
FlexMix: A General Framework for Finite Mixture

Models and Latent Class Regression in R∗

Friedrich Leisch
Ludwig-Maximilians-Universität München

flexmix version 2.0-1
September 11, 2007

Abstract

FlexMix implements a general framework for fitting discrete mixtures of regression
models in the R statistical computing environment: three variants of the EM algorithm
can be used for parameter estimation, regressors and responses may be multivariate with
arbitrary dimension, data may be grouped, e.g., to account for multiple observations per
individual, the usual formula interface of the S language is used for convenient model
specification, and a modular concept of driver functions allows to interface many different
types of regression models. Existing drivers implement mixtures of standard linear models,
generalized linear models and model-based clustering. FlexMix provides the E-step and all
data handling, while the M-step can be supplied by the user to easily define new models.

Keywords: R, finite mixture models, model based clustering, latent class regression.

1. Introduction

Finite mixture models have been used for more than 100 years, but have seen a real boost
in popularity over the last decade due to the tremendous increase in available computing
power. The areas of application of mixture models range from biology and medicine to
physics, economics and marketing. On the one hand these models can be applied to data
where observations originate from various groups and the group affiliations are not known,
and on the other hand to provide approximations for multi-modal distributions (Everitt and
Hand 1981; Titterington, Smith, and Makov 1985; McLachlan and Peel 2000).

In the 1990s finite mixture models have been extended by mixing standard linear regression
models as well as generalized linear models (Wedel and DeSarbo 1995). An important area
of application of mixture models is market segmentation (Wedel and Kamakura 2001), where
finite mixture models replace more traditional cluster analysis and cluster-wise regression
techniques as state of the art. Finite mixture models with a fixed number of components
are usually estimated with the expectation-maximization (EM) algorithm within a maximum
likelihood framework (Dempster, Laird, and Rubin 1977) and with MCMC sampling (Diebolt
and Robert 1994) within a Bayesian framework.

The R environment for statistical computing (R Development Core Team 2004) features sev-
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citation.
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eral packages for finite mixture models, including mclust for mixtures of multivariate Gaussian
distributions (Fraley and Raftery 2002b,a), fpc for mixtures of linear regression models (Hen-
nig 2000) and mmlcr for mixed-mode latent class regression (Buyske 2003).

There are three main reasons why we have chosen to write yet another software package for
EM estimation of mixture models:

• The existing implementations did not cover all cases we needed for our own research
(mainly marketing applications).

• While all R packages mentioned above are open source and hence can be extended by the
user by modifying the source code, we wanted an implementation where extensibility is
a main design principle to enable rapid prototyping of new mixture models.

• We include a sampling-based variant of the EM-algorithm for models where weighted
maximum likelihood estimation is not available. FlexMix has a clean interface between
E- and M-step such that variations of both are easy to combine.

This paper is organized as follows: First we introduce the mathematical models for latent class
regression in Section 2 and shortly discuss parameter estimation and identifiability. Section 3
demonstrates how to use FlexMix to fit models with the standard driver for generalized linear
models. Finally, Section 4 shows how to extend FlexMix by writing new drivers using the
well-known model-based clustering procedure as an example.

2. Latent class regression

Consider finite mixture models with K components of form

h(y|x, ψ) =
K∑
k=1

πkf(y|x, θk) (1)

πk ≥ 0,
K∑
k=1

πk = 1

where y is a (possibly multivariate) dependent variable with conditional density h, x is a vector
of independent variables, πk is the prior probability of component k, θk is the component
specific parameter vector for the density function f , and ψ = (π1, , . . . , πK , θ

′
1, . . . , θ

′
K)′ is the

vector of all parameters.

If f is a univariate normal density with component-specific mean β′kx and variance σ2
k, we

have θk = (β′k, σ
2
k)
′ and Equation (1) describes a mixture of standard linear regression models,

also called latent class regression or cluster-wise regression (DeSarbo and Cron 1988). If f
is a member of the exponential family, we get a mixture of generalized linear models (Wedel
and DeSarbo 1995), known as GLIMMIX models in the marketing literature (Wedel and
Kamakura 2001). For multivariate normal f and x ≡ 1 we get a mixture of Gaussians
without a regression part, also known as model-based clustering.

The posterior probability that observation (x, y) belongs to class j is given by

P(j|x, y, ψ) =
πjf(y|x, θj)∑
k πkf(y|x, θk)

(2)
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The posterior probabilities can be used to segment data by assigning each observation to the
class with maximum posterior probability. In the following we will refer to f(·|·, θk) as mixture
components or classes, and the groups in the data induced by these components as clusters.

2.1. Parameter estimation

The log-likelihood of a sample of N observations {(x1, y1), . . . , (xN , yN )} is given by

logL =
N∑
n=1

log h(yn|xn, ψ) =
N∑
n=1

log

(
K∑
k=1

πkf(yn|xn, θk)
)

(3)

and can usually not be maximized directly. The most popular method for maximum likelihood
estimation of the parameter vector ψ is the iterative EM algorithm (Dempster et al. 1977):

Estimate the posterior class probabilities for each observation

p̂nk = P(k|xn, yn, ψ̂)

using Equation (2) and derive the prior class probabilities as

π̂k =
1
N

N∑
n=1

p̂nk

Maximize the log-likelihood for each component separately using the posterior probabilities
as weights

max
θk

N∑
n=1

p̂nk log f(yn|xn, θk) (4)

The E- and M-steps are repeated until the likelihood improvement falls under a pre-specified
threshold or a maximum number of iterations is reached.

The EM algorithm cannot be used for mixture models only, but rather provides a general
framework for fitting models on incomplete data. Suppose we augment each observation
(xn, yn) with an unobserved multinomial variable zn = (zn1, . . . , znK), where znk = 1 if
(xn, yn) belongs to class k and znk = 0 otherwise. The EM algorithm can be shown to
maximize the likelihood on the “complete data” (xn, yn, zn); the zn encode the missing class
information. If the zn were known, maximum likelihood estimation of all parameters would
be easy, as we could separate the data set into the K classes and estimate the parameters θk
for each class independently from the other classes.

If the weighted likelihood estimation in Equation (4) is infeasible for analytical, computational,
or other reasons, then we have to resort to approximations of the true EM procedure by
assigning the observations to disjoint classes and do unweighted estimation within the groups:

max
θk

∑
n:znk=1

log f(yn|xn, θk)

This corresponds to allow only 0 and 1 as weights.

Possible ways of assigning the data into the K classes are
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• hard assignment to the class with maximum posterior probability pnk, the resulting pro-
cedure is called maximizing the classification likelihood by Fraley and Raftery (2002b).
Another idea is to do

• random assignment to classes with probabilities pnk, which is similar to the sampling
techniques used in Bayesian estimation (although for the zn only).

Well known limitations of the EM algorithm include that convergence can be slow and is to
a local maximum of the likelihood surface only. There can also be numerical instabilities at
the margin of parameter space, and if a component gets to contain only a few observations
during the iterations, parameter estimation in the respective component may be problematic.
E.g., the likelihood of Gaussians increases without bounds for σ2 → 0. As a result, numerous
variations of the basic EM algorithm described above exist, most of them exploiting features
of special cases for f .

2.2. Identifiability

An open question is still identifiability of many mixture models. A comprehensive overview
of this topic is beyond the scope of this paper, however, users of mixture models should be
aware of the problem:

Relabelling of components: Mixture models are only identifiable up to a permutation of
the component labels. For EM-based approaches this only affects interpretation of
results, but is no problem for parameter estimation itself.

Overfitting: If a component is empty or two or more components have the same parameters,
the data generating process can be represented by a smaller model with fewer compo-
nents. This kind of unidentifiability can be avoided by requiring that the prior weights
πk are not equal to zero and that the component specific parameters are different.

Generic unidentifiability: It has been shown that mixtures of univariate normal, gamma,
exponential, Cauchy and Poisson distributions are identifiable, while mixtures of discrete
or continuous uniform distributions are not identifiable. A special case is the class of
mixtures of binomial and multinomial distributions which are only identifiable if the
number of components is limited with respect to, e.g., the number of observations per
person. See Everitt and Hand (1981), Titterington et al. (1985), Grün (2002) and
references therein for details.

FlexMix tries to avoid overfitting because of vanishing prior probabilities by automatically
removing components where the prior πk falls below a user-specified threshold. Automated
diagnostics for generic identifiability are currently under investigation. Relabelling of com-
ponents is in some cases more of a nuisance than a real problem (“component 2 of the first
run may be component 3 in the second run”), more serious are interactions of component
relabelling and categorical predictor variables, see Grün and Leisch (2004) for a discussion
and how bootstrapping can be used to assess identifiability of mixture models.
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3. Using FlexMix

The standard M-step FLXMRglm() of FlexMix is an interface to R’s generalized linear modelling
facilities (the glm() function). As a simple example we use artificial data with two latent
classes of size 100 each:

Class 1: y = 5x+ ε
Class 2: y = 15 + 10x− x2 + ε

with ε ∼ N(0, 9) and prior class probabilities π1 = π2 = 0.5, see the left panel of Figure 1.

We can fit this model in R using the commands

> library("flexmix")

> data("NPreg")

> m1 = flexmix(yn ~ x + I(x^2), data = NPreg, k = 2)

> m1

Call:
flexmix(formula = yn ~ x + I(x^2), data = NPreg,

k = 2)

Cluster sizes:
1 2

100 100

convergence after 15 iterations

and get a first look at the estimated parameters of mixture component 1 by

> parameters(m1, component = 1)

Comp.1
coef.(Intercept) -0.20866478
coef.x 4.81612095
coef.I(x^2) 0.03632578
sigma 3.47494722

and

> parameters(m1, component = 2)

Comp.2
coef.(Intercept) 14.7175699
coef.x 9.8455831
coef.I(x^2) -0.9682393
sigma 3.4808477
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for component 2. The paramter estimates of both components are close to the true values. A
cross-tabulation of true classes and cluster memberships can be obtained by

> table(NPreg$class, cluster(m1))

1 2
1 95 5
2 5 95

The summary method

> summary(m1)

Call:
flexmix(formula = yn ~ x + I(x^2), data = NPreg,

k = 2)

prior size post>0 ratio
Comp.1 0.494 100 145 0.690
Comp.2 0.506 100 141 0.709

’log Lik.’ -642.5451 (df=9)
AIC: 1303.090 BIC: 1332.775

gives the estimated prior probabilities π̂k, the number of observations assigned to the corre-
sponding clusters, the number of observations where pnk > δ (with a default of δ = 10−4),
and the ratio of the latter two numbers. For well-seperated components, a large proportion
of observations with non-vanishing posteriors pnk should also be assigned to the correspond-
ing cluster, giving a ratio close to 1. For our example data the ratios of both components
are approximately 0.7, indicating the overlap of the classes at the cross-section of line and
parabola.

Histograms or rootograms of the posterior class probabilities can be used to visually assess the
cluster structure (Tantrum, Murua, and Stuetzle 2003), this is now the default plot method
for "flexmix" objects (Leisch 2004). Rootograms are very similar to histograms, the only
difference is that the height of the bars correspond to square roots of counts rather than the
counts themselves, hence low counts are more visible and peaks less emphasized.

Usually in each component a lot of observations have posteriors close to zero, resulting in a
high count for the corresponing bin in the rootogram which obscures the information in the
other bins. To avoid this problem, all probabilities with a posterior below a threshold are
ignored (we again use 10−4). A peak at probability 1 indicates that a mixture component is
well seperated from the other components, while no peak at 1 and/or significant mass in the
middle of the unit interval indicates overlap with other components. In our simple example
the components are medium well separated, see Figure 2.

Tests for significance of regression coefficients can be obtained by

> rm1 = refit(m1)

> summary(rm1)
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Figure 1: Standard regression example (left) and Poisson regression (right).

Rootogram of posterior probabilities > 1e−04
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Figure 2: The plot method for "flexmix" objects, here obtained by plot(m1), shows
rootograms of the posterior class probabilities.
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Call:
summary(object = rm1)

Number of components: 2

$Comp.1
Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.208427 1.374301 -0.1517 0.8795
x 4.816257 0.667798 7.2121 5.508e-13 ***
I(x^2) 0.036307 0.066372 0.5470 0.5844
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

$Comp.2
Estimate Std. Error z value Pr(>|z|)

(Intercept) 14.717913 1.774490 8.2942 < 2.2e-16 ***
x 9.845653 0.777595 12.6617 < 2.2e-16 ***
I(x^2) -0.968252 0.073602 -13.1553 < 2.2e-16 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Function refit() fits weighted generalized linear models to each component using the stan-
dard R function glm() and the posterior probabilities as weights, see help("refit") for
details.

The data set NPreg also includes a response from a generalized linear model with a Poisson
distribution and exponential link function. The two classes of size 100 each have parameters

Class 1: µ1 = 2− 0.2x
Class 2: µ2 = 1 + 0.1x

and given x the response y in group k has a Poisson distribution with mean eµk , see the right
panel of Figure 1. The model can be estimated using

> m2 = flexmix(yp ~ x, data = NPreg, k = 2,

+ model = FLXMRglm(family = "poisson"))

> summary(m2)

Call:
flexmix(formula = yp ~ x, data = NPreg, k = 2,

model = FLXMRglm(family = "poisson"))

prior size post>0 ratio
Comp.1 0.532 112 197 0.569
Comp.2 0.468 88 200 0.440

’log Lik.’ -440.6424 (df=5)
AIC: 891.2848 BIC: 907.7764
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Rootogram of posterior probabilities > 1e−04
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Figure 3: plot(m2)

Both the summary table and the rootograms in Figure 3 clearly show that the clusters of the
Poisson response have much more overlap. For our simple low-dimensional example data the
overlap of the classes is obvious by looking at scatterplots of the data. For data in higher
dimensions this is not an option. The rootograms and summary tables for "flexmix" objects
work off the densities or posterior probabilities of the observations and thus do not depend
on the dimensionality of the input space. While we use simple 2-dimensional examples to
demonstrate the techniques, they can easily be used on high-dimensional data sets or models
with complicated covariate structures.

3.1. Multiple independent responses

If the response y = (y1, . . . , yD)′ is D-dimensional and the yd are mutually independent the
mixture density in Equation (1) can be written as

h(y|x, ψ) =
K∑
k=1

πkf(y|x, θk)

=
K∑
k=1

πk

D∏
d=1

fd(y|x, θkd)

To specify such models in FlexMix we pass it a list of models, where each list element corre-
sponds to one fd, and each can have a different set of dependent and independent variables.
To use the Gaussian and Poisson responses of data NPreg simultaneously, we use the model
specification

> m3 = flexmix(~x, data=NPreg, k=2,

+ model=list(FLXMRglm(yn~.+I(x^2)),

+ FLXMRglm(yp~., family="poisson")))

Note that now three model formulas are involved: An overall formula as first argument to
function flexmix() and one formula per response. The latter ones are interpreted rela-
tive to the overall formula such that common predictors have to be specified only once, see
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help("update.formula") for details on the syntax. The basic principle is that the dots get
replaced by the respective terms from the overall formula. The rootograms show that the
posteriors of the two-response model are shifted towards 0 and 1 (compared with either of
the two univariate models), the clusters are now well-separated.

Rootogram of posterior probabilities > 1e−04
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Figure 4: plot(m3)

3.2. Repeated measurements

If the data are repeated measurements on M individuals, and we have Nm observations from
individual m, then the log-likelihood in Equation (3) can be written as

logL =
M∑
m=1

Nm∑
n=1

log h(ymn|xmn, ψ),
M∑
m=1

Nm = N

and the posterior probability that individual m belongs to class j is given by

P(j|m) =
πj
∏Nm
n=1 f(ymn|xmn, θj)∑

k πk
∏Nm
n=1 f(ymn|xmn, θk)

where (xmn, ymn) is the n-th observation from individual m. As an example, assume that
the data in NPreg are not 200 independent observations, but 4 measurements each from 50
persons such that ∀m : Nm = 4. Column id2 of the data frame encodes such a grouping and
can easily be used in FlexMix:

> m4 = flexmix(yn ~ x + I(x^2) | id2, data = NPreg,

+ k = 2)

> summary(m4)

Call:
flexmix(formula = yn ~ x + I(x^2) | id2, data = NPreg,

k = 2)
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prior size post>0 ratio
Comp.1 0.5 100 100 1
Comp.2 0.5 100 100 1

’log Lik.’ -561.565 (df=9)
AIC: 1141.13 BIC: 1158.338

Note that convergence of the EM algorithm is much faster with grouping and the two clusters
are now perfectly separated.

3.3. Control of the EM algorithm

Details of the EM algorithm can be tuned using the control argument of function flexmix().
E.g., to use a maximum number of 15 iterations, report the log-likelihood at every 3rd step
and use hard assignment of observations to clusters (cf. page 4) the call is

> m5 = flexmix(yn ~ x + I(x^2), data = NPreg, k = 2,

+ control = list(iter.max = 15, verbose = 3, classify = "hard"))

Classification: hard
3 Log-likelihood : -704.9171
5 Log-likelihood : -704.2584

converged

Another control parameter (minprior, see below for an example) is the minimum prior prob-
ability components are enforced to have, components falling below this threshold (the current
default is 0.05) are removed during EM iteration to avoid numerical instabilities for compo-
nents containing only a few observations. Using a minimum prior of 0 disables component
removal.

3.4. Automated model search

In real applications the number of components is unknown and has to be estimated. Tuning
the minimum prior parameter allows for simplistic model selection, which works surprisingly
well in some situations:

> m6 = flexmix(yp ~ x + I(x^2), data = NPreg, k = 4,

+ control = list(minprior = 0.2))

> m6

Call:
flexmix(formula = yp ~ x + I(x^2), data = NPreg,

k = 4, control = list(minprior = 0.2))

Cluster sizes:
1 2
78 122

convergence after 85 iterations
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Although we started with four components, the algorithm converged at the correct two com-
ponent solution.

A better approach is to fit models with an increasing number of components and compare
them using AIC or BIC. As the EM algorithm converges only to the next local maximum
of the likelihood, it should be run repeatedly using different starting values. The function
stepFlexmix() can be used to repeatedly fit models, e.g.,

> m7 = stepFlexmix(yp ~ x + I(x^2), data = NPreg, control = list(verbose = 0),

+ k = 1:5, nrep = 5)

1 : * * * * *
2 : * * * * *
3 : * * * * *
4 : * * * * *
5 : * * * * *

runs flexmix() 5 times for k = 1, 2, . . . , 5 components, totalling in 25 runs. It returns a list
with the best solution found for each number of components, each list element is simply an
object of class "flexmix". To find the best model we can use

> getModel(m7, "BIC")

Call:
stepFlexmix(yp ~ x + I(x^2), data = NPreg, control = list(verbose = 0),

k = 2, nrep = 5)

Cluster sizes:
1 2

122 78

convergence after 34 iterations

and choose the number of components minimizing the BIC.

4. Extending FlexMix

One of the main design principles of FlexMix was extensibility, users can provide their own
M-step for rapid prototyping of new mixture models. FlexMix was written using S4 classes
and methods (Chambers 1998) as implemented in R package methods.

The central classes for writing M-steps are "FLXM" and "FLXcomponent". Class "FLXM" spec-
ifies how the model is fitted using the following slots:

fit: A function(x,y,w) returning an object of class "FLXcomponent".

defineComponent: Expression constructing the object of class "FLXcomponent".
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weighted: Logical, specifies if the model may be fitted using weighted likelihoods. If FALSE,
only hard and random classification are allowed (and hard classification becomes the
default).

formula: Formula relative to the overall model formula, default is .~.

name: A character string describing the model, this is only used for print output.

The remaining slots of class "FLXM" are used internally by FlexMix to hold data, etc. and
omitted here, because they are not needed to write an M-step driver. The most important slot
doing all the work is fit holding a function performing the maximum likelihood estimation
described in Equation (4). The fit() function returns an object of class "FLXcomponent"
which holds a fitted component using the slots:

logLik: A function(x,y) returning the log-likelihood for observations in matrices x and y.

predict: A function(x) predicting y given x.

df: The degrees of freedom used by the component, i.e., the number of estimated parameters.

parameters: An optional list containing model parameters.

In a nutshell class "FLXM" describes an unfitted model, whereas class "FLXcomponent" holds
a fitted model.

4.1. Writing an M-step driver

Figure 5 shows an example driver for model-based clustering. We use function dmvnorm()
from package mvtnorm for calculation of multivariate Gaussian densities. In line 5 we create
a new "FLXMC" object named retval, which is also the return value of the driver. Class
"FLXMC" extends "FLXM" and is used for model-based clustering. It contains an additional
slot with the name of the distribution used. All drivers should take a formula as their first
argument, this formula is directly passed on to retval. In most cases authors of new FlexMix
drivers need not worry about formula parsing etc., this is done by flexmix itself. In addition
we have to declare whether the driver can do weighted ML estimation (weighted=TRUE) and
give a name to our model.

The remainder of the driver creates a fit() function, which takes regressors x, response y
and weights w. For multivariate Gaussians the maximum likelihood estimates correspond
to mean and covariance matrix, the standard R function cov.wt() returns a list containing
estimates of the weighted covariance matrix and the mean for given data. Our simple example
performs clustering without a regression part, hence x is ignored. If y has D columns, we
estimate D parameters for the mean and D(D − 1)/2 parameters for the covariance matrix,
giving a total of (3D + D2)/2 parameters (line 11). As an additional feature we allow the
user to specify whether the covariance matrix is assumed to be diagonal or a full matrix. For
diagonal=TRUE we use only the main diagonal of the covariance matrix (line 14) and the
number of parameters is reduced to 2D.

In addition to parameter estimates, flexmix() needs a function calculating the log-likelihood
of given data x and y, which in our example is the log-density of a multivariate Gaussian. In
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1 mymclust <- function (formula = .~., diagonal = TRUE)
{

require (" mvtnorm ")
retval <- new(" FLXMC", weighted = TRUE ,

formula = formula , dist = "mvnorm",
6 name = "my model -based clustering ")

retval@defineComponent <- expression ({
logLik <- function(x, y) {

dmvnorm(y, mean = center , sigma = cov , log = TRUE)
}

11 predict <- function(x) {
matrix(center , nrow = nrow(y),

ncol = length(center), byrow = TRUE)
}
new(" FLXcomponent",

16 parameters = list(center = center , cov = cov),
df = df, logLik = logLik , predict = predict)

})
retval@fit <- function(x, y, w) {

21 para <- cov.wt(y, wt = w)[c(" center", "cov")]
df <- (3 * ncol(y) + ncol(y)^2)/2

if (diagonal) {
para$cov <- diag(diag(para$cov ))

26 df <- 2 * ncol(y)
}

with(para , eval(retval@defineComponent ))
}
retval

31 }

Figure 5: M-step for model-based clustering: mymclust is a simplified version of the standard
FlexMix driver FLXmclust.

addition we have to provide a function predicting y given x, in our example simply the mean
of the Gaussian. Finally we create a new "FLXcomponent" as return value of function fit().

Note that our internal functions fit(), logLik() and predict() take only x, y and w as
arguments, but none of the model-specific parameters like means and covariances, although
they use them of course. R uses lexical scoping rules for finding free variables (Gentleman and
Ihaka 2000), hence it searches for them first in the environment where a function is defined.
E.g., the fit() function uses the variable diagonal in line 13, and finds it in the environment
where the function itself was defined, which is the body of function mymclust(). Function
logLik() uses the list para in line 19, and uses the one found in the body of fit().

Function flexmix() on the other hand never sees the model parameters, all it uses are function
calls of form fit(x,y,w) or logLik(x,y), which are exactly the same for all kinds of mixture
models. In fact, it would not be necessary to even store the component parameters in the
"FLXcomponent" object, they are there only for convenience such that users can easily extract
and use them after flexmix() has finished. Lexical scope allows to write clean interfaces in
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a very elegant way, the driver abstracts all model details from the FlexMix main engine.

4.2. Example: Using the driver

As a simple example we use the four 2-dimensional Gaussian clusters from data set Nclus.
Fitting a wrong model with diagonal covariance matrix is done by

> data("Nclus")

> m1 = flexmix(Nclus ~ 1, k = 4, model = mymclust())

> summary(m1)

Call:
flexmix(formula = Nclus ~ 1, k = 4, model = mymclust())

prior size post>0 ratio
Comp.1 0.159 92 165 0.558
Comp.2 0.269 149 174 0.856
Comp.3 0.397 213 488 0.436
Comp.4 0.175 96 172 0.558

’log Lik.’ -2447.3 (df=19)
AIC: 4932.6 BIC: 5014.488

The result can be seen in the left panel of Figure 6, the result is “wrong” because we forced
the ellipses to be parallel to the axes. The overlap between three of the four clusters can also
be inferred from the low ratio statistics in the summary table (around 0.5 for components 1,
3 and 4), while the much better separated upper left cluster has a much higher ratio of 0.85.
Using the correct model with a full covariance matrix can be done by setting diagonal=FALSE
in the call to our driver mymclust():

> m2 = flexmix(Nclus ~ 1, k = 4, model = mymclust(diagonal = FALSE))

> summary(m2)

Call:
flexmix(formula = Nclus ~ 1, k = 4, model = mymclust(diagonal = FALSE))

prior size post>0 ratio
Comp.1 0.177 97 132 0.735
Comp.2 0.368 203 247 0.822
Comp.3 0.272 150 176 0.852
Comp.4 0.182 100 112 0.893

’log Lik.’ -2223.678 (df=23)
AIC: 4493.356 BIC: 4592.484
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Figure 6: Fitting a mixture model with diagonal covariance matrix (left) and full covariance
matrix (right).

5. Summary and outlook

The primary goal of FlexMix is extensibility, this makes the package ideal for rapid devel-
opment of new mixture models. There is no intent to replace packages implementing more
specialized mixture models like mclust for mixtures of Gaussians, FlexMix should rather be
seen as a complement to those. By interfacing R’s facilities for generalized linear models,
FlexMix allows the user to estimate complex latent class regression models.

Using lexical scope to resolve model-specific parameters hides all model details from the
programming interface, FlexMix can in principle fit almost arbitrary finite mixture models
for which the EM algorithm is applicable. The downside of this is that FlexMix can in
principle fit almost arbitrary finite mixture models, even models where no proper theoretical
results for model identification etc. are available.

We are currently working on a toolset for diagnostic checks on mixture models to test necessary
identifiability conditions for those cases where results are available. We also want to implement
newer variations of the classic EM algorithm, especially for faster convergence. Another plan
is to have an interactive version of the rootograms using iPlots (Urbanek and Theus 2003)
such that the user can explore the relations between mixture components, possibly linked to
background variables. Other planned extensions include covariates for the prior probabilities
and to allow to mix different distributions for components, e.g., to include a Poisson point
process for background noise.
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