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Abstract

The dr package for R for dimension reduction regression was first docu-
mented in Weisberg (2002). This is a revision of that article, to correspond
to version 3.0.0 of dr for R added to CRAN (cran.r-project.org) in Fall
2007.

Regression is the study of the dependence of a response variable y
on a collection of p predictors collected in x. In dimension reduction re-
gression, we seek to find a few linearly independent linear combinations
β′

1x, . . . , β′
dx, such that all the information about the regression is con-

tained in these d linear combinations. If d is very small, perhaps one or
two, then the regression problem can be summarized using simple graph-
ics; for example, for d = 1, the plot of y versus β′

1x contains all the
regression information. When d = 2, a 3D plot contains all the informa-
tion. Formal estimation methods can additionally be used given the lower
dimensional problem based on the few linear combinations.

The primary goals of dimension reduction regression are determining
the dimension d, and estimating β1, . . . , βd, or more precisely the sub-
space of <p spanned by β1, . . . , βd. Several methods for these goals have
been suggested in the literature and some of these are implemented in dr.
Methods implemented in the package include sliced inverse regression or
sir, sliced average variance estimates, or save, principal Hessian directions,
or phd, and inverse regression estimation, or ire. The first three of these
methods estimate the span of the βs by examining the inverse regression
problem of x|y, rather than the forward regression problem of y|x, and all
estimate the βs as the solution of an eigenvalue problem. The method ire
is new in Version 3.0.0 and estimates a basis for the subspace of interest
by minimizing a quadratic objective function.

Determining d is approached as a testing problem. Marginal dimension
tests are used for a hypothesis of the form d = d0 versus an alternative
d > d0, without restriction on the subspaces involved other than their
dimension. The first of these tests was proposed by Li (1991) in his paper
on sir. Added to Version 3.0.0 are tests of coordinate hypotheses, proposed
by Cook (2004), which effectively provides a test for elimination of predic-
tors to reduce dimension, although the method is more general than this.
These latter tests provide the basis for stepwise elimination of predictors.
These tests are available in dr for methods sir, save, and ire.
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Finally, the methods sir, save and ire are extended to allow for inclusion
of categorical predictors in x.

1 Introduction

In the general regression problem, we have a response y of dimension k ≥ 1
and p-dimensional predictor x, and the goal is to learn about how the con-
ditional distributions F (y|x) change as x varies through its sample space. In
parametric regression, we specify a known functional form for these conditional
distributions, apart from a few parameters to be estimated. In nonparametric
regression no assumptions are made about F , but progress is really only possible
if the dimensions p and k are small.

Dimension reduction regression is one intermediate possibility between the
parametric and nonparametric extremes. We assume without loss of information
that the conditional distributions can be indexed by d linear combinations, or
for some probably unknown p× d matrix B

F (y|x) = F (y|B′x) (1)

or in words, all the information in x about y is contained in the d linear com-
binations B′x. This representation always holds trivially, by setting B = I, the
p × p identity matrix, and so the usual goal is to find the B of lowest possible
dimension for which this representation holds. If (1) holds for a particular B,
then it also holds for B∗ = BA, where A is any full rank matrix, and hence
the unique part of the regression summary is the subspace that is spanned by
the columns of B, which we denote S(B). The choice of B that gives S(B) of
smallest dimension is called the central subspace. Cook (1998) provides a more
complete introduction to these ideas, including discussion of when the central
subspace exists and is unique.

The dr package for R provides methods for this approach to regression prob-
lems. The basic idea is to estimate both a dimension d, and a set of basis vectors
β̂1, . . . , β̂d that are linearly independent and span S(B).

For readers familiar with earlier versions of dr, here is list of the additions
to Version 3.0.0. If you are new to the package, you may wish to skip to this
list.

New methods Inverse regression estimates, Cook and Ni (2005) and Wen and
Cook (2007) are specified in a call to dr with method="ire", as described
in Section 7. This method is different from the other methods in dr
in that the estimated directions minimize an objective function. Other
methods compute a matrix M and then estimate a subspace by the span
eigenvectors corresponding to the first few eigenvalues of M1.

1It is possible to view the sir method as minimizing an objective function as well, although
this is not the way it was originally presented; Cook (2004)
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Marginal dimension tests for save Tests for the dimension hypotheses in
save were presented in Shao, Cook and Weisberg (2007), and are included
in dr.

Coordinate hypotheses In previous versions of dr, the only tests available
were marginal dimension tests about the dimension of the central (mean)
subspace, without actually specifying any characteristics of what that sub-
space might be. Cook (2004) suggested both marginal and conditional
tests, in which specific hypotheses can be tested. For example, one could
test to see if the central (mean) subspace is orthogonal to a particular
predictor. Cook described both marginal and conditional coordinate tests.
The marginal coordinate tests are available for sir, save and ire, with and
without categorical predictors. Conditional coordinate tests are available
for sir without categorical predictors, and for ire with and without cate-
gorical predictors. Conditional coordinate tests for other methods may be
added to dr in a later release.

Based on the marginal coordinate tests, we could imagine a stepwise dele-
tion of potential predictors from a pool of possible predictors. This is
implemented for sir, save and ire using the standard R function drop1.
Since step in R is not a generic function, a function called dr.step is
included here.

Categorical predictors Chiaromonte, Cook and Li (2002) suggested how di-
mension reduction methods could be extended to problems with cate-
gorical predictors. This methodology is available in dr using the groups

keyword. For example, group = ~Sex used a one-sided formula to specify
that the levels of a variable Sex provides a grouping variable. This key-
word is recognized for sir, Chiaromonte, Cook and Li (2002), save, Shao,
Cook and Weisberg (submitted), and for ire, Wen and Cook (2007).

In addition to these major additions, several minor changes have been made
as well. Many of the methods require approximation of p-values for statistics
distributed as a linear combination of χ2 random variables. The user may select
to use either the Wood (1989) or Bentler and Xie (2000) approximation to a lin-
ear combination of Chi-squared random variables to approximation significance
levels of many of the tests.

The standard update method in R can be used with dr. Standard short-
cuts for formulas can also be used. For example, the function call dr(ais) will
automatically select the first column of the data frame ais as the response and
the remaining columns as predictors, using defaults for all other arguments.
Similarly, dr(LBM~.,ais) will use LBM as the response and all other columns
as predictors.

Several of the methods require approximating the response Y by a discrete
version by slicing into nonoverlapping slices. The function dr.slices is used
for this purpose, and has been improved to give better handling of ties. To
correspond to the program Arc, dr.slices.arc, which is the old slicing function,
is also available for use.
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2 Generalities and notation

All the methods require a few underlying assumptions. The following three are
most common (Cook, 2004, Section 3):

Linearity condition This assumption concerns only the the marginal distri-
bution of the predictors x. If we write PS(B) as the projection on the
central subspace S(B), then we must have E(x|PS(B)x) = PS(B)x. A
stronger condition that could be checked in practice is that E(a′x|b′x) is
linear in b′x for all vectors a and b. If x is normal the condition is satisfied,
but normality is much stronger than needed.

Constant covariance condition Some methods require conditions on second
moments of the predictors as well that the matrix Var(x|PS(B)x) is a
nonrandom matrix. This condition is also satisfied by x normal, and is
satisfied approximately if x has an elliptically contoured distribution.

Coverage condition This condition generally requires that a method can re-
cover all of the central subspace, not just part of it. Not all methods can
satisfy this condition, however. Ordinary least squares regression is a di-
mension reduction method if the linearity condition is satisfied, but it can
only recover at most one basis vector in S(B). Sliced inverse regression
can recover only directions associated with the mean E(y|x) but not of
higher moments. In addition, if the number of slices for sir is less than d,
all directions cannot be recovered.

Suppose we have data (xi, yi), for i = 1, . . . , n that are independent and
collected into a n×p matrix X and an n-vector Y if k = 1 and a n×k matrix Y
if k > 1. A multivariate response is not implemented for phd or ire. In addition,
suppose we have nonnegative weights w1, . . . , wn whose sum is n; if unspecified,
we take all the wi = 1. The weights are used to improve the elliptical symmetry
of the (weighted) distribution of the xi and thereby satisfy the linearity condition
at least approximately; see Section 9.1.

All the methods described here are invariant under location and scale change,
and all start by replacing X by a matrix Z such that the columns of Z have
mean zero and identity covariance matrix. One way to do the centering and
scaling uses the QR decomposition. Define x̄ =

∑
wixi/n to be the vector of

weighted column means, W = diag(wi). We use the QR decomposition to find
a matrix Q with orthonormal columns and an upper triangular matrix R such
that

QR = W 1/2(X − 1x̄′) and Z =
√
nQ (2)

Then the matrix Z has column means zero and sample identity covariance ma-
trix. If B̂ has columns that estimate a basis for the central subspace for the
regression of y|z, then R−1B̂ provides a basis for the space the regression of y|x.

With the exception of the ire method described in Section 7, the methods
implemented in dr have the following general pattern.
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1. The methods sir, save and phd are based on study of the inverse regression
problem of x|y or z|y rather than the forward regression problem of y|x
or y|z. All three methods require the linearity condition, and possibly the
constant covariance condition. They use the scaled and centered data Z
to find a matrix M̂ that is a consistent estimate of a population matrix
M with the property that Sz(M) ⊆ Sz(B). For sir, we estimate only
vectors in the central mean subspace, Cook and Li (2002), which guarantees
only that E(y|B′z) = E(y|z), ignoring any information beyond the first
moment; save and phd are more general. If the coverage condition is
assumed, than all of Sz(B) is recovered.

Assuming the dimension of Sz(B) is d, a basis for S(B) in X-coordinates
is R−1B̂, which can be used to form on orthonormal basis for this space
in the original p dimensional coordinate system of the predictors.

2. The tests concerning the dimension d are called marginal dimensional tests
and are available for sir, save, ire and one version of phd; details are given
in the following sections or the references therein. It is usual to do testing
in a sequential fashion, first testing d = 0 versus d > 0, then testing d ≤ 1
versus d > 1, and continue until a nonsignificant result is obtained.

Also available are coordinate tests, in which we test to see if the central
subspace is orthogonal to a prespecified subspace. These tests can be
done marginally, with no assumptions about the dimension d, or for some
methods conditionally, assuming d is known. This is particularly useful
for deciding is a predictor, which represents a one-dimensional subspace,
can be removed from a model. This allows the use of stepwise deletion of
variables, as will be discussed in Section 4.2.

3. If the matrix B̂ has columns with basis vectors for the estimated central
subspace, then (X − 1x̄′)B̂ gives the d linear combinations of the vari-
ables in the n-dimensional observation space; these are computed using
dr.directions, and can be used in graphical procedures or in other fitting
methods.

3 The dr function

The main function in the dr package is also called dr. Here are the arguments,
with their defaults:

dr(formula, data, subset, group=NULL, na.action = na.fail,
weights,method = "sir", chi2approx="bx",...)

The arguments formula, data, subset, na.action, and weights are the save as
the arguments of the same name with the standard R function lm. The other
arguments are unique to dr.

The required formula is a two-sided formula with the response on the left side,
or a matrix if the response is multivariate, and a set of predictors on the right
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Table 1: Methods implemented in dr. “Multivariate” is yes if the response can be
multivariate. “Partial” is yes if conditioning on categorical predictors is allowed
using the group argument. “Coord” is yes if coordinate tests are available.
Name Reference Multivariate Partial Coord
sir Li (1991), Chiaromonte, Cook

and Li (2002)
Yes Yes Yes

save Cook and Weisberg (1991); Shao,
Cook and Weisberg (2007)

Yes Yes Yes

phdy Li (1992), Cook (1998) No No No
phdres Cook (1998) No No No
phdq Li (1992) No No No
ire Cook and Ni (2006), Wen and

Cook (2007)
No Yes Yes

side. Although any formula that is valid for lm can be used, the predictors are
expected to all be continuous without any nesting or crossing. A typical formula
might be y~x1+x2+x3 for a univariate response, or cbind(y1,y2)~x1+x2+x3 for
a bivariate response.

The argument data specifies an optional data frame for the variables. The
subset argument specifies which rows of the data are to be used in the analysis,
as in lm. na.action is the missing value action; na.omit should also work.

The group argument, if used, requires a one-sided formula that evaluates
to a list of a small number of levels. Dimension reduction is done for each
combination of the grouping variables. For example, group=~Sex would fit
separately for each Sex, and group=~Sex:AgeClass would fit separately for each
combination of Sex and AgeClass. For this latter case, both Sex and AgeClass

must be declared as factors.
The methods generally require linearly related predictors, and this can often

be achieved by transformation of predictors (see Cook and Weisberg, 1999, and
the function bctran in the R package alr3), or by weighting the observations.
Weights can be computed using dr.weights, described in Section 9.1. The ar-
gument weights would usually either be NULL of the result of calling dr.weights.

The method argument is used to select the particular method of computing
dimension reduction. The default is "sir", but see Table 1 for other choices.
Each of these methods is described in later sections.

The “. . . ” allows for additional arguments to be passed to particular dimen-
sion reduction methods. For example, sir is a slicing method and so an argument
nslices may be used. Another useful argument is numdir, which is set a max-
imum value for d. The default is numdir=4. These additional arguments are
described in later sections where the methods are described.

The argument slice.info used in earlier versions of dr has been removed. A
new argument slice.function has been added. If slice.function=dr.slices.arc,
then the algorithm used by Arc for computing slices is used. Otherwise, a newer
algorithm given in the function dr.slices is used.
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An additional new argument is chi2approx = c("bx","wood"). The default
value of "bx" will use the Bentler and Xie (2000) approximation to a linear
combination of Chi-square random variables when needed for computing signif-
icance levels. If chi2approx="wood", then the Wood (1989) method, which was
previously the default in dr, is used.

4 SIR

4.1 Basics

Sliced inverse regression or sir was proposed by Li (1991). We assume that
data consists of n rows (yi, xi) for i = 1, . . . , n. We write zi for the i-th row of
the centered and scaled version of xi, from (2). We suppose that the response
variable y has h distinct levels or values; if it does not have h levels but y is
univariate, then the range of y is sliced into h non-overlapping slices so that the
number of observations in each slice is approximately equal. If y is multivariate,
h slices are formed in a somewhat more complex way; see Section 9.2. The
only difference between univariate and multivariate sir is the way that slices are
formed.

Suppose that z̄j , for j = 1, . . . , h, is the mean of the zi for i in the jth slice.
The kernel matrix for sir is

M̂ =
1
n

∑
gj z̄j z̄

′
j (3)

where gj is the sum of the weights in slice j, and the weights are always scaled
so that

∑
wi = n. If the dimension of the central (mean) subspace is d, then the

estimated central mean subspace is the span of the d eigenvectors corresponding
to the d largest eigenvalues of M̂ , translated back to x-coordinates.

The default computational method using the dr function is sir. Here is an
example of its use.

> data(ais)

> summary(s0 <- dr(LBM ~ log(SSF) + log(Wt) + log(Hg) +

+ log(Ht) + log(WCC) + log(RCC) + log(Hc) + log(Ferr),

+ data = ais, slice.function = dr.slices.arc, nslices = 8,

+ chi2approx = "wood", numdir = 4, method = "sir"))

Call:
dr(formula = LBM ~ log(SSF) + log(Wt) + log(Hg) + log(Ht) + log(WCC) +

log(RCC) + log(Hc) + log(Ferr), data = ais, slice.function = dr.slices.arc,
nslices = 8, chi2approx = "wood", numdir = 4, method = "sir")

Method:
sir with 8 slices, n = 202.

Slice Sizes:
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26 26 25 25 25 27 30 18

Estimated Basis Vectors for Central Subspace:
Dir1 Dir2 Dir3 Dir4

log(SSF) 0.158016 -0.075965 0.15503 -0.042384
log(Wt) -0.970701 -0.022829 -0.24362 0.258583
log(Hg) -0.139764 0.346539 0.54270 -0.008597
log(Ht) -0.087587 -0.331604 0.30867 -0.630151
log(WCC) 0.006682 -0.014914 -0.00581 -0.024479
log(RCC) -0.010892 0.502020 0.71198 0.343766
log(Hc) 0.073437 -0.715120 -0.07453 -0.643773
log(Ferr) -0.003117 0.003869 -0.11969 -0.030918

Dir1 Dir2 Dir3 Dir4
Eigenvalues 0.9380 0.2046 0.0929 0.06665
R^2(OLS|dr) 0.9987 0.9988 0.9988 0.99898

Large-sample Marginal Dimension Tests:
Stat df p.value

0D vs >= 1D 269.50 56 0.0000000
1D vs >= 2D 80.02 42 0.0003665
2D vs >= 3D 38.69 30 0.1327694
3D vs >= 4D 19.93 20 0.4624789

This output is not identical to the output for sir obtained from previous ver-
sions of dr because the defaults for forming slices have changed, and the labels
to sections of the output have changes as well. We have set the arguments
slice.function=dr.slices.arc, nslices=8 and chi2approx="wood" to get results
that agree with Table 5 in Cook (2004), apart from multiplication of some basis
vectors by −1.

The summary output is similar for all dr methods. Basic information, like
the fitting method, the formula, and the slice information, is printed. The vec-
tors collected into a matrix B̂ in the section called Estimated Basis Vectors

for Central Subspace are computed by taking the eigenvectors in the z-scale,
backtransforming to the original x-scale as previously discussed, and then nor-
malizing so each column has length one. These vectors are an estimated basis
for S(B), and they are orthogonal relative to the inner product determined bŷVar(X), so B̂′ ̂Var(X)B̂ is a diagonal matrix.

Next, the corresponding eigenvalues are given, ordered largest to smallest.
The line marked R^2*(OLS|dr) is the square of the correlation between the lin-
ear combination obtained by the ols regression of the response on the predictors
and the subspace spanned by the first direction, the first two directions, and so
on. In this example, the correlation with Dir1 is almost 1, so this direction is
almost the same as ols. Under the assumption of linearly related predictors, ols
estimates a direction in the central subspace, so the large correlation is to be
generally expected.
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For sir, the marginal dimension tests have asymptotic χ2 distributions, as
suggested by Li (1991), who assumed that the marginal distribution of X was
normal. Bura and Cook (2001) show that the same asymptotic distribution
holds under the linearity and constant covariance conditions. The tests are
customarily viewed sequentially, first testing d = 0 versus d > 0, then d = 1
versus d > 1, and continue until we get a nonsignificant result. For the example,
we would tentatively conclude d = 2 from these tests.

4.2 Coordinate hypothesis tests

4.2.1 Marginal coordinate tests

These tests were proposed by Cook (2004). Suppose that S(B) represents the
central subspace with basis given by the columns of B. Coordinate tests allow
testing hypotheses that the space S(B) is orthogonal to one (or more linear com-
binations) of the predictors; were this so, we could achieve dimension reduction
simply by dropping these predictors.

Define a hypothesis matrix H, and under the null hypothesis we have that
all vectors in S(B) can be represented as linear combinations of the columns
of H, or if PH is the projection on H, the null and alternative hypotheses are
(I − PH)B = 0 versus (I − PH)B 6= 0. The method dr.coordinate.test will
compute the appropriate test. Cook (2004) proposed two approaches to testing
this hypothesis, the marginal approach in which we assume nothing about the
dimension d, and the conditional approach in which we assume that d is known.

To do a test the user must specify H, but dr includes automatic tools to
make this easier for the most common coordinate hypotheses. For example,

> dr.coordinate.test(s0, hypothesis = ~. - log(RCC))

Statistic P.value
Test 9.843353 0.1063271

The null hypothesis is specified by the formula given in the argument hypothesis.
In this case, the null hypothesis is that S(B) can be expressed as a linear
combination of all the predictors (determined by the “\~.”) except for log(Hg).
The function recognizes that hypothesis is a formula and called the function
coord.hyp.basis to generate the H matrix. Alternatively, the user can provide
a matrix with p rows and p∗ columns, where p is the number of predictors,
and p∗ < p is the dimension of the hypothesis space. See the documentation
for coord.hyp.basis for details. Cook provided several ways of estimating the
p-value, depending on the assumptions made. We present the most general
approximation that requires the fewest assumptions.

4.2.2 Conditional coordinate tests

These tests are of the same hypothesis as in Section 4.2.1, except we condition
on a known value d for the overall dimension. The same function is used for the
computation, except that the argument d is set to the hypothesized dimension.
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> dr.coordinate.test(s0, hypothesis = ~. - log(RCC),

+ d = 2)

Statistic P.value
Test 4.79865 0.01410477

We see that the outcome of the test can be quite different when we condition on
the dimension. Conditional coordinate tests are available only for sir, ire, and
ire with categorical predictors.

4.3 Backward elimination

The function dr.coordinate.test is used in the standard R function drop1 to
examine dropping each predictor in turn.

> m0 <- drop1(s0, update = TRUE)

LBM ~ log(SSF) + log(Wt) + log(Hg) + log(Ht) + log(WCC) +
log(RCC) + log(Hc) + log(Ferr)

Statistic P.value
- log(Hg) 2.527821 8.517488e-01
- log(WCC) 2.865608 8.080390e-01
- log(Ht) 6.580257 3.227738e-01
- log(Hc) 6.920327 2.902826e-01
- log(RCC) 9.843353 1.063271e-01
- log(Ferr) 12.670269 3.604327e-02
- log(SSF) 27.961216 4.802552e-05
- log(Wt) 40.410284 1.594103e-07

The result of using this function is another dr object obtained by dropping
the predictor with the largest p-value. This is the basis for stepwise fitting. If
update=FALSE, then refitting dr is skipped.

The function dr.step(object,scope,d,stop) calls drop1 repeatedly, each time
dropping the variable with the largest p-value according to the marginal coor-
dinate test, or the conditional coordinate test (for ire or for sir or save without
categorical predictors) if a non-null value of d is specified. The documentation
for these functions given more details2. The argument scope is a one-sided for-
mula listing predictors that are never deleted. The argument d is the dimension
of the central subspace for ire with or without categorical predictors, or for
sir without categorical variables. The algorithm continues until the number of
variables remaining is equal to the maximum dimension set by the argument
numdir used in the call the dr, which is 4 by default, or until the p-value for the
next variable to be removed is less than stop. The default for stop is 0. As an
example, the output below will delete predictors one at a time as long as the
largest p-value exceeds 0.20. The variable log(Wt) will never be deleted.

2The standard function step in R is not a generic function and so it can’t be used with
dr.
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> s1a <- dr.step(s0, scope = ~log(Wt), stop = 0.2)

LBM ~ log(SSF) + log(Wt) + log(Hg) + log(Ht) + log(WCC) +
log(RCC) + log(Hc) + log(Ferr)

Statistic P.value
- log(Hg) 2.527821 8.517488e-01
- log(WCC) 2.865608 8.080390e-01
- log(Ht) 6.580257 3.227738e-01
- log(Hc) 6.920327 2.902826e-01
- log(RCC) 9.843353 1.063271e-01
- log(Ferr) 12.670269 3.604327e-02
- log(SSF) 27.961216 4.802552e-05

LBM ~ log(SSF) + log(Wt) + log(Ht) + log(WCC) + log(RCC) +
log(Hc) + log(Ferr)

Statistic P.value
- log(WCC) 2.936254 7.994406e-01
- log(Ht) 7.574226 2.362964e-01
- log(Hc) 8.629906 1.652647e-01
- log(RCC) 10.624895 8.020715e-02
- log(Ferr) 12.623898 3.709661e-02
- log(SSF) 30.531085 1.530668e-05

LBM ~ log(SSF) + log(Wt) + log(Ht) + log(RCC) + log(Hc) +
log(Ferr)

Statistic P.value
- log(Ht) 7.571690 1.504490e-01
- log(Hc) 9.011992 8.552446e-02
- log(RCC) 10.533828 4.586187e-02
- log(Ferr) 12.672829 1.847415e-02
- log(SSF) 33.662369 1.185615e-06

Stopping Criterion Met

4.4 Categorical predictors and partial SIR

Suppose we have a categorical predictor or grouping variable G with g lev-
els. Chiaromonte, Cook and Li (2002) described how such a categorial predic-
tor could be included in a dimension reduction regression problem. The basic
idea is to divide the problem into g regression problems, and define the cen-
tral subspace to the the union of the subspaces for the regression problems
(y|x,G = 1), (y|x,G = 2), . . . , (y|x,G = g). Chiaromonte et al. called this
partial sir.

In the context of sir, we can estimate a matrix M̂g of the form (3) separately
for of the g levels of G, combine them, and then estimate the central subspace
from the eigenvectors corresponding to larger eigenvalues of the combined M̂ .
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Using the ideas in Cook (2004), Y. Shao has provided marginal and conditional
coordinate hypothesis tests for partial sir, which are included in dr but are as
yet unpublished.

Partial sir is fit in dr using by adding an argument group to the call. The
value of group should be a one-sided formula. For example, if Sex was a factor
with two levels and AgeClass a factor with three levels, then group= Sex would
condition on Sex, and Sex:AgeClass would condition on all possible non-empty
combinations of Sex and AgeClass. An additional argument pool is also available
on the call to dr. If pool=TRUE, then a pooled estimate of the variance of X is
used in each of the g groups to compute the standardized predictors. The
default is pool=FALSE, in which the variance is estimated separately in each
group. Chiaromonte et al. used the former choice to get the marginal dimension
tests, while Shao uses the latter choice to get the coordinate hypothesis tests.

> summary(s1 <- update(s0, group = ~Sex))

Call:
dr(formula = LBM ~ log(SSF) + log(Wt) + log(Hg) + log(Ht) + log(WCC) +

log(RCC) + log(Hc) + log(Ferr), data = ais, group = ~Sex,
slice.function = dr.slices.arc, nslices = 8, chi2approx = "wood",
numdir = 4, method = "sir")

Method:
psir with 8 8 slices, n = 202.

Slice Sizes:
13 13 13 13 12 12 12 12 13 17 14 16 13 14 12 3

Estimated Basis Vectors for Central Subspace:
Dir1 Dir2 Dir3 Dir4

log(SSF) 0.117498 0.04262 -0.09604 0.093277
log(Wt) -0.954097 -0.16172 0.09756 -0.095106
log(Hg) -0.107177 -0.52877 -0.90198 0.018578
log(Ht) -0.075489 0.51072 0.31713 -0.050511
log(WCC) 0.036513 0.04380 0.12594 -0.053962
log(RCC) -0.126238 -0.08432 -0.04154 -0.692498
log(Hc) 0.203441 0.64997 -0.18122 0.704890
log(Ferr) 0.007086 -0.01077 0.12924 0.004844

Dir1 Dir2 Dir3 Dir4
Eigenvalues 1.8335 0.4492 0.3172 0.2030
R^2(OLS|dr) 0.9904 0.9922 0.9930 0.9952

Large-sample Marginal Dimension Tests:
Stat df p.value

0D vs >= 1D 621.8 112 0.000e+00
1D vs >= 2D 251.4 91 1.110e-16
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2D vs >= 3D 160.7 72 1.020e-08
3D vs >= 4D 96.6 55 4.509e-04

4.5 Accessor functions

Several accessor functions can be applied to dr objects3 to get additional infor-
mation. These functions apply for sir, save, phd, or ire.

dr.x(object)
dr.y(object)
dr.z(object)
dr.wts(object)

These functions return, respectively, the X matrix the response Y , the scaled
Z matrix (but not for partial sir or partial save), and the weights.

dr.test(object,numdir)

Returns the marginal dimension tests for all methods for which these are avail-
able.

dr.coordinate.test(object,hypothesis,d)

Returns the coordinate test for the hypothesis given by the one-sided formula
hypothesis. If d is set and the method is either sir, ire, or ire with categorical
predictors, the test is conditional on the dimension of the central subspace;
otherwise, the test is marginal.

drop1(object,d=NULL,update=FALSE)

Calls dr.coordinate.test repeatedly to fit models that drop each predictor in
turn.

dr.basis(object,numdir=4)
dr.evalues(object)

This function returns the first numdir basis vectors for the estimated central sub-
space (orthogonalized using the QR decomposition if orth=TRUE). The function
dr.evalues returns the eigenvalues for sir, save, and phd.

dr.directions(object, which=c(1,2,3,4), x=dr.x(object))

Let B̂ be the columns of the estimated basis for the central subspace selected
by the list which, and X1 be the matrix specified by the argument x, centered
to have mean zero in each column. Then this function returns X1B̂. If x has
its default values, then B̂′X ′

1
̂Var(X)X1B̂ is a diagonal matrix, so the columns

of X1B̂ are orthogonal in the inner product determined by ̂Var(X).
These values are very useful in plotting.

3If you type a command like m1 <- dr(arguments), then m1 is an object.
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plot(object,which=1:object$numdir,mark.by.y=FALSE,
plot.method=pairs,...)

This is the plot method for dr, which extracts by default the first numdir direc-
tion vectors and the response, and plots them using the plot.method, which by
default is pairs.

5 SAVE

The method save, Cook and Weisberg (1991), is more comprehensive than sir
as it can estimate vectors that depend on both mean and variances changes
between slices.

As with sir, we slice the range of y into h slices, but rather than compute
the within-slice mean we compute within-slice covariance matrices. If Ci is the
weighted within slice sample covariance matrix in slice i in z-scale, then the
matrix M̂ is given by

M̂ =
1
n

∑
gj(I − Cj)2

where gj is the sum of the weights in slice j; if all weights are equal, then the gj

are just the number of observations in each slice. save looks at second moment
information and may miss first-moment information, particularly it may miss
linear trends.

> s2 <- update(s0, method = "save")

> summary(s2)

Call:
dr(formula = LBM ~ log(SSF) + log(Wt) + log(Hg) + log(Ht) + log(WCC) +

log(RCC) + log(Hc) + log(Ferr), data = ais, slice.function = dr.slices.arc,
nslices = 8, chi2approx = "wood", numdir = 4, method = "save")

Method:
save with 8 slices, n = 202.

Slice Sizes:
26 26 25 25 25 27 30 18

Estimated Basis Vectors for Central Subspace:
Dir1 Dir2 Dir3 Dir4

log(SSF) 0.150208 0.002503 0.01341 0.04697
log(Wt) -0.974926 0.095672 -0.23264 0.01489
log(Hg) -0.071376 -0.459535 -0.07929 -0.68459
log(Ht) 0.069427 -0.260067 0.79663 -0.35430
log(WCC) 0.022249 0.007472 0.03734 -0.03682
log(RCC) 0.055098 -0.318709 -0.31942 0.42383
log(Hc) -0.116228 0.781261 0.44788 0.46787
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log(Ferr) 0.001187 -0.005745 0.02777 0.05907

Dir1 Dir2 Dir3 Dir4
Eigenvalues 0.9175 0.4866 0.4328 0.3691
R^2(OLS|dr) 0.9976 0.9978 0.9978 0.9982

Large-sample Marginal Dimension Tests:
Stat df(Nor) p.value(Nor) p.value(Gen)

0D vs >= 1D 309.36 252 0.007916 0.05538
1D vs >= 2D 213.27 196 0.189074 0.39975
2D vs >= 3D 132.72 147 0.794519 0.82988
3D vs >= 4D 82.29 105 0.950530 0.94676

As demonstrated here, the update function can be used with dr objects. Shao,
Cook and Weisberg (2007) have provided marginal dimension tests based on
save. Two p-values are available: if we assume predictors are normally dis-
tributed, then the test is asymptotically Chi-squared with df given in the col-
umn df(Nor), and p-value in the column p.val(Nor). The column p.val(Gen) is
based on the weaker assumption that the predictors are linearly related but not
necessarily normal.

As with sir, marginal coordinate tests can be computed with the function
dr.coordinate.test. The functions drop1 and dr.step, described in Section 4.3
can be used as well.

> drop1(s1, update = FALSE)

LBM ~ log(SSF) + log(Wt) + log(Hg) + log(Ht) + log(WCC) +
log(RCC) + log(Hc) + log(Ferr)

Test P.value
- log(Ht) 14.17340 2.104712e-01
- log(RCC) 14.21030 2.084619e-01
- log(Hg) 15.69464 1.393149e-01
- log(Hc) 15.94384 1.297970e-01
- log(Ferr) 17.93088 7.174679e-02
- log(WCC) 21.40569 2.292914e-02
- log(SSF) 23.29185 1.179638e-02
- log(Wt) 71.81375 4.777401e-12

As with sir categorial predictors can be used with save; see Section 4.4.

> summary(s3 <- update(s2, group = ~Sex))

Call:
dr(formula = LBM ~ log(SSF) + log(Wt) + log(Hg) + log(Ht) + log(WCC) +

log(RCC) + log(Hc) + log(Ferr), data = ais, group = ~Sex,
slice.function = dr.slices.arc, nslices = 8, chi2approx = "wood",
numdir = 4, method = "save")
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Method:
psir with 8 8 slices, n = 202.

Slice Sizes:
13 13 13 13 12 12 12 12 13 17 14 16 13 14 12 3

Estimated Basis Vectors for Central Subspace:
Dir1 Dir2 Dir3 Dir4

log(SSF) -0.0268754 0.14950 0.002989 0.38424
log(Wt) 0.2106463 -0.95000 0.041860 -0.27767
log(Hg) 0.0612360 -0.18296 -0.526994 -0.01356
log(Ht) -0.7695336 -0.01837 -0.179239 -0.66559
log(WCC) -0.0275814 0.01299 -0.010282 0.02861
log(RCC) 0.4213156 0.19192 -0.176896 -0.27583
log(Hc) -0.4250953 0.06383 0.810394 0.49684
log(Ferr) 0.0006939 0.01588 0.015912 -0.09109

Dir1 Dir2 Dir3 Dir4
Eigenvalues 0.9921 0.9251 0.8415 0.6330
R^2(OLS|dr) 0.1046 0.9915 0.9932 0.9939

Large-sample Marginal Dimension Tests:
Stat df p-values

0D vs >= 1D 529.7 504 0.2072
1D vs >= 2D 372.5 392 0.7528
2D vs >= 3D 274.3 294 0.7897
3D vs >= 4D 178.3 210 0.9451

6 Principal Hessian direction

Principal Hessian direction methods were originally proposed by Li (1992).
These methods are much more complicated to use and to interpret responses
than the other methods in the dr package. The phd methods are unchanged
from earlier versions of dr.

The phd methods are not based on slicing, but rather on the sample Hessian
matrix.

M̂ =
1
n

n∑
i=1

wifiziz
′
i (4)

In this equation the zi are from (2), the wi are the weights. Different choices
of the fi correspond to variations of the phd method. The central subspace in
z-scale is estimated by the eigenvectors corresponding to the larger eigenvalues
of M̂ in (4). Tests are based on sums of the smaller eigenvalues of M̂ .
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6.1 Response based pHd

Seting fi = yi gives response based pHd, obtained in dr using method="phdy".
This is the method proposed by Li, and is the most straightforward to use.
However, Cook (1998, Chapter 12) shows that tests based on this choice for f
proposed by Li are not correct, and no tests for dimension are available using
this method.

6.2 Residual based pHd

Cook (1998, Chapter 12) suggests setting fi to be the residuals from the ols
regression of y on x. This method is called method="phdres" in dr. Cook shows
that tests of dimension based on this choice are correct, but the hypotheses
concern a subspace other than the central subspace for y|x; see Cook (1998,
Chapter 12) for details.

Output for phd is again similar to sir, except for the tests. Here is the output
for the same setup as before, but for method phdres:

> summary(s2 <- update(s0, method = "phdres"))

Call:
dr(formula = LBM ~ log(SSF) + log(Wt) + log(Hg) + log(Ht) + log(WCC) +

log(RCC) + log(Hc) + log(Ferr), data = ais, slice.function = dr.slices.arc,
nslices = 8, chi2approx = "wood", numdir = 4, method = "phdres")

Method:
phdres, n = 202.

Estimated Basis Vectors for Central Subspace:
Dir1 Dir2 Dir3 Dir4

log(SSF) -0.03675 -0.23340 0.001928 0.006563
log(Wt) 0.59536 0.03252 -0.238599 0.025140
log(Hg) -0.36061 -0.47699 -0.014747 -0.596972
log(Ht) 0.21613 -0.08133 0.959780 -0.038954
log(WCC) 0.02948 -0.07203 0.065847 -0.047897
log(RCC) -0.29816 -0.13669 -0.123638 -0.166642
log(Hc) 0.61429 0.82846 0.044891 0.781899
log(Ferr) -0.01761 0.01068 -0.005824 -0.001390

Dir1 Dir2 Dir3 Dir4
Eigenvalues 2.8583 -1.4478 0.9612 -0.5621
R^2(OLS|dr) 0.8774 0.9444 0.9643 0.9891

Large-sample Marginal Dimension Tests:
Stat df Normal theory Indep. test General theory

0D vs >= 1D 223.67 36 0.000e+00 6.386e-13 0.002078
1D vs >= 2D 69.64 28 2.091e-05 NA 0.010936
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2D vs >= 3D 30.12 21 8.970e-02 NA 0.211565
3D vs >= 4D 12.70 15 6.257e-01 NA 0.253438

The eigenvectors and eigenvalues are as for sir and save. The test statistics
are based on the eigenvalues. The column of tests called “Normal theory” were
proposed by Li (1992) and require that the predictors are normally distributed.
These statistics are asymptotically distributed as Chi-square, with the degrees
of freedom shown.

When the method is phdres additional tests are provided. Since this method
is based on residuals, it gives tests concerning the central subspace for the
regression of the residuals on X rather than the response on X. The subspace
for this residual regression may be, but need not be, smaller than the subspace
for the original regression. For example, the column marked “Indep. test” is
essentially a test of d = 0 versus d > 0 described by Cook (1998) for the
residual regression. Should the significance level for this test be large, we might
conclude that the residual regression subspace is of dimension zero. From this
we have two possible conclusions: (1) the dimension of the response regression
may be 1 if using the residuals removed a linear trend, or (2) the dimension may
be 0 if the residuals did not remove a linear trend.

Similarly, if the significance level for the independence test is small, then we
can conclude that the dimension is at least 1. It could be one if the method
is picking up a nonlinear trend in the OLS direction, but it will be 2 if the
nonlinearity is in some other direction.

The independence test and the final column, also from Cook (1998), use the
same test statistic, but different distributions based on different assumptions.
Significance levels are obtained by comparing the statistic to the distribution of
a random linear combination of Chi-square statistics, each with one df. These
statistics do not require normality of the predictors.

7 Inverse regression estimation

This discussion of inverse regression estimation is more or less self contained,
and uses somewhat different notation from earlier sections.

7.1 Estimation

All methods fit by dr are location and scale invariant, and so for the purpose
of testing, we can use any linear transformation of the predictors we like. In
particular if X is the n× p matrix of predictors, and 1n is an n-vector of ones,
we can compute the QR factorization,

(1n, X) = (Q0, Q)
(
R0 R01

0 R

)
and replace X by

√
nQ in all computations concerning objective functions and

tests. For quantities that are coordinate dependent, like coordinate tests, and
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subspace bases, back-transformation to X-scale is done as indicated below. All
formulas given in this article are in the simpler QR scale.

The data we use consists of the matrix
√
nQ with rows q′i and the response

vector has elements Yi; we have not implemented a multivariate response version.
We assume that Y is discrete with h distinct values 1, . . . , h; if Y is continuous,
we discretize it into these h distinct values by slicing and number these from 1
to h; see Cook and Ni (2005, Section 2.1). dr provides two functions for slicing:
dr.slices.arc uses the same algorithm that is used in Arc, while the default
dr.slices uses an algorithm that is better at handling ties. The former should
be used for comparison to Arc, but the latter is recommended in general.

If δ(Yi = y) is the indicator function equal to one if Yi = y and zero otherwise,
then define

ny =
∑

δ(Yi = y) (5)

fy = ny/n (6)

ξ̂y = (1/ny)
∑

j

δ(Yi = y)qi (7)

ξ̂ = (ξ̂1, . . . , ξ̂h) (8)

The vector ξ̂y is the mean of the qi for which δ(Yi = y), the “slice mean”, and ξ̂
is the p× h matrix of slice means.

Under assumptions discussed by Cook and Ni (2005, Section 2.1), the columns
of ξ̂ estimate vectors in the central subspace. Sliced inverse regression, for ex-
ample, estimates the central subspace by the span the the eigenvectors of ξ̂ξ̂′

corresponding to the d largest eigenvalues. In contrast, inverse regression esti-
mation will estimate the span of the central subspace using the columns of the
p× d matrix B determined by minimizing the following objective function (see
Cook and Ni, 2005, equation 2):

Fd(B,C) =
(
vec(ξ̂diag(fy)An)− vec(BC)

)′
Vn

(
vec(ξ̂diag(fy)An)− vec(BC)

)
(9)

The matrix diag(fy)An is required to convert vectors in ξ̂ to a fixed coordinate
system; in dr, following Cook and Ni (2005), An is obtained from the R command

An <- qr.Q(qr(contr.helmert(h)))

where h is the number of slices. Thus An is an h×(h−1) matrix whose columns
are orthogonal to each other and to 1h. Alternatively, An could be defined as
any h× (h−1) orthogonal matrix with orthogonal columns that spans the same
space; this would simply change coordinates and C, but leave B unchanged. The
matrix Vn is a positive definite symmetric inner product matrix. The optimal
choice for Vn is the inverse of the asymptotic variance of vec(ξ̂diag(fy)An)), and
an estimate of this is used in the ire method in dr.

Minimization of (9) is done over both B and C. The minimizing value of
C is of no interest because it depends on the coordinates determined by An.
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The column space of the p × d matrix B provides the estimate of the central
subspace assuming it is of dimension d.

Computations use an alternating algorithm, which is likely to converge at
only a linear rate, so good starting values can be very important. Assuming Vn

is fixed, if B is fixed, then C can be estimated from ordinary least squares fit of
V

1/2
n vec(ξ̂An) on V

1/2
n vec(Ih−1 ⊗ B). Given the new value of C, Cook and Ni

(2005, Section 3.3) describe a method of updating B, column by column. For
starting values in this algorithm, dr sets B equal to the estimated d dimensional
space obtained using sir.

The computational method will be complete if we describe the computation
of Vn. Cook and Ni (2005, Section 3.3), write

V −1
n = (A′

n ⊗ I)Γ(An ⊗ I)

A consistent sample version of Γ = Var(vec(qε′)) is required, where q′ is a typical
row of Q, and ε has typical elements εy = δ(Y = y)−E(δ(Y = y))−q′E(qδ(Y =
y)), the population residuals from the regression of δ(Y = y) on q. The sample
version of these residuals are given by

ε̂yi = δ(Yi = y)− fy − fyq
′
iψ̂y

where ψ̂y depends on the value of the dimension d and on the estimated central
subspace. We use the following procedure for setting ψ̂y:

1. For computations under the assumption d = 0, set ψ̂y = 0.

2. For computations under the assumption d > 0, initially set ψ̂y = ξ̂y, and
obtain an estimator B.

3. If d > 0 and we set the keyword steps to equal a positive integer, first
compute step 2, and then repeat with ψ̂ = PB ξ̂. If steps is greater than
one, repeat the number of times indicated by the keyword; one step seems
to be adequate.

At completion of the computations the columns of B provide a basis for
the central subspace, assuming that it is of dimension d, in the coordinates
determined by the QR factorization. We could replace B by any matrix TB
where T is any p× p restriction matrix. Indeed, the function dr.iteration.ire

minimizes the function

Fd(B,C, T ) =
(
vec(ξ̂diag(fy)An)− vec(TBC)

)′
Vn

(
vec(ξ̂diag(fy)An)− vec(TBC)

)
(10)

rather than (9), maximizing over B and C with T fixed.
Using this extension, dr uses the algorithm outlined in Cook and Ni (2005,

Section 3.3) to replace B by another basis matrix B̂ such that the first column
of B̂ minimizes (9) for d = 1, with the minimization over all vectors in the span
of B, the second column of B̂ is orthogonal to the first column such that (b̂1, b̂2)
minimizes (9) for d = 2 with b̂1 fixed and b̂2 in the span of B, and so on.
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To duplicate the results for the Australian Athletes data in Cook and Ni
(2005), the following can be used:

> (m1 <- dr(LBM ~ log(Ht) + log(Wt) + log(SSF) + log(RCC) +

+ log(WCC) + log(Ferr) + log(Hc) + log(Hg), data = ais,

+ method = "ire", nslices = 8, numdir = 4, slice.function = dr.slices.arc,

+ itmax = 200, steps = 1, eps = 1e-06))

dr(formula = LBM ~ log(Ht) + log(Wt) + log(SSF) + log(RCC) +
log(WCC) + log(Ferr) + log(Hc) + log(Hg), data = ais,
method = "ire", nslices = 8, numdir = 4, slice.function = dr.slices.arc,
itmax = 200, steps = 1, eps = 1e-06)

Large-sample Marginal Dimension Tests:
Test df p.value iter

0D vs > 0D 1920.043970 56 0.000000e+00 0
1D vs > 1D 104.381091 42 3.176227e-07 4
2D vs > 2D 48.372868 30 1.819157e-02 5
3D vs > 3D 26.149188 20 1.609410e-01 13
4D vs > 4D 6.727698 12 8.750714e-01 6

The call to the dr function is the same as for the other dimension reduction
methods, except that the keyword method="ire". We have specified nslices=8

to match Cook and Ni, rather than use the default of max(8, p + 3), and have
used dr.slices.arc to get slices, again to match Cook and Ni. The remaining
three arguments are default values, itmax and eps controlling the iteration, and
steps controlling the number of reëstimates of the covariance matrix.

The default printed output for ire is a little different from that for save and
sir. Printed only are the large-sample marginal dimension tests. Cook and Ni
(2005, Theorem 2) show that the appropriate statistic for these hypothesis is
nFd(B̂, Ĉ) ∼ χ2(p− d)(h− d− 1). These tests are produced whenever ire is fit.

7.2 Solution in original coordinates

In sir and save, the estimated d-dimensional basis for S(B) is given by the d
eigenvectors corresponding to the d largest eigenvalues. In ire, we will get a
different basis for each value of d, and so the subspaces need not be nested.
As with sir and save, the basis is found by multiplying R−1B̂, where R is the
Cholesky factor from the QR decomposition.

Two see the two dimensional solution, use the function dr.basis,

> dr.basis(m1, numdir = 2)

Dir1 Dir2
log(Ht) 0.103879230 0.529197702
log(Wt) 0.949913819 -0.022318180
log(SSF) -0.148658473 0.098599612
log(RCC) 0.012738241 -0.470853789
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log(WCC) -0.020345785 -0.001408582
log(Ferr) 0.002164593 -0.017665131
log(Hc) -0.144988060 0.650278923
log(Hg) 0.207776474 -0.254656236

For this problem, the first two vectors of the three-dimensional solution are
slightly different from the two-dimensional solution:

> dr.basis(m1, 3)

Dir1 Dir2 Dir3
log(Ht) 0.051162573 0.4823791902 0.510960683
log(Wt) 0.961086645 -0.0669274709 -0.312641769
log(SSF) -0.155948990 0.0852881164 0.083787011
log(RCC) 0.050823719 -0.4333097120 -0.043731712
log(WCC) -0.017355351 -0.0060366333 -0.003542429
log(Ferr) 0.002067821 0.0003196894 0.005114915
log(Hc) -0.163654488 0.7123173202 0.794606795
log(Hg) 0.140368940 -0.2456972800 0.028335640

7.3 Coordinate hypothesis

Suppose that H is a hypothesis matrix; typically, H could restrict the subspace
of interest to be orthogonal to one or more of the predictors, but other choices
are possible as well. The marginal predictor hypothesis has null hypothesis (I −
PH)S = 0 versus (I − PH)S 6= 0. Equation (12) of Cook and Ni (2005, eq. 12)
provides the appropriate test statistic. (Cook and Ni have a different definition
of H.) As with sir and save, both marginal and conditional tests are available

For example, a marginal predictor hypothesis test for dropping a variable
and a conditional test assuming d = 2 are given by

> dr.coordinate.test(m1, ~. - log(Hg))

Test df p.value
1 3.671465 7 0.8167445

> dr.coordinate.test(m1, ~. - log(Hg), d = 2)

Test df p.value
1 24.56324 2 4.636185e-06

The general syntax of the second argument is a formula that corresponds to H:
Here, H is obtained from the original specification, ~. by removing log(Hg).
The large p-value suggests that log(Hg) is likely to be unimportant if we assume
nothing about d, but if d = 2 dropping log(Hg) is not supportable.

As with sir and ire, drop1 can be used to consider dropping each predictor in
tern, and dr.step can be used for stepwise selection of predictors.

> drop1(m1, update = FALSE)
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LBM ~ log(Ht) + log(Wt) + log(SSF) + log(RCC) + log(WCC) +
log(Ferr) + log(Hc) + log(Hg)

Test df p.value
- log(WCC) 2.749903 7 9.071346e-01
- log(Hg) 3.671465 7 8.167445e-01
- log(Ht) 7.264478 7 4.018718e-01
- log(Hc) 11.420293 7 1.213078e-01
- log(RCC) 13.728866 7 5.621930e-02
- log(Ferr) 16.385955 7 2.181489e-02
- log(SSF) 242.003908 7 1.392883e-48
- log(Wt) 438.008629 7 1.667836e-90

7.4 Joint predictor test

One can simultaneously test d = m and (I − PHS) = 0 by minimizing (10)
with the restriction matrix T = PH . This test is not available for sir or save,
and is used in the computation of the conditional coordinate test. See the
documentation for dr.joint.test.

7.5 Accessor functions

See Section 4.5.

8 Partial inverse regression with a categorical
predictor

Wen and Cook (2007) have extended the ire method to allow for inclusion of a
categorical predictor.

> m2 <- dr(LBM ~ log(Ht) + log(Wt) + log(SSF) + log(RCC) +

+ log(WCC) + log(Ferr) + log(Hc) + log(Hg), group = ~Sex,

+ data = ais, method = "ire", nslices = 8, numdir = 4,

+ slice.function = dr.slices.arc, itmax = 200, steps = 1,

+ eps = 1e-06)

In this case, we have conditioned on the two levels of Sex. The output is identical
to that for ire, except for degrees of freedom:

> m2

dr(formula = LBM ~ log(Ht) + log(Wt) + log(SSF) + log(RCC) +
log(WCC) + log(Ferr) + log(Hc) + log(Hg), data = ais,
group = ~Sex, method = "ire", nslices = 8, numdir = 4,
slice.function = dr.slices.arc, itmax = 200, steps = 1,
eps = 1e-06)

Large-sample Marginal Dimension Tests:
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Test df p.value iter
0D vs > 0D 2023.12778 112 0.000000e+00 0
1D vs > 1D 223.93985 91 3.334637e-13 9
2D vs > 2D 130.55286 72 2.966408e-05 90
3D vs > 3D 75.49938 55 3.471124e-02 45
4D vs > 4D 44.25621 40 2.966903e-01 123

The argument group requires a one-sided formula, like ~Sex, where the right-
side variable can be a factor or a variate. If you have more than one grouping
variable, for example Sex and AgeClass, then use ~ Sex:AgeClass. For this
form, all the variables on the right-side of the formula must be factors.

Here is the basic idea. We first replace the X matrix by the
√
nQ factor from

the QR decomposition. Suppose the conditioning or grouping variable G has g
levels. Subdivide the data into g groups, where Q(k) is the part of the Q matrix
for group k. Q(k) is not part of a QR decomposition, and so we replace each Q(k)

by its QR decomposition. This essentially allows each group to have its own
within-group covariance structure. Obtain slice means ξ̂(k), for k = 1, . . . , g. If
hk is the number of slices in the k-th group, the columns of the matrix p×

∑
hk

matrix (ξ̂(1), . . . , ξ̂(g)) all estimate vectors in the central (mean) subspace. An
estimate of B is obtained by minimizing the objective function

Gd(B,C, T ) =
g∑

k=1

F
(k)
d (B,C, T ) (11)

where by F
(k)
d (B,C, T ) we mean (10) evaluated only for the k-th group, with

ξ̂ = ξ̂(k), Vn = V
(k)
n , and diag(fy) = diag(f (k)

y ). Theory similar to that for ire
permits test statistics similar to ire, and these are implemented in dr.

Output for partial ire parallels that for ire. All the functions that can be
applied to ire objects can also be applied to pire objects.

9 Auxillary functions

9.1 Weights

Weights are generally used in dimension reduction methods to make the result-
ing weighted sample closer to a normal distribution than the original sample.
Cook (1998, Section 8.4) discusses the method that is implemented here. When
weights are present, they are used in centering the data and computing the
covariance matrix, and they are used in computing the objective matrix M
for phd. Weights may be provided by the user with the weights argument. If
weights=NULL, the default, no weighting is used.

The function dr.weights is used to estimate weights using the algorithm
described by Cook (1998, Sec. 8.4). There are several other arguments that
control how the weights are computed, as described below, and on the help
page for the function dr.weights. The algorithm works as follows:
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1. For an n × p data matrix X, find estimates m and S of the mean and
covariance matrix. For this purpose, in R the function cov.rob in the MASS

package is used. See the documentation for cov.rob for a description of
these additional parameters. All the defaults are sensible.

2. Compute the matrix Z = (X − 1m′)S−1/2. If the data were normally
distributed N(m,S), the rows of Z would be like a sample from N(0, I).

3. Obtain a random vector b from the N(0, σ2I) distribution. The parameter
sigma=1 is a tuning parameter that can be set in the call to dr, and values
near 1 or slightly smaller seem appropriate. Find the row of Z that is
closest to b (the code uses Euclidean distance), and increase a counter for
that row by 1.

4. The argument nsamples determines the number of times this last step is
repeated; the default is nsamples=10*dim(x)[1] where X is the n× p data
matrix; this number may be too small.

5. Return a vector of weights given by the value of the counter divided by
nsamples and multiplied by n, so the sum of the weights will be n.

An example of the use of weights is:

> wts <- dr.weights(LBM ~ Ht + Wt + RCC + WCC, data = ais)

> i1 <- dr(LBM ~ Ht + Wt + RCC + WCC, weights = wts,

+ method = "phdres", data = ais)

9.2 Slices

dr provides two functions for producing slices, dr.slices, the recommended
default, and dr.slices.arc, which is the older routine used before version 3.0.0.
The newer version does a better job of handling ties. Both functions have the
same calling sequence. For example,

> y1 <- c(1, 1, 1, 2, 3, 4, 5, 6, 7, 8, 8, 8)

> dr.slices(y1, 3)

$slice.indicator
[1] 1 1 1 1 2 2 2 2 3 3 3 3

$nslices
[1] 3

$slice.sizes
[1] 4 4 4

produces a structure with three arguments, giving the indices of the observations
in each slice, the number of slices and the slice sizes.
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If the response has k columns, then the argument nslices should be a vector
of k elements. If it is specified as a number rather than a vector, then that
number will give the total number of cells, approximately. For example, if
k = 2 and nslices=8, the program will slice

√
8 ≈ 3 slices along each of the two

response variables for a total of 3× 3 = 9 two-dimensional slices.

> y2 <- c(1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4)

> dr.slices(cbind(y1, y2), 5)

$slice.indicator
[1] 1 2 2 2 3 4 4 4 5 6 6 6

$nslices
[1] 6

$slice.sizes
[1] 1 3 1 3 1 3

This produced 6 slices that are not all exactly the same size.
There are two optional arguments to the dr function that concern slic-

ing. The argument slice.function has values either dr.slices, the default,
or dr.slices.arc. The argument nslices to dr is passed to the slice function.
The default for nslices is the minimum of 8 and p+ 3.

9.3 Permutation tests

Cook (1998) and Yin in his unpublished 2000 Ph.D. dissertation discuss using
permutation tests to get significance levels for the marginal dimension test.
These are implemented in the function dr.permutation.test. Typical use of
this function is

> dr.permutation.test(s0, npermute = 99, numdir = 4)

$summary
Stat p.value

0D vs >= 1D 269.500841 0
1D vs >= 2D 80.018879 0
2D vs >= 3D 38.692445 0
3D vs >= 4D 19.927408 0
4D vs >= 5D 6.464427 0

$npermute
[1] 99

attr(,"class")
[1] "dr.permutation.test"
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The number of permutations defaults to 50 and the number of directions defaults
to 4. Increasing either can increase the computation time required to obtain the
solution. The permutation test results for the example are very similar to the
asymptotic results given earlier. The permutation tests are not implemented for
ire.
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