478132 0.1829098 0.8735308 0.8754917
[7] 0.3840936 0.4335924 -0.2598434 0.4525272

> oldpar = par()

> par(mfrow = c(1,2))

> # cdf of truncated Normal-Distribution

> # and of Normal-Distribution

>

> x = seq(-1.5, 1.5, length = 1000)

> plot(x, p(Z)(x),

+ type = "l",

+ lwd = 5,

+ xlab = "",

+ ylab = "CDF")

> lines(x, p(N)(x),

+ lwd = 2,

+ col = "red")

> legend("topleft",

+ legend = c("N(0,1)", "N(0,1) truncated"),

54

+ fill = c("red", "black"))

> # density of truncated Normal-Distribution

> # and of Normal-Distribution

>

> x = seq(-1.5, 1.5, length = 1000)

> plot(x, d(Z)(x),

+ type = "l",

+ lwd = 5,

+ xlab = "",

+ ylab = "density")

> lines(x, d(N)(x),

+ lwd = 2,

+ col = "red")

> legend("topleft", legend = c("N(0,1)", "N(0,1) truncated"),

+ fill = c("red", "black"))

> par(oldpar)

55

−0.5 0.0 0.5 1.0

0.
0

0.
2

0.
4

0.
6

x

d(
x)

Density of AbscontDistribution()

−0.5 0.0 0.5 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

q

p(
q)

CDF of AbscontDistribution()

0.0 0.4 0.8

−
0.

5
0.

0
0.

5
1.

0

p

q(
p)

Quantile function of AbscontDistribution()

11.6 Distribution of minimum and maximum of two independent random
variables

Code also available under

http://www.uni-bayreuth.de/departments/math/org/

/mathe7/DISTR/minandmax.R

As in the preceding example, we illustrate the use of package "distr" by making available widely
necessary operations: Minimum and maximum of two independent random variables.

> require(distr)

[1] TRUE

> if(!isGeneric("Minimum"))

+ setGeneric("Minimum",

+ function(e1, e2) standardGeneric("Minimum"))

56

http://www.uni-bayreuth.de/departments/math/org/mathe7/DISTR/minandmax.R

[1] "Minimum"

> setMethod("Minimum",

+ signature(e1 = "AbscontDistribution",

+ e2 = "AbscontDistribution"),

+ function(e1, e2){

+ ## new random number function

+ rnew <- function(n){

+ rn1 <- r(e1)(n)

+ rn2 <- r(e2)(n)

+

+ ifelse(rn1 < rn2, rn1, rn2)

+ }

+

+ ## new cdf

+ pnew <- function(x){

+ p1 <- p(e1)(x)

+ p2 <- p(e2)(x)

+ p1 + p2 - p1 * p2

+ }

+

+ ## new density

+ dnew <- function(x){

+ d1 <- d(e1)(x)

+ d2 <- d(e2)(x)

+ p1 <- p(e1)(x)

+ p2 <- p(e2)(x)

+ d1 + d2 - d1 * p2 - p1 * d2

+ }

+

+ ## new quantile function

+ lower1 <- q(e1)(0)

+ lower2 <- q(e2)(0)

+ upper1 <- q(e1)(1)

+ upper2 <- q(e2)(1)

+ lower <- min(lower1, lower2)

+ upper <- min(upper1, upper2)

+

+ maxquantile = min(q(e1)(1e-6, lower.tail = FALSE),

+ q(e2)(1e-6, lower.tail = FALSE))

+ minquantile = min(q(e1)(1e-6),

57

+ q(e2)(1e-6))

+

+ qfun1 <- function(x){

+ if(x == 0) return(lower)

+ if(x == 1) return(upper)

+ fun <- function(t) pnew(t) - x

+ uniroot(f = fun,

+ interval = c(maxquantile,

+ minquantile))$root

+ }

+ qfun2 <- function(x)

+ sapply(x, qfun1)

+

+ return(new("AbscontDistribution", r = rnew,

+ d = dnew, p = pnew, q = qfun2))

+ })

[1] "Minimum"

> if(!isGeneric("Maximum")) setGeneric("Maximum",

+ function(e1, e2) standardGeneric("Maximum"))

[1] "Maximum"

> setMethod("Maximum",

+ signature(e1 = "AbscontDistribution",

+ e2 = "AbscontDistribution"),

+ function(e1, e2){

+ ## new random number function

+ rnew <- function(n){

+ rn1 <- r(e1)(n)

+ rn2 <- r(e2)(n)

+

+ ifelse(rn1 > rn2, rn1, rn2)

+ }

+

+ ## new cdf

+ pnew <- function(x){

+ p1 <- p(e1)(x)

+ p2 <- p(e2)(x)

+ p1 * p2

+ }

58

+

+ ## new density

+ dnew <- function(x){

+ d1 <- d(e1)(x)

+ d2 <- d(e2)(x)

+ p1 <- p(e1)(x)

+ p2 <- p(e2)(x)

+ d1 * p2 + p1 * d2

+ }

+

+ ## new quantile function

+ lower1 <- q(e1)(0)

+ lower2 <- q(e2)(0)

+ upper1 <- q(e1)(1)

+ upper2 <- q(e2)(1)

+ lower <- max(lower1, lower2)

+ upper <- max(upper1, upper2)

+

+ maxquantile = max(q(e1)(1e-6, lower.tail = FALSE),

+ q(e2)(1e-6, lower.tail = FALSE))

+

+ minquantile = max(q(e1)(1e-6), q(e2)(1e-6))

+ print(c(minquantile,maxquantile))

+

+ qfun1 <- function(x){

+ if(x == 0) return(lower)

+ if(x == 1) return(upper)

+ fun <- function(t) pnew(t) - x

+ uniroot(f = fun, interval = c(maxquantile,

+ minquantile))$root

+ }

+ qfun2 <- function(x)

+ sapply(x, qfun1)

+

+ return(new("AbscontDistribution", r = rnew,

+ d = dnew, p = pnew, q = qfun2))

+ })

[1] "Maximum"

> # Example

>

59

> N <- Norm(mean = 0, sd = 1)

> U <- Unif(Min = 0, Max = 1)

> Y <- Maximum(N, U)

[1] 0.000001 4.753424

> distroptions("TruncQuantile"=1e-6)

> plot(Y, lwd = 3, withSweave = TRUE)

0 1 2 3 4 5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

d(
x)

Density of AbscontDistribution()

0 1 2 3 4 5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

q

p(
q)

CDF of AbscontDistribution()

0.0 0.4 0.8

0
1

2
3

4

p

q(
p)

Quantile function of AbscontDistribution()

> Z <- Minimum(N,U)

> plot(Z, lwd = 3, withSweave = TRUE)

60

−5 −3 −1 1

0.
0

0.
2

0.
4

0.
6

0.
8

x

d(
x)

Density of AbscontDistribution()

−5 −3 −1 1

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

q

p(
q)

CDF of AbscontDistribution()

0.0 0.4 0.8

−
4

−
3

−
2

−
1

0
1

p

q(
p)

Quantile function of AbscontDistribution()

11.7 Instructive destructive example

Code also available under

http://www.uni-bayreuth.de/departments/math/org/

/mathe7/DISTR/destructive.R

> ##

> ## Demo: Instructive destructive example

> ##

> require(distr)

[1] TRUE

> ## package "distr" encourages

> ## consistency but does not

61

http://www.uni-bayreuth.de/departments/math/org/mathe7/DISTR/destructive.R

> ## enforce it---so in general

> ## d o n o t m o d i f y

> ## slots d,p,q,r!

>

> N <- Norm()

> B <- Binom()

> N@d <- B@d

> plot(N, lwd = 3, withSweave = TRUE)

−4 0 2 4

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

x

d(
x)

Density of Norm(0, 1)

−4 0 2 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

q

p(
q)

CDF of Norm(0, 1)

0.0 0.4 0.8

−
4

−
2

0
2

4

p

q(
p)

Quantile function of Norm(0, 1)

11.8 A simulation example

needs packages "distrSim"/"distrTEst"

Code also available under

http://www.uni-bayreuth.de/departments/math/org/

/mathe7/DISTR/SimulateandEstimate.R

62

http://www.uni-bayreuth.de/departments/math/org/mathe7/DISTR/SimulateandEstimate.R

> have.distrTEst <- suppressWarnings(require(distrTEst))

> ### also loads distrSim

> if (have.distrTEst)

+ { sim <- new("Simulation",

+ seed = setRNG(),

+ distribution = Norm(mean = 0, sd = 1),

+ filename="sim_01",

+ runs = 1000,

+ samplesize = 30)

+

+ contsim <- new("Contsimulation",

+ seed = setRNG(),

+ distribution.id = Norm(mean = 0, sd = 1),

+ distribution.c = Norm(mean = 0, sd = 9),

+ rate = 0.1,

+ filename="contsim_01",

+ runs = 1000,

+ samplesize = 30)

+

+ simulate(sim)

+ simulate(contsim)

+

+ print(sim)

+ summary(contsim)

+ plot(contsim)

+ } else {

+ cat("\n functionality not (yet) available; ")

+ cat("you have to install package \"distrTEst\" first.\n")

+ }

filename of Simulation: sim_01
Seed: Kind: Mersenne-Twister

Normal Kind: Inversion
first 6 numbers: 0188430748 0971694936 -0330153779

-0302019877 0200422946 -1503041535
number of runs: 1000
dimension of the observations: 1
size of sample: 30
object was generated by version: 1.9
Distribution:

63

Distribution Object of Class: Norm
mean : 0
sd : 1
name of simulation: contsim_01
rate of contamination: 0.100000
real Data:
dimension of the observations: 1
number of runs: 1000
size of sample: 30

**

*

*
*

*

*
**
**

*

**

*

*
*
*

0 10 25

−
5

0
5

observation−index

da
ta

x

x

*
**
**

*
**

*

*
*

*

**
*

*

*

*

0 10 25

−
5

0
5

observation−index

da
ta

x

x

**
*
*
*
*
*
*

*

*
*
*
**
*

*

*

**

*

**

*
**

0 10 25

−
5

0
5

observation−index

da
ta

x

x

**
*
**
*
*

*

*
*
*
*
*

**
*
*
**
*

*

*

**

0 10 25

−
5

0
5

observation−index

da
ta

*

**

**

*

*

**
**
*
*
**
**

*

*
**

0 10 25

−
5

0
5

observation−index

da
ta

x

x

x

*

*

*
**
**
*
*

*
*

*
**

**

0 10 25

−
5

0
5

observation−index

da
ta

x

x

x

x

> have.distrTEst <- suppressWarnings(require("distrTEst"))

> if (have.distrTEst)

+ { psim <- function(theta,y,m0){

+ mean(pmin(pmax(-m0, y - theta), m0))

+ }

+ mestimator <- function(x, m = 0.7) {

+ uniroot(f = psim,

+ lower = -20,

+ upper = 20,

+ tol = 1e-10,

+ y = x,

+ m0 = m,

+ maxiter = 20)$root

+ }

+

+ result.id.mean <- evaluate(sim, mean)

+ result.id.mest <- evaluate(sim, mestimator)

+ result.id.median <- evaluate(sim, median)

+

64

+

+ result.cont.mean <- evaluate(contsim, mean)

+ result.cont.mest <- evaluate(contsim, mestimator)

+ result.cont.median <- evaluate(contsim, median)

+

+ elist <- EvaluationList(result.cont.mean,

+ result.cont.mest,

+ result.cont.median)

+

+ print(elist)

+ summary(elist)

+ plot(elist, cex = 0.7, las = 2)

+ } else {

+ cat("\n functionality not (yet) available; ")

+ cat("you have to install package \"distrTEst\" first.\n")

+ }

An EvaluationList Object
name of Evaluation List: a list of "Evaluation" objects
name of Dataobject: object
name of Datafile: contsim_01

An Evaluation Object
estimator: mean
Result: 'data.frame': 1000 obs. of 2 variables:
$ mean.id: num -0.2571 -0.1581 -0.0351 -0.0396 -0.1863 ...
$ mean.re: num 0.1007 0.6255 0.2028 -0.0396 0.4015 ...

An Evaluation Object
estimator: mestimator
Result: 'data.frame': 1000 obs. of 2 variables:
$ mstm.id: num -0.2933 -0.0780 -0.0963 -0.0633 -0.2114 ...
$ mstm.re: num -0.1524 0.0622 -0.0255 -0.0633 -0.1276 ...

An Evaluation Object
estimator: median
Result: 'data.frame': 1000 obs. of 2 variables:
$ medn.id: num -0.3372 0.0169 -0.1058 0.0671 -0.1607 ...
$ medn.re: num -0.2521 0.1521 -0.0627 0.0671 -0.1461 ...
name of Evaluation List: a list of "Evaluation" objects
name of Dataobject: object

65

name of Datafile: contsim_01

name of Evaluation: object
estimator: mean
Result:

mean.id mean.re
Min. :-0.602897 Min. :-1.951351
1st Qu.:-0.140631 1st Qu.:-0.314385
Median :-0.004469 Median :-0.004854
Mean :-0.010057 Mean : 0.004532
3rd Qu.: 0.115294 3rd Qu.: 0.335325
Max. : 0.493840 Max. : 1.904512

name of Evaluation: object
estimator: mestimator
Result:

mstm.id mstm.re
Min. :-0.64719 Min. :-0.653427
1st Qu.:-0.15283 1st Qu.:-0.160285
Median :-0.01076 Median :-0.005312
Mean :-0.01220 Mean :-0.011271
3rd Qu.: 0.13080 3rd Qu.: 0.148967
Max. : 0.55204 Max. : 0.552036

name of Evaluation: object
estimator: median
Result:

medn.id medn.re
Min. :-0.797128 Min. :-0.80534
1st Qu.:-0.171668 1st Qu.:-0.17828
Median :-0.008259 Median :-0.01176
Mean :-0.015120 Mean :-0.01360
3rd Qu.: 0.146195 3rd Qu.: 0.15249
Max. : 0.672417 Max. : 0.68941

66

●
●●
●

●●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●●

●

●

●
●

m
ea

n.
id

m
st

m
.id

m
ed

n.
id

m
ea

n.
re

m
st

m
.r

e

m
ed

n.
re

−2

−1

0

1

2

1. coordinate

Output by plot/show-method for an object of class Evaluation

> result.cont.mest

An Evaluation Object

name of Dataobject: object

name of Datafile: contsim_01

estimator: mestimator

Result: 'data.frame': 1000 obs. of 2 variables:

$ mstm.id: num -0.2933 -0.0780 -0.0963 -0.0633 -0.2114 ...

$ mstm.re: num -0.1524 0.0622 -0.0255 -0.0633 -0.1276 ...

Output by summary-method for an object of class EvaluationList

> summary(elist)

name of Evaluation List: a list of "Evaluation" objects

name of Dataobject: object

name of Datafile: contsim_01

name of Evaluation: object

estimator: mean

67

Result:

mean.id mean.re

Min. :-0.602897 Min. :-1.951351

1st Qu.:-0.140631 1st Qu.:-0.314385

Median :-0.004469 Median :-0.004854

Mean :-0.010057 Mean : 0.004532

3rd Qu.: 0.115294 3rd Qu.: 0.335325

Max. : 0.493840 Max. : 1.904512

name of Evaluation: object

estimator: mestimator

Result:

mstm.id mstm.re

Min. :-0.64719 Min. :-0.653427

1st Qu.:-0.15283 1st Qu.:-0.160285

Median :-0.01076 Median :-0.005312

Mean :-0.01220 Mean :-0.011271

3rd Qu.: 0.13080 3rd Qu.: 0.148967

Max. : 0.55204 Max. : 0.552036

name of Evaluation: object

estimator: median

Result:

medn.id medn.re

Min. :-0.797128 Min. :-0.80534

1st Qu.:-0.171668 1st Qu.:-0.17828

Median :-0.008259 Median :-0.01176

Mean :-0.015120 Mean :-0.01360

3rd Qu.: 0.146195 3rd Qu.: 0.15249

Max. : 0.672417 Max. : 0.68941

In this example we present a standard robust simulation study that — in variations — arises in
almost every paper on Robust Statistics. We do this with the tools provided by our package. . .

11.9 Expectation of a given function under a given distribution

Code also available under

http://www.uni-bayreuth.de/departments/math/org/

/mathe7/DISTR/Expectation.R

This code is for illustration only; in the mean-time, the expectation- and variance operators implemented in

this example have been included to package "distrEx" where their functionality has further been extended.

As in examples 11.5 and 11.6, we illustrate the use of package "distr" by implementing a general
evaluation of expectation and variance under a given distribution.

> have.distrEx <- suppressWarnings(require("distrEx"))

> if (have.distrEx)

+ {

+ # Example

68

http://www.uni-bayreuth.de/departments/math/org/mathe7/DISTR/Expectation.R

+ id <- function(x) x

+ sq <- function(x) x^2

+

+ # Expectation and Variance of Binom(6,0.5)

+ B <- Binom(6, 0.5)

+ print(E(B, id))

+ print(E(B, sq) - E(B, id)^2)

+

+ # Expectation and Variance of Norm(1,1)

+ N <- Norm(1, 1)

+ print(E(N, id))

+ print(E(N, sq) - E(N, id)^2)

+ } else {

+ cat("\n functionality not (yet) available; ")

+ cat("you have to install package \"distrEx\" first.\n")

+ }

[1] 3
[1] 1.5
[1] 0.9999998
[1] 0.9999944

11.10 n-fold convolution of absolutely continuous distributions

Code also available under

http://www.uni-bayreuth.de/departments/math/org/

/mathe7/DISTR/nFoldConvolution.R

Might be useful for teaching the CLT: a straightforward implementation of the n–fold convolution
of an arbitrary implemented absolutely continuous distribution — to show accuracy of our method
we compare it to the exact formula valid for n-fold convolution of normal distributions.
From version 1.9 this is integrated to package "distr".

> ##

> ## Demo: n-fold convolution of absolutely continuous

> ## probability distributions

> ##

> require(distr)

[1] TRUE

> if(!isGeneric("convpow"))

+ setGeneric("convpow",

69

http://www.uni-bayreuth.de/departments/math/org/mathe7/DISTR/nFoldConvolution.R

+ function(D1,...) standardGeneric("convpow"))

> ##

> ## Function for n-fold convolution

> ## -- absolute continuous distribution --

> ##

>

> ##implentation of Algorithm 3.4. of

> # Kohl, M., Ruckdeschel, P., Stabla, T. (2005):

> # General purpose convolution algorithm for distributions

> # in S4-Classes by means of FFT.

> # Technical report, Feb. 2005. Also available in

> # http://www.uni-bayreuth.de/departments/math/org/mathe7/

> # /RUCKDESCHEL/pubs/comp.pdf

>

>

> setMethod("convpow",

+ signature(D1 = "AbscontDistribution"),

+ function(D1, N){

+ if((N < 1)||(!identical(floor(N), N)))

+ stop("N has to be a natural greater than 0")

+

+ m <- getdistrOption("DefaultNrFFTGridPointsExponent")

+

+ ##STEP 1

+

+ lower <- ifelse((q(D1)(0) > - Inf), q(D1)(0),

+ q(D1)(getdistrOption("TruncQuantile")))

+ upper <- ifelse((q(D1)(1) < Inf), q(D1)(1),

+ q(D1)(getdistrOption("TruncQuantile"), lower.tail = FALSE))

+

+ ##STEP 2

+

+ M <- 2^m

+ h <- (upper-lower)/M

+ if(h > 0.01)

+ warning(paste("Grid for approxfun too wide, ",

+ "increase DefaultNrFFTGridPointsExponent", sep=""))

+ x <- seq(from = lower, to = upper, by = h)

+ p1 <- p(D1)(x)

+

+ ##STEP 3

70

+

+ p1 <- p1[2:(M + 1)] - p1[1:M]

+

+ ##STEP 4

+

+ ## computation of DFT

+ pn <- c(p1, numeric((N-1)*M))

+ fftpn <- fft(pn)

+

+ ##STEP 5

+

+ ## convolution theorem for DFTs

+ pn <- Re(fft(fftpn^N, inverse = TRUE)) / (N*M)

+ pn <- (abs(pn) >= .Machine$double.eps)*pn

+ i.max <- N*M-(N-2)

+ pn <- c(0,pn[1:i.max])

+ dn <- pn / h

+ pn <- cumsum(pn)

+

+ ##STEP 6(density)

+

+ ## density

+ x <- c(N*lower,seq(from = N*lower+N/2*h,

+ to = N*upper-N/2*h, by=h),N*upper)

+ dnfun1 <- approxfun(x = x, y = dn, yleft = 0, yright = 0)

+

+ ##STEP 7(density)

+

+ standardizer <- sum(dn[2:i.max]) + (dn[1]+dn[i.max+1]) / 2

+ dnfun2 <- function(x) dnfun1(x) / standardizer

+

+ ##STEP 6(cdf)

+

+ ## cdf with continuity correction h/2

+ pnfun1 <- approxfun(x = x+0.5*h, y = pn,

+ yleft = 0, yright = pn[i.max+1])

+

+ ##STEP 7(cdf)

+

+ pnfun2 <- function(x) pnfun1(x) / pn[i.max+1]

+

71

+

+ ## quantile with continuity correction h/2

+ yleft <- ifelse(((q(D1)(0) == -Inf)|

+ (q(D1)(0) == -Inf)),

+ -Inf, N*lower)

+ yright <- ifelse(((q(D1)(1) == Inf)|

+ (q(D1)(1) == Inf)),

+ Inf, N*upper)

+ w0 <- options("warn")

+ options(warn = -1)

+ qnfun1 <- approxfun(x = pnfun2(x+0.5*h),

+ y = x+0.5*h, yleft = yleft, yright = yright)

+ qnfun2 <- function(x){

+ ind1 <- (x == 0)*(1:length(x))

+ ind2 <- (x == 1)*(1:length(x))

+ y <- qnfun1(x)

+ y <- replace(y, ind1[ind1 != 0], yleft)

+ y <- replace(y, ind2[ind2 != 0], yright)

+ return(y)

+ }

+ options(w0)

+

+ rnew = function(N) apply(matrix(r(e1)(n*N),

+ ncol=N), 1, sum)

+

+ return(new("AbscontDistribution", r = rnew,

+ d = dnfun1, p = pnfun2, q = qnfun2))

+ })

[1] "convpow"

> ## initialize a normal distribution

> A <- Norm(mean=0, sd=1)

> ## convolution power

> N <- 10

> ## convolution via FFT

> AN <- convpow(as(A,"AbscontDistribution"), N)

> ## ... for the normal distribution , 'convpow' has an "exact"

> ## method by version 1.9 so the as(.,.) is needed to

> ## see how the algorithm above works

>

72

> ## convolution exact

> AN1 <- Norm(mean=0, sd=sqrt(N))

> ## plots of the results

> eps <- getdistrOption("TruncQuantile")

> par(mfrow=c(1,3))

> low <- q(AN1)(eps)

> upp <- q(AN1)(eps, lower.tail = FALSE)

> x <- seq(from = low, to = upp, length = 10000)

> ## densities

> plot(x, d(AN1)(x), type = "l", lwd = 5)

> lines(x , d(AN)(x), col = "orange", lwd = 1)

> title("Densities")

> legend("topleft", legend=c("exact", "FFT"),

+ fill=c("black", "orange"))

> ## cdfs

> plot(x, p(AN1)(x), type = "l", lwd = 5)

> lines(x , p(AN)(x), col = "orange", lwd = 1)

> title("CDFs")

> legend("topleft", legend=c("exact", "FFT"),

+ fill=c("black", "orange"))

> ## quantile functions

> x <- seq(from = eps, to = 1-eps, length = 1000)

> plot(x, q(AN1)(x), type = "l", lwd = 5)

> lines(x , q(AN)(x), col = "orange", lwd = 1)

> title("Quantile functions")

> legend("topleft",

+ legend = c("exact", "FFT"),

+ fill = c("black", "orange"))

73

−15 −5 5 15

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

0.
12

x

d(
A

N
1)

(x
)

Densities

exact
FFT

−15 −5 5 15

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

p(
A

N
1)

(x
)

CDFs

exact
FFT

0.0 0.4 0.8

−
15

−
10

−
5

0
5

10
15

x

q(
A

N
1)

(x
)

Quantile functions

exact
FFT

References

[1] Bengtsson H. The R.oo package - object-oriented programming with references using
standard R code. In: Hornik K., Leisch F. and Zeileis A. (Eds.) Proceedings of the
3rd International Workshop on Distributed Statistical Computing (DSC 2003). Vienna,
Austria. Published as http://www.ci.tuwien.ac.at/Conferences/DSC-2003/ 6

[2] Chambers J.M. Programming with data. A guide to the S language. Springer.
http://cm.bell-labs.com/stat/Sbook/index.html 6

[3] Gentleman R. Object Orientated Programming. Slides of a Short Course held in Auck-
land . http://www.stat.auckland.ac.nz/S-Workshop/Gentleman/Methods.pdf 36, 37

[4] Kohl M. Numerical Contributions to the Asymptotic Theory of Robustness. Disserta-
tion, Universität Bayreuth. See also http://stamats.de/ThesisMKohl.pdf 1

74

[5] Kohl M., Ruckdeschel P. and Stabla T. General Purpose Convolution Algorithm for
Distributions in S4-Classes by means of FFT. unpublished manual 6, 17, 36

[6] Press W.H., Teukolsky S.A., Vetterling W.T. and Flannery B.P. Numerical recipes in
C. The art of scientific computing. Cambridge Univ. Press, 2. Aufl. 27

[7] Rice J.A. Mathematical statistics and data analysis. The Wadsworth & Brooks/Cole
Statistics/Probability Series. Wadsworth & Brooks/Cole Advanced Books & Software,
Pacific Grove, California. 38

[8] Ruckdeschel P., Kohl M., Stabla T., and Camphausen F. S4 Classes for Distributions.
R-News, 6(2): 10–13. http://CRAN.R-project.org/doc/Rnews/Rnews 2006-2.pdf 3

75

	Motivation
	Concept
	Organization in classes
	Distribution classes
	Subclasses
	Classes for multivariate distributions and for conditional distributions
	Parameter classes

	Simulation classes
	Evaluation class
	EvaluationList class

	Methods
	Affine linear transformations
	The group math of unary mathematical operations
	Construction of d, p, and q from r
	Convolution
	Overloaded generic functions
	liesInSupport
	Simulation (in package distrSim)
	Evaluate (in package distrTEst)
	Is-Relations
	Further methods
	Functionals (in package distrEx)
	Expectation
	Variance
	Further functionals

	Truncated moments (in package distrEx)
	Distances (in package distrEx)
	Functions for demos (in package distrEx)
	CLT for arbitrary summand distribution
	LLN for arbitrary summand distribution
	Deconvolution example

	Options
	Options for distr
	Options for distrEx
	Options for distrSim
	Options for distrTEst

	Startup Messages
	System/version requirements
	System requirements
	Required version of R
	Dependencies
	License

	Details to the implementation
	A general utility
	Odds and Ends
	What should be done and what we could do
	What should be done but for which we lack the know-how

	Acknowledgement
	Examples
	12-fold convolution of uniform (0,1) variables
	Comparison of exact convolution to FFT for normal distributions
	Comparison of FFT to RtoDPQ
	Comparison of exact and approximate stationary regressor distribution
	Truncation and Huberization/winsorization
	Distribution of minimum and maximum of two independent random variables
	Instructive destructive example
	A simulation example
	Expectation of a given function under a given distribution
	n-fold convolution of absolutely continuous distributions

