Haplo Stats
(version 1.3.1)

Statistical Methods for Haplotypes When Linkage Phase is
Ambiguous

Jason P. Sinnwell and Daniel J. Schaid
Mayo Clinic, Rochester MN USA

May 29, 2007

Contents

Brief Description
Operating System and Installation

Getting Started

3.1 Example Data. e
3.2 Creating a Genotype Matrix Lo
3.3 Preview Missing Data: summaryGeno
3.4 Random Numbers and Setting Seed oL

Haplotype Frequency Estimation: haplo.em

4.1 Algorithm oL
4.2 Example Usage oL e
4.3 Summary Method
4.4 Control Parameters for haplo.em
4.5 Haplotype Frequencies by Group Subsets,

Haplotype Score Tests: haplo.score

5.1 Quantitative Trait Analysis e
5.2 Ordinal Trait Analysis
5.3 Binary Trait Analysis
5.4 Plots and Haplotype Labels o
5.5 Skipping Rare Haplotypes
5.6 Haplotype Scores, Adjusted for Covariates
5.7 Haplotype Model Effect (NEW) i
5.8 Simulation p-values

Regression Models: haplo.glm
6.1 Preparing the data.frame for haplo.glm
6.2 Handling Rare Haplotypes
6.3 Regression for a Quantitative Trait
6.4 Fitting Haplotype x Covariate Interactions.
6.5 Regression for a Binomial Trait 0 oL
6.5.1 Caution on Rare Haplotypes with Binomial Response
6.6 Control Parameters
6.6.1 Controlling Genetic Models: haplo.effect
6.6.2 Selecting the Baseline Haplotype

13
14
15
16
17
19
20
20
21

7 Extended Applications

7.1 Combine Score and Group Results: haplo.score.merge
7.2 Case-Control Haplotype Analysis: haplo.cc
7.3 Score Tests on Sub-Haplotypes: haplo.score.slide

7.3.1 Plot Results from haplo.score.slide
7.4 Scanning Haplotypes Within a Fixed-Width Window: haplo.scan
7.5 Sequential Haplotype Scan Methods: seqhap (NEW)

7.5.1 Plot Results from seqhap
7.6 Creating Haplotype Effect Columns: haplo.design (NEW)

8 License and Warranty
9 Acknowledgements

A Counting Haplotype Pairs When Marker Phenotypes Have Missing Alleles

32
32
33
36
37
39
40
43
45

48

48

49

1 Brief Description

Haplo Stats is a suite of S-PLUS/R routines for the analysis of indirectly measured haplotypes.

The statistical methods assume that all subjects are unrelated and that haplotypes are ambiguous

(due to unknown linkage phase of the genetic markers), while also allowing for missing alleles.
The primary functions in Haplo Stats are:

e haplo.em: for the estimation of haplotype frequencies and posterior probabilities of haplotype
pairs for a subject, conditional on the observed marker data

e haplo.glm: glm’s for the regression of a trait on haplotypes, with the option of including
covariates and interactions

e haplo.score: score statistics to test associations between haplotypes and a variety of traits,
including binary, ordinal, quantitative, and Poisson.

Some new features and updates are as follows:
e haplo.design is new function that creates a model matrix with desired haplotype effects

e seqhap is a new function that performs three tests for assocation of a binary trait over a set
of bi-allelic loci

e haplo.score now allows additive, dominant, or recessive effects of haplotypes on a trait

e genolto2is a new function converting a genotype matrix from one-column (minor allele count)
to two-columns per locus

2 Operating System and Installation

Haplo Stats version 1.3.1 is written for both S-PLUS (version 8.0.1) and R (version 2.4.1) for Unix.
It has been placed on the Comprehensive R Archive Network (CRAN), and is made available on
other systems through CRAN. Installation procedures for S-PLUS and R systems will vary; the
Unix installations are explained in the README.haplo.stats text file, located at the top level of
the haplo.stats directory. The procedures for running analyses are the same for S-PLUS and R,
following instructions in this document.

3 Getting Started

After installing the Haplo Stats package, the routines are available by starting an S-PLUS or R
session and loading the package. If haplo.stats is installed for global use, load the library as done
below. If installed as a local library, specify its location in the lib.loc parameter as shown in
comments(##).

> library(haplo.stats)

if local library, use:
library(haplo.stats, lib.loc="/local/install/path/")

For users who are new to the S-PLUS or R environments, note the following basic concepts. In
the following examples, a user enters the indented text following the prompt ”>”, and the output
results follow. Later, when executing a function in the session, the general syntax will appear
like ‘myresult <- myfunction(x)’ where the results of myfunction, operating on x, are saved in
myresult. A user may view the contents of myresult, or make use of the contents in a calculation.
The examples provided in this document provide enough tools for a typical haplotype analysis.
More information can be found within the function help files, viewed here for haplo.em.

> help(haplo.em)

3.1 Example Data

The haplo.stats library contains an example data set, (hla.demo), with 11 loci from the HLA region
on chromosome 6, with covariates, qualitative, and quantitative responses. Within
/haplo.stats/data/hla.demo.tab the data is stored in tab-delimited format. Typically data stored
in this format can be read in using read.table(). The hla.demo data is already available in S-PLUS.
Below, we load the data in R using data() and view the names of the columns. Then to make the
columns of hla.demo accessible without typing it each time, we attach it to the current session.

> data(hla.demo)
> names(hla.demo)

[1] "resp” "resp.cat" "male” "age" "DPB.al"

[6] "DPB.a2" "DPA.al" "DPA.a2" "DMA.al" "DMA.a2"
[11] "DMB.al" "DMB.a2" "TAPl.a1" '"TAPl.a2" "TAP2.al"
[16] "TAP2.a2" "DQB.al" "DQB.a2" "DQA.al" "DQA.a2"
[21] "DRB.a1" "DRB.a2" "B.al" "B.a2" "A.al"
[26] "A.a2"

> attach(hla.demo)

The column names of hla.demo are shown above. They are defined as follows:
e resp: quantitative antibody response to measles vaccination

e resp.cat: a factor with levels "low”, "normal”, "high”, for categorical antibody response

e male: gender code with 1="male” , 0="female”

e age: age (in months) at immunization

The remaining columns are genotypes for 11 HLA loci, with a prefix name (e.g., "DQB”) and a
suffix for each of two alleles (”.al” and ”.a2”). The variables in hla.demo can be accessed by typing
hla.demo$ before their names, such as hla.demo$resp. Alternatively, it is easier for these examples
to attach hla.demo, (as shown above with attach()) so the variables can be accessed by simply
typing their names.

3.2 Creating a Genotype Matrix

Many of the functions require a matrix of genotypes, denoted below as geno. This matrix is arranged
such that each locus has a pair of adjacent columns of alleles, and the order of columns corresponds
to the order of loci on a chromosome. If there are K loci, then the number of columns of geno is
2K . Rows represent the alleles for each subject. For example, if there are three loci, in the order
A-B-C, then the 6 columns of geno would be arranged as A.al, A.a2, B.al, B.a2, C.al, C.a2. For
illustration, three of the loci in hla.demo will be used to demonstrate some of the functions. Create
a separate data frame for 3 of the loci, and call this geno. Then create a vector of labels for the
loci.

> geno <- hla.demol[, c(17, 18, 21:24)]
> label <- c("DQB", "DRB", "B")

The hla.demo data already had alleles in two columns for each locus. For many SNP datasets,
the data is in a one column format, giving the count of the minor allele. To assist in converting
this format to two columns, a function named genolto2 has been added to the package. See its
help file for more details.

3.3 Preview Missing Data: summaryGeno

Before performing a haplotype analysis, the user will want to assess missing genotype data to
determine the completeness of the data. If many genotypes are missing, the functions may take a
long time to compute results, or even run out of memory. For these reasons, the user may want
to remove some of the subjects with a lot of missing data. This step can be guided by using
the summaryGeno function, which checks for missing allele information and counts the number
of potential haplotype pairs that are consistent with the observed data (see the Appendix for a
description of this counting scheme).

The codes for missing alleles are defined by the parameter miss.val, a vector to define all possible
missing value codes. Below, the result is saved in geno.desc, which is a data frame, so individual
rows may be printed. Here we show the results for subjects 1-10, 80-85, and 135-140, some of which
have missing alleles.

> geno.desc <- summaryGeno(geno, miss.val = c(0,
+ NA))
> print(geno.desc[c(1:10, 80:85, 135:140),])

loc miss-0 loc miss-1 loc miss-2 num_enum_rows

1 3 0 0 4
2 3 0 0 4
3 3 0 0 4
4 3 0 0 2
5 3 0 0 4
6 3 0 0 2
7 3 0 0 4
8 3 0 0 2
9 3 0 0 2
10 3 0 0 1
80 3 0 0 4
81 2 0 1 1800
82 3 0 0 2
83 3 0 0 1
84 3 0 0 2
85 3 0 0 4
135 3 0 0 4
136 3 0 0 2
137 1 0 2 129600

138 3 0 0 4
139 3 0 0 4
140 3 0 0 4

The columns with ’loc miss-’ illustrate the number of loci missing either 0, 1, or 2 alleles, and
the last column, num_enum_rows, illustrates the number of haplotype pairs that are consistent with
the observed data. In the example above, subjects indexed by rows 81 and 137 have missing alleles.
Subject #81 has one locus missing two alleles, while subject #137 has two loci missing two alleles.
As indicated by num_enum_rows, subject #81 has 1,800 potential haplotype pairs, while subject
#137 has nearly 130,000.

The 130,000 haplotype pairs is considered a large number, but haplo.em, haplo.score, and
haplo.glm complete in roughly 3-6 minutes (depending on system limits or control parameter set-
tings). If person #137 were removed, the methods would take less than half that time. It is preferred
to keep people if they provide information to the analysis, given that run time and memory usage
are not overwhelming.

When a person has no genotype information, they do not provide information to any of the
methods in haplo.stats. Furthermore, they cause a much longer run time. Below, using the table
function on the third column of geno.desc summarizes how many people are missing two alleles at
any at of the three loci. If there were people missing two alleles at all three loci, they should be
removed. The second command below shows how to make an index of which people to remove from
hla.demo because they are missing all their alleles.

> table(geno.desc|, 3])

o 1 2
218 1 1
> miss.all <- which(geno.desc[, 3] == 3)

> hla.demo.updated <- hla.demo[-miss.all,]

3.4 Random Numbers and Setting Seed

Random numbers are used in several of the functions (e.g., to determine random starting frequen-
cies within haplo.em, and to compute permutation p-values in haplo.score). Random numbers can
be controlled when trying to reproduce calculations involving random numbers. Random numbers
in S-PLUS and R are controlled by the seed values stored in a vector called .Random.seed. This
vector can be set using set.seed() before any function which uses random numbers (i.e., haplo.em,
haplo.score, haplo.score.slide, haplo.glm, haplo.group, haplo.cc) to make results reproducible . Sec-
tion 6.6.2 shows one example of setting the seed for haplo.glm. We illustrate setting the seed
below.

> seed <- c¢(17, 53, 1, 40, 37, 0, 62, 56, 5, 52,
+ 12, 1)
> set.seed(seed)

4 Haplotype Frequency Estimation: haplo.em

4.1 Algorithm

For genetic markers measured on unrelated subjects, with linkage phase unknown, haplo.em com-
putes maximum likelihood estimates of haplotype probabilities. Because there may be more than
one pair of haplotypes that are consistent with the observed marker phenotypes, posterior probabil-
ities of haplotype pairs for each subject are also computed. Unlike the usual EM which attempts to
enumerate all possible haplotype pairs before iterating over the EM steps, our progressive insertion
algorithm progressively inserts batches of loci into haplotypes of growing lengths, runs the EM
steps, trims off pairs of haplotypes per subject when the posterior probability of the pair is below
a specified threshold, and then continues these insertion, EM, and trimming steps until all loci are
inserted into the haplotype. The user can choose the batch size. If the batch size is chosen to be
all loci, and the threshold for trimming is set to 0, then this reduces to the usual EM algorithm.
The basis of this progressive insertion algorithm is from the ”"snphap” software by David Clayton[4].
Although some of the features and control parameters of haplo.em are modeled after snphap, there
are substantial differences, such as extension to allow for more than two alleles per locus, and some
other nuances on how the algorithm is implemented.

4.2 Example Usage

Use haplo.em on geno for the 3 loci defined above, then view the results stored in save.em. In this
example we show just a quick glance of the output by using the option nlines=10, which prints
only the first 10 haplotypes of the full results. (The nlines parameter has been employed in some
of the print methods in the Haplo Stats package to shorten the lengthy results for this user guide.
In practice, it is best to exclude this parameter so that the default will print all results.)

> save.em <- haplo.em(geno = geno, locus.label = label,
+ miss.val = c¢(0, NA))
> print(save.em, nlines = 10)

Haplotypes
DQB DRB B hap.freq
1 21 1 8 0.00232
2 21 2 7 0.00227
3 21 218 0.00227
4 21 3 8 0.10408
5 21 3 18 0.00229
6 21 3 35 0.00570
7 21 3 44 0.00378
8 21 3 45 0.00227
9 21 3 49 0.00227
10 21 3 57 0.00227
Details

Inlike = -1847.675
Ir stat for no LD = 632.8897 , df = 125 , p-val = 0
Explanation of Results

The haplotypes and their estimated frequencies are listed, as well as a few details. The Ir stat for
no LD is the likelihood ratio statistic contrasting the Inlike for the estimated haplotype frequencies
versus the Inlike assuming that alleles from all loci are in linkage equilibrium. Trimming by the
progressive insertion algorithm can invalidate the Ir stat and the degrees of freedom (df).

4.3 Summary Method

The summary on save.em shows the list of haplotypes per subject, and their posterior probabilities:

Subjects: Haplotype Codes and Posterior
Probabilities

subj.id haplcode hap2code posterior

1 1 78 58 1.00000
2 2 13 143 0.12532
3 2 138 17 0.87468
4 3 25 168 1.00000
5 4 13 39 0.28621
6 4 17 38 0.71379
7 5 94 55 1.00000
Number of haplotype pairs: max vs used

X 1 2 3 72135

1 18 0 O 0 O

2 50 4 0 0 O

4 116 29 1 0 O

1800 O 0 o0 1 o0

120600 0 0 O 0 1

Explanation of Results

The first part of the summary output lists the subject id (row number of input geno matrix), the
codes for the haplotypes of each pair, and the posterior probabilities of the haplotype pairs. The
second part gives a table of the maximum number of pairs of haplotypes per subject, versus the
number of pairs used in the final posterior probabilities. The haplotype codes remove the clutter of
illustrating all the alleles of the haplotypes, but may not be as informative as the actual haplotypes
themselves. To see the actual haplotypes, use the show.haplo=TRUFE option:

> summary(save.em, show.haplo = TRUE, nlines = 7)

Subjects: Haplotype Codes and Posterior
Probabilities

subj.id hapl.DQB hapl.DRB hapl.B hap2.DQB hap2.DRB
78 1 32 4 62 31 11

10

13 2 21 7 7 62 2

138 2 62 2 7 21 7

25 3 31 1 27 63 13

13.1 4 21 7 7 31 7

17 4 21 7 44 31 7

94 5 42 8 55 31 11
hap2.B posterior

78 61 1.00000

13 44 0.12532

138 44 0.87468

25 62 1.00000

13.1 44 0.28621

17 7 0.71379

94 51 1.00000

X 1 2 3 72 135
1 188 0 O 0 O
2 50 4 0 0 O
4 116 29 1 0 O
1800 0O 0 O 1 O
120600 0 O O O 1

4.4 Control Parameters for haplo.em

An additional argument can be passed to haplo.em, called ”control’. This is a list of parameters
that control the EM algorithm based on progressive insertion of loci. The default values are set
by a function called haplo.em.control (see the help(haplo.em.control) for a complete description).
Although the user can accept the default values, there are times when control parameters may
need to be adjusted. For example, for small sample sizes and many possible haplotypes, finding
the global maximum of the log-likelihood can be difficult. The algorithm uses multiple attempts
to maximize the log-likelihood, starting each attempt with random starting values. If the results
from haplo.em, haplo.score, or haplo.glm change when rerunning the analyses, this may be due
to different maximizations of the log-likelihood. To avoid this, the user can increase the number
of attempts (n.try) to maximize the log-likelihood, increase the batch size (insert.batch.size), or
decrease the trimming threshold for posterior probabilities (min.posterior). These parameters are
defined below:

e insert.batch.size: Number of loci to be inserted in a single batch.

11

e min.posterior: Minimum posterior probability of haplotype pair, conditional on observed
marker genotypes. Posteriors below this minimum value will have their pair of haplotypes
“trimmed” off the list of possible pairs.

e max.iter: Maximum number of iterations allowed for the EM algorithm before it stops and
prints an error.

e n.try: Number of times to try to maximize the Inlike by the EM algorithm. The first try
will use, as initial starting values for the posteriors, either equal values or uniform random
variables, as determined by random.start. All subsequent tries will use uniform random values
as initial starting values for the posterior probabilities.

The example below illustrates the syntax for setting the number of tries to 20, and the batch
size to 2.

> save.em <- haplo.em(geno = geno, locus.label = label,
+ miss.val = c¢(0, NA), control = haplo.em.control(n.try = 20,
+ insert.batch.size = 2))

4.5 Haplotype Frequencies by Group Subsets

To compute the haplotype frequencies for each level of a grouping variable, use the function
haplo.group. The following example illustrates the use of a binomial response based on resp.cat,
y.bin, that splits the subjects into two groups.

> y.bin <- 1 * (resp.cat == "low")

> group.bin <- haplo.group(y.bin, geno, locus.label = label,
+ miss.val = 0)

> print(group.bin, nlines = 15)

Counts per Grouping Variable Value

group
0 1
157 63

Haplotype Frequencies By Group

DQB DRB B Total y.bin.0 y.bin.1
1 21 1 8 0.00232 0.00335 NA

12

2 21 10 8 0.00181 0.00318 NA
3 21 13 8 0.00274 NA NA
4 21 2 18 0.00227 0.00318 NA
5 21 2 7 0.00227 0.00318 NA
6 21 3 18 0.00229 0.00637 NA
7 21 3 35 0.00570 0.00639 NA
8 21 3 44 0.00378 0.00333 0.01587

9 21 3 45 0.00227 NA NA
10 21 3 49 0.00227 NA NA
11 21 3 57 0.00227 NA NA
12 21 3 70 0.00227 NA NA
13 21 3 8 0.10408 0.06974 0.19048
14 21 4 62 0.00455 0.00637 NA
15 21 7 13 0.01072 NA 0.02381

Explanation of Results

The group.bin object can be very large, depending on the number of possible haplotypes, so only
a portion of the output is illustrated above (limited again by nlines). The first section gives a short
summary of how many subjects appear in each of the groups. The second section is a table with
the following columns:

e The first column gives row numbers.
e The next columns (3 in this example) illustrate the alleles of the haplotypes.
e Total are the estimated haplotype frequencies for the entire data set.

e The last columns are the estimated haplotype frequencies for the subjects in the levels of the
group variable (y.bin=0 and y.bin=1 in this example). Note that some haplotype frequencies
have an "NA”, which occurs when the haplotypes do not occur in the subgroups.

5 Haplotype Score Tests: haplo.score

The function haplo.score is used to compute score statistics to test associations between haplotypes
and a wide variety of traits, including binary, ordinal, quantitative, and Poisson. This function pro-
vides several different global and haplotype-specific tests for association and allows for adjustment
for non-genetic covariates. A new feature is that haplotype effects can be specified as additive,
dominant, or recessive. This method also has an option to compute permutation p-values, which
may be needed for sparse data when distribution assumptions may not be met. Details on the
background and theory of the score statistics can be found in Schaid et al.[10].

13

5.1 Quantitative Trait Analysis

First, assess a haplotype association with a quantitative trait in hla.demo called resp. To tell
haplo.score the trait is quantitative, specify the parameter trait.type="gaussian” (a reminder that
a gaussian distribution is assumed for the distribution of the error terms). The other arguments, all
set to default values, are explained in the help file. Note that rare haplotypes can result in unstable
variance estimates, and hence unreliable test statistics for rare haplotypes. We restrict the analysis
to get scores for haplotypes with a minimum sample count using min.count=>5. For more explanation
on handling rare haplotypes, see section 5.5. Below is an example of running haplo.score with a
quantitative trait, then viewing the results using the print method (again, output shortened by

nlines).

>
+
+
>

= 10)

score.gaus.add <- haplo.score(resp, geno, trait.type = "gaussian",
haplo.effect = "additive”, min.count = 5,
locus.label = label, simulate =
print(score.gaus.add, nlines

FALSE)

Haplotype Effect Model: additive

Global Score Statistics

global-stat = 30.6353, df = 18, p-val = 0.03171

Haplotype-specific Scores

DQB DRB B Hap-Freq Hap-Score p-val

21
31
51
63
63
32
21
62
62
51

o N U RN®NE

[R e e R e T T N B N R n |

=
o

3

N

P NNNBADNE PR

w

8

44
44
44
;

60
44
44
18
27

0.10408
0.02849
0.01731
0.01606
0.01333
0.0306

0.02332
0.01367
0.01545
0.01505

-2.39631
-2.24273
-0.99357
-0.84453
-0.50736
-0.46606
-0.41942
-0.26221
-0.21493
0.01539

0.01656
0.02491
0.32043
0.39837
0.6119
0.64118
0.67491
0.79316
0.82982
0.98772

14

Explanation of Results

First, the model effect chosen by haplo.effect is printed across the top. The section Global Score
Statistics shows results for testing an overall association between haplotypes and the response. The
global-stat has an asymptotic x? distribution, with degrees of freedom (df) and p-value as indicated.
Next, Haplotype-specific scores are given in a table format. The column descriptions are as follows:

e The first column gives row numbers.
e The next columns (3 in this example) illustrate the alleles of the haplotypes.
e Hap-Freq is the estimated frequency of the haplotype in the pool of all subjects.

Hap-Score is the score for the haplotype, the results are sorted by this value. Note, the score
statistic should not be interpreted as a measure of the haplotype effect.

p-val is the asymptotic x? p-value, calculated from the square of the score statistic.

5.2 Ordinal Trait Analysis

To create an ordinal trait, here we convert resp.cat (described above) to numeric values, y.ord (with
levels 1, 2, 3). For haplo.score, use y.ord as the response variable, and set the parameter trait.type

= "ordinal’.

> y.ord <- as.numeric(resp.cat)

> score.ord <- haplo.score(y.ord, geno, trait.type = "ordinal",
+ x.adj = NA, min.count = 5, haplo.effect = "additive",
+ locus.label = label, miss.val = 0, simulate = FALSE)
> print(score.ord, nlines = 7)

Haplotype Effect Model: additive

Global Score Statistics

global-stat = 15.23209, df = 18, p-val = 0.64597

Haplotype-specific Scores

DB DRB B Hap-Freq Hap-Score p-val

15

[1,] 32 62 0.02349 -2.17133 0.02991

4

[2] 21 3 8 0.10408 -1.34661 0.17811
[3] 32 4 7 001678 -1.09487 0.27357
[4] 62 2 7 0.05098 -0.96874 0.33268
[5] 21 7 44 0.02332 -0.83747 0.40233

[6,] 63 13 7 0.01655 -0.80787 0.41917
[7] 21 7 7 0.01246 -0.63316 0.52663

Warning for Ordinal Traits

When analyzing an ordinal trait with adjustment for covariates (using the x.adj option), the
software requires the libraries Design and Hmisc, distributed by Frank Harrell [6]. If the user does
not have these libraries installed, then it will not be possible to use the x.adj option. However,
the unadjusted scores for an ordinal trait (using the default option x.adj=NA) do not require these
libraries. Check the list of your local libraries in the list shown from entering library() in your
prompt.

5.3 Binary Trait Analysis

Let us assume that ”"low” responders are of primary interest, so we create a binary trait that has
values of 1 when resp.cat is "low”, and 0 otherwise. Then in haplo.score specify the parameter
trait.type="binomial”.

> y.bin <- 1 * (resp.cat == "low")

> score.bin <- haplo.score(y.bin, geno, trait.type = "binomial",
+ x.adj = NA, min.count = 5, haplo.effect = "additive",

+ locus.label = label, miss.val = 0, simulate = FALSE)
> print(score.bin, nlines = 10)

Haplotype Effect Model: additive

Global Score Statistics

global-stat = 33.70125, df = 18, p-val = 0.01371

Haplotype-specific Scores

16

DQB DRB B Hap-Freq Hap-Score p-val
62 2 7 0.05098 -2.19387 0.02824
51 1 35 0.03018 -1.58421 0.11315
63 13 7 0.01655 -1.56008 0.11874
21 7 7 0.01246 -1.47495 0.14023
32 4 7 0.01678 -1.00091 0.31687
32 4 62 0.02349 -0.6799 0.49657
51 1 27 0.01505 -0.66509 0.50599
31 11 35 0.01754 -0.5838 0.55936
31 11 51 0.01137 -0.43721 0.66196
51 1 44 0.01731 0.00826 0.99341

o N U RN WNE

=
o

5.4 Plots and Haplotype Labels

A convenient way to view results from haplo.score is a plot of the haplotype frequencies (Hap-Freq)
versus the haplotype score statistics (Hap-Score). This plot, and the syntax for creating it, are
shown in Figure 1.

Some points on the plot may be of interest. To identify individual points on the plot, use
locator.haplo(score.gaus), which is similar to locator(). Use the mouse to select points on the plot.
After points are chosen, click on the middle mouse button, and the points are labeled with their
haplotype labels. Note, in constructing Figure 1, we had to define which points to label, and then
assign labels in the same way as done within the locator.haplo function.

17

+ VvV + + V V

plot(score.gaus.add)

pts.haplo <- list(x.coord = ¢(0.05098, 0.03018,
0.1), y.coord = c(2.1582, 0.45725, -2.1566),
hap.txt = c("62:2:7", "51:1:35", "21:3:8"))

text(x = pts.haplo$x.coord, y = pts.haplo$y.coord,
labels = pts.haplo$hap.txt)

(o] o
~ o 62:2:7
o o
g - o
5 o
® ° 51:1:35
6 o
§ ° °
() [
o
g <4 5%
T |
N
o 21:3:8
(o]
[I I I I
0.02 0.04 0.06 0.08 0.10

Haplotype Frequency

Figure 1: Haplotype Statistics: Score vs. Frequency, Quantitative Response

18

5.5 Skipping Rare Haplotypes

For the quantitative trait analyses, the skip.haplo and min.count parameters control which rare
haplotypes are pooled into a common group. The min.count parameter is a recent addition to
haplo.score, yet it does the same task as skip.haplo and is the same idea as haplo.min.count used in
haplo.glm.control for haplo.glm. As a guideline, you may wish to set min.count to calculate scores
for haplotypes with expected haplotype counts of 5 or greater in the sample. We concentrate on
this expected count because it adjusts to the size of the input data. If N is the number of subjects
and f the haplotype frequency, then the expected haplotype count is count =2 x N x f. So you
can choose skip.haplo = C;f]’\‘f In the following example we try a different cut-off than before,
min.count=10, which corresponds to skip.haplo of 10 = (2 x 220) = .045. In the output, notice the
global statistic and its p-value change because of the fewer haplotypes, while the haplotype-specific
scores do not change.

> score.gaus.minl0 <- haplo.score(resp, geno, trait.type = "gaussian",
+ x.adj = NA, min.count = 10, locus.label = label,

+ miss.val = 0, simulate FALSE)

> print(score.gaus.min10)

Haplotype Effect Model: additive

Global Score Statistics

global-stat = 20.66451, df = 7, p-val = 0.0043

Haplotype-specific Scores

DB DRB B Hap-Freq Hap-Score p-val

[1] 21 3 8 0.10408 -2.39631 0.01656
[2,] 31 4 44 0.02849 -2.24273 0.02491
[3] 32 4 60 0.0306 -0.46606 0.64118
[4] 21 7 44 0.02332 -0.41942 0.67491
[50 51 1 35 0.03018 0.69696 0.48583
[6,] 32 4 62 0.02349 2.37619 0.01749
[7] 62 2 7 0.05098 2.39795 0.01649

19

5.6 Haplotype Scores, Adjusted for Covariates

To adjust for covariates in haplo.score, first set up a matrix of covariates from the example data.
For example, use a column for male (1 if male; 0 if female), and a second column for age. Then
pass the matrix to haplo.score using parameter x.adj. The results change, though not by much in
this example.

> X.ma <- chind(male, age)

> score.gaus.adj <- haplo.score(resp, geno, trait.type = "gaussian",
+ x.adj = x.ma, min.count = 5, locus.label = label,

+ miss.val = 0, simulate = FALSE)

> print(score.gaus.adj, nlines = 10)

Haplotype Effect Model: additive

Global Score Statistics

global-stat = 31.02908, df = 18, p-val = 0.02857

Haplotype-specific Scores

DQB DRB B Hap-Freq Hap-Score p-val

[1J 21 3 8 0.10408 -2.4097 0.01597
[2] 31 4 44 0.02849 -2.25293 0.02426
[3] 51 1 44 0.01731 -0.98763 0.32333
[4] 63 13 44 0.01606 -0.83952 0.40118
[5] 63 2 7 0.01333 -0.48483 0.6278
[6] 32 4 60 0.0306 -0.46476 0.64211
[7] 21 7 44 0.02332 -0.41249 0.67998
[8] 62 2 44 0.01367 -0.26443 0.79145
[9] 62 2 18 0.01545 -0.20425 0.83816
[10] 51 1 27 0.01505 0.02243 0.9821

5.7 Haplotype Model Effect (NEW)

A recent addition to haplo.score is the ability to select non-additive effects to score haplotypes. The
possible effects for haplotypes are additive, dominant, and recessive. Under recessive effects, fewer

20

haplotypes may be scored, because subjects are required to be homozygous for haplotypes. Fur-
thermore, there would have to be min.count such persons in the sample to have the recessive effect
scored. Therefore, a recessive model should only be used on samples with common haplotypes. In
the example below with the gaussian response, set the haplotype effect to dominant using param-
eter haplo.effect = "dominant”. Notice the results change slightly compared to the score.gaus.add
results above.

> score.gaus.dom <- haplo.score(resp, geno, trait.type = "gaussian",
+ x.adj = NA, min.count = 5, haplo.effect = "dominant”,

+ locus.label = label, miss.val = 0, simulate = FALSE)

> print(score.gaus.dom, nlines = 10)

Haplotype Effect Model: dominant

Global Score Statistics

global-stat = 29.56133, df = 18, p-val = 0.04194

Haplotype-specific Scores

DQB DRB B Hap-Freq Hap-Score p-val

[1,] 22 3 8 0.10408 -2.23872 0.02517
2] 31 4 44 0.02849 -2.13233 0.03298
3] 51 1 44 0.01731 -0.99357 0.32043
[4] 63 13 44 0.01606 -0.84453 0.39837
[5] 63 2 7 0.01333 -0.50736 0.6119

[6,] 32 4 60 0.0306 -0.46606 0.64118
[7] 21 7 44 0.02332 -0.41942 0.67491
[8] 62 2 44 0.01367 -0.26221 0.79316
[9,] 62 2 18 0.01545 -0.21493 0.82982
[10,] 51 1 27 0.01505 0.01539 0.98772

5.8 Simulation p-values

When simulate=TRUE, haplo.score gives simulated p-values. Simulated haplotype score statistics
are the re-calculated score statistics from a permuted re-ordering of the trait and covariates and
the original ordering of the genotype matrix. The simulated p-value for the global score statistic

21

(Global sim. p-val) is the number of times the simulated global score statistic exceeds the observed,
divided by the total number of simulations. Likewise, simulated p-value for the maximum score
statistic (Max-stat sim. p-val) is the number of times the simulated maximum haplotype score
statistic exceeds the observed maximum score statistic, divided by the total number of simulations.
The maximum score statistic is the maximum of the square of the haplotype-specific score statistics,
which has an unknown distribution, so its significance can only be given by the simulated p-value.
Intuitively, if only one or two haplotypes are associated with the trait, the maximum score statistic
should have greater power to detect association than the global statistic.

The score.sim.control function manages control parameters for simulations. The haplo.score
function employs the simulation p-value precision criteria of Besag and Clifford[1]. These criteria
ensure that the simulated p-values for both the global and the maximum score statistics are pre-
cise for small p-values. The algorithm performs a user-defined minimum number of permutations
(min.sim) to guarantee sufficient precision for the simulated p-values for score statistics of individ-
ual haplotypes. Permutations beyond this minimum are then conducted until the sample standard
errors for simulated p-values for both the global-stat and max-stat score statistics are less than a
threshold (p.threshold * p-value). The default value for p.threshold= % provides a two-sided 95%
confidence interval for the p-value with a width that is approximately as wide as the p-value itself.
Effectively, simulations are more precise for smaller p-values. The following example illustrates
computation of simulation p-values with min.sim=1000.

> score.bin.sim <- haplo.score(y.bin, geno, trait.type = "binomial",

+ x.adj = NA, locus.label = label, min.count = 5,
+ haplo.effect = "additive", miss.val = 0, simulate = TRUE,
+ sim.control = score.sim.control())

> print(score.bin.sim)

Haplotype Effect Model: additive

Global Score Statistics

global-stat = 33.70125, df = 18, p-val = 0.01371

Global Simulation p-value Results

Global sim. p-val = 0.0095
Max-Stat sim. p-val = 0.00563

22

Number of Simulations, Global: 2842 , Max-Stat: 2842

Haplotype-specific Scores

DQB DRB B Hap-Freq Hap-Score p-val sim p-val
62 2 7 0.05098 -2.19387 0.02824 0.03519
51 1 35 0.03018 -1.58421 0.11315 0.13863
63 13 7 0.01655 -1.56008 0.11874 0.19177
21 7 7 0.01246 -1.47495 0.14023 0.15588
32 4 7 0.01678 -1.00091 0.31687 0.26882
32 4 62 0.02349 -0.6799 0.49657 0.47467
51 1 27 0.01505 -0.66509 0.50599 0.64286
31 11 35 0.01754 -0.5838 0.55936 0.6506

] 31 11 51 0.01137 -0.43721 0.66196 0.91872
[10,) 51 1 44 0.01731 0.00826 0.99341 1
[11,] 32 4 60 0.0306 0.03181 0.97462 0.94968
[12,] 62 2 44 0.01367 0.16582 0.8683 0.91872
[13,] 63 13 44 0.01606 0.22059 0.82541 0.73962

o N U RNWNE

[14] 63 2 7 0.01333 0.2982 0.76555 0.77164
[15,] 62 2 18 0.01545 0.78854 0.43038 0.6608
[16,] 21 7 44 0.02332 0.84562 0.39776 0.3962
[17,] 31 4 44 0.02849 2.50767 0.01215 0.01196
[18] 21 3 8 0.10408 3.77763 0.00016 0.00035

6 Regression Models: haplo.glm

The haplo.glm function computes the regression of a trait on haplotypes, and possibly other covari-
ates and their interactions with haplotypes. Although this function is based on a generalized linear
model, only two types of traits are currently supported: 1) quantitative traits with a normal (gaus-
sian) distribution and identity link, and 2) binomial traits with a logit-link function. The effects
of haplotypes on the link function can be modeled as either additive, dominant (heterozygotes and
homozygotes for a particular haplotype assumed to have equivalent effects), or recessive (homozy-
gotes of a particular haplotype considered to have an alternative effect on the trait). The basis of
the algorithm is a two-step iteration process; the posterior probabilities of pairs of haplotypes per
subject are used as weights to update the regression coefficients, and the regression coefficients are
used to update the haplotype posterior probabilities. See Lake et al.[7] for details.

23

6.1 Preparing the data.frame for haplo.glm

A critical distinction between haplo.glm and all other functions in Haplo Stats is that the definition
of the regression model follows the S-PLUS/R formula standard (see Im or glm). So, a data.frame
must be defined, and this object must contain the trait, a special kind of genotype matrix (geno.glm
for this example) that contains the genotypes of the marker loci, and optionally other covariates
and weights. The key features of this data.frame are in how we set up a genotype matrix specific
for use in haplo.glm. We prepare geno.glm using setupGeno, which handles character, numeric, or
factor alleles, and keeps the columns of the genotype matrix as a single unit when inserting into
(and extracting from) a data.frame. The setupGeno function also recodes alleles to integer values
(the initial allele codes become an attribute of the returned object), and returns a model. matrix,
which can then be included in a data.frame. In the example below we prepare geno.glm, then create
a data.frame object (my.data) for use in haplo.glm.

my.data <- data.frame(geno.glm, age = age, male = male,
y = resp, y.bin = y.bin)

> geno <- hla.demol[, c(17, 18, 21:24)]

> geno.gim <- setupGeno(geno, miss.val = ¢(0, NA),
+ locus.label = label)

> y.bin <- 1 * (resp.cat == "low")

>

+

6.2 Handling Rare Haplotypes

The issue of deciding which haplotypes to use for association is critical in haplo.glm. The haplotypes
chosen to be modeled in haplo.glm are chosen similar to haplo.score, by a minimum frequency or a
minimum expected count in the sample. The default for choosing a cut-off is the same for setting
skip.haplo and min.count in haplo.score, as described in section 5.5.

The default minimum frequency cut-off in haplo.glm is based on a minimum expected count of 5.
Two control parameters set in haplo.glm.control may be used to control this setting: haplo.freq.min
may be set to a selected minimum haplotype frequency; haplo.min.count may be set to select the
cut-off for minimum expected haplotype count in the sample.

6.3 Regression for a Quantitative Trait

The following illustrates how to fit a regression of a quantitative trait y on the haplotypes estimated
from the geno.glm matrix, and the covariate male. For na.action, we use na.geno.keep, which allows
missing values in the genotype matrix, but removes a subject with missing values (NA) in either
the response or covariate. The setupGeno function recoded alleles to numeric values in geno.glm
numbered starting with 1, but we can preserve the original allele values by setting the allele.lev
parameter to be the unique.alleles attribute from geno.glm.

> fit.gaus <- haplo.gim(y ~ male + geno.gim, family = gaussian,
+ data = my.data, na.action = "na.geno.keep",

24

+
+

> print(fit.gaus)

locus.label = label, allele.lev =

attributes(geno.glm)$unique.alleles,

control = haplo.glm.control(haplo.min.count = 5))

Call:

haplo.gim(formula =

family = gaussian, data

locus.label = label, allele.lev =

y ~ male + geno.gim,

= my.data, na.action = "na.geno.keep",
attributes(geno.glm)$unique.alleles,

control = haplo.glm.control(haplo.min.count = 5))

Coefficients:

(Intercept)
male
geno.gim.13
geno.glm.17
geno.gim.34
geno.glm.50
geno.glm.55
geno.gim.69
geno.glm.77
geno.gim.78
geno.glm.99
geno.gim.100
geno.glm.102
geno.gim.138
geno.glm.140
geno.gim.143
geno.glm.155
geno.glm.162
geno.gim.165
geno.glm.rare

Haplotypes:

geno.gim.13
geno.gim.17
geno.gim.34
geno.gim.50
geno.glm.55
geno.glm.69

coef

se t.stat pval

0.9918 0.349 2.8393 0.00499

0.1281 0.161 0.7962 0.42684

1.1208 0.539
0.2713 0.441

0.7687
0.4538
1.1080
0.2336
1.2370
0.4800
0.6125

0.485
0.566
0.552
0.355
0.387
0.501
0.375

0.9849 0.305
0.4224 0.482
0.0215 0.500
0.3706 0.522
1.3679 0.472
0.1172 0.460

DQB DRB
21 7 7
21 7 44
31 4 44
31 11 35
31 11 51
32 4 7

2.0791 0.03889
0.6155 0.53895

-0.2573 0.347 -0.7408 0.45970

1.5846 0.11463
0.8018 0.42364
2.0057 0.04624
0.6572 0.51178
3.1928 0.00164
0.9573 0.33957
1.6342 0.10378

-0.1097 0.447 -0.2453 0.80650

3.2342 0.00143
0.8756 0.38228
0.0430 0.96571
0.7104 0.47830
2.8974 0.00418

0.2550 0.79896

0.3936 0.189 2.0837 0.03846

B hap.freq
0.0124
0.0229
0.0286
0.0170
0.0114
0.0150

25

geno.gim.77 32 4 60 0.0319
geno.glm.78 32 4 62 0.0239
geno.gim.99 51 127 0.0150
geno.gim.100 51 1 35 0.0300
geno.gim.102 51 1 44 0.0176
geno.gim.138 62 2 7 0.0510
geno.gim.140 62 2 18 0.0154
geno.gim.143 62 2 44 0.0141
geno.gim.155 63 2 7 0.0136
geno.glm.162 63 13 7 0.0161
geno.glm.165 63 13 44 0.0165

geno.gimrare * * * 0.5434
haplo.base 21 3 8 0.1041

Explanation of Results

The above table for Coefficients lists the estimated regression coefficient (coef), its standard error
(se), the corresponding t-statistic (t.stat), and p-value (pval). The labels for haplotype coefficients
are a concatenation of the name of the genotype matrix (geno.glm) and unique haplotype codes
assigned within haplo.glm. The haplotypes corresponding to these haplotype codes are listed in the
Haplotypes table, along with the estimates of the haplotype frequencies (hap.freq). The rare hap-
lotypes, those with expected counts less than haplo.min.count=>5 (equivalent to having frequencies
less than haplo.freq.min = 0.01136 in the above example), are pooled into a single category labeled
geno.glm.rare. The haplotype chosen as the baseline category for the design matrix (most frequent
haplotype is the default) is labeled as haplo.base; more information on the baseline may be found
in section 6.6.2.

6.4 Fitting Haplotype x Covariate Interactions

Interactions are fit by the standard S-language model syntax, using a '+’ in the model formula to
indicate main effects and interactions. Some other formula constructs are not supported, so use the
formula parameter with caution. Below is an example of modeling the interaction of male and the
haplotypes. Because more terms will be estimated in this case, we limit how many haplotypes will
be included by increasing haplo.min.count to 10.

> fit.inter <- haplo.gim(formula = y ~ male * geno.gim,

+ family = gaussian, data = my.data, na.action = "na.geno.keep”,
+ locus.label = label, allele.lev = attributes(geno.gim)$unique.alleles,
+ control = haplo.glm.control(haplo.min.count = 10))
> print(fit.inter)

Call:

haplo.gim(formula = y ~ male * geno.gim,

26

family = gaussian, data = my.data, na.action = "na.geno.keep",
locus.label = label, allele.lev = attributes(geno.gim)$unique.alleles,
control = haplo.glm.control(haplo.min.count = 10))

Coefficients:

coef se t.stat pval
(Intercept) 0.9754 0.523 1.8661 0.06347
male 0.2581 0.674 0.3832 0.70201
geno.gim.17 0.1444 0.545 0.2648 0.79144
geno.gim.34 -0.1716 0.668 -0.2570 0.79744
geno.glm.77 0.8052 0.650 1.2398 0.21649
geno.gim.78 0.4956 0.566 0.8760 0.38208
geno.glm.100 0.5231 0.481 1.0883 0.27776
geno.gim.138 1.1570 0.423 2.7337 0.00681
geno.glm.rare 0.4555 0.287 1.5859 0.11432

male:geno.gim.17 0.5087 0.875 0.5812 0.56176
male:geno.gim.34 -0.2814 0.786 -0.3581 0.72063
male:geno.gim.77 -0.9008 0.791 -1.1386 0.25618
male:geno.gim.78 1.2638 0.771 1.6385 0.10287
male:geno.gim.100 0.0507 0.775 0.0655 0.94785
male:geno.gim.138 -0.4459 0.619 -0.7203 0.47218
male:geno.gim.rare -0.0979 0.372 -0.2631 0.79272

Haplotypes:

DQB DRB B hap.freq
geno.glm.17 21 7 44 0.0235
geno.gim.34 31 4 44 0.0285
geno.glm.77 32 4 60 0.0306
geno.gim.78 32 4 62 0.0241
geno.glm.100 51 135 0.0301
geno.gim.138 62 2 7 0.0505
geno.glmrare * * * 0.7086
haplo.base 21 3 8 0.1041

Explanation of Results

The listed results are as explained under section 6.3. The main difference is that the interaction
coefficients are labeled as a concatenation of the covariate (male in this example) and the name
of the haplotype, as described above. In addition, estimates may differ because the model has
changed.

27

6.5 Regression for a Binomial Trait

Next we illustrate the fitting of a binomial trait with the same genotype matrix and covariate.

> fit.bin <- haplo.gim(y.bin ~ male + geno.gim,

+
+
+
>

family = binomial, data = my.data, na.action = "na.geno.keep",
locus.label = label, allele.lev = attributes(geno.gim)$unique.alleles,
control = haplo.gim.control(haplo.min.count = 10))

print(fit.bin)

Call:

haplo.gim(formula = y.bin ~ male + geno.gim,
family = binomial, data = my.data, na.action = "na.geno.keep",
locus.label = label, allele.lev = attributes(geno.gim)$unique.alleles,

control =

Coefficients:

(Intercept)
male
geno.gim.17
geno.gim.34
geno.gim.77
geno.gim.78
geno.glm.100
geno.gim.138

haplo.glm.control(haplo.min.count = 10))

coef se t.stat pval
1.546 0.655 2.361 0.019137

-0.480 0.331 -1.452 0.148055
-0.723 0.801 -0.902 0.367986

0.364 0.680 0.536 0.592782
-0.988 0.733 -1.349 0.178829
-1.409 0.854 -1.650 0.100519
-2.591 1.128 -2.297 0.022594
-2.716 0.852 -3.186 0.001661

geno.glm.rare -1.261 0.354 -3.565 0.000451

Haplotypes:

geno.glm.17
geno.gim.34
geno.glm.77
geno.gim.78
geno.gim.100
geno.gim.138

geno.glm.rare

haplo.base

DQB DRB B hap.freq
21 7 44 0.0230
31 4 44 0.0284
32 4 60 0.0306
32 462 0.0235
51 1 35 0.0298
62 2 7 0.0518
* o * 0.7088
21 3 8 0.1041

Explanation of Results

The underlying methods for haplo.glm are based on a prospective likelihood.

28

Normally, this

type of likelihood works well for case-control studies with standard covariates. For ambiguous
haplotypes, however, one needs to be careful when interpreting the results from fitting haplo.glm
to case-control data. Because cases are over-sampled, relative to the population prevalence (or
incidence, for incident cases), haplotypes associated with disease will be over-represented in the case
sample, and so estimates of haplotype frequencies will be biased. Positively associated haplotypes
will have haplotype frequency estimates that are higher than the population haplotype frequency.
To avoid this problem, one can weight each subject. The weights for the cases should be the
population prevalence, and the weights for controls should be 1 (assuming the disease is rare in
the population, and controls are representative of the general population). See Stram et al.[11] for
background on using weights, and see the help file for haplo.glm for how to implement weights.

The estimated regression coefficients for case-control studies can be biased by either a large
amount of haplotype ambiguity and mis-specified weights, or by departures from Hardy-Weinberg
Equilibrium of the haplotypes in the pool of cases and controls. Generally, the bias is small, but
tends to be towards the null of no association. See Stram et al. [11] and Epstein and Satten [5] for
further details.

6.5.1 Caution on Rare Haplotypes with Binomial Response

If a rare haplotype occurs only in cases or only in controls, the fitted values would go to 0 or 1,
where R or S-PLUS would issue a warning. Also, the coefficient estimate for that haplotype would
go to positive or negative infinity, If the default haplo.min.count=>5 were used above, this warning
would appear. To keep this from occuring, increase the minimum count or minimum frequency.

6.6 Control Parameters

Additional parameters are handled using control, which is a list of parameters providing additional
functionality in haplo.glm. This list is set up by the function haplo.glm.control. See the help file
(help(haplo.glm.control)) for a full list of control parameters, with details of their usage. Some of
the options are described here.

6.6.1 Controlling Genetic Models: haplo.effect

The haplo.effect control parameter for haplo.glm instructs whether the haplotype effects are fit as
additive, dominant, or recessive. That is, haplo.effect determines whether the covariate (z) coding
of haplotypes follows the values in Table 1 for each effect type. Heterozygous means a subject has
one copy of a particular haplotype, and homozygous means a subject has two copies of a particular
haplotype.

29

Table 1: Coding haplotype covariates in a model matrix

Hap - Pair | additive | dominant | recessive

Heterozygous 1 1 0
Homozygous 2 1 1

Note that in a recessive model, the haplotype effects are estimated only from subjects who are ho-
mozygous for a haplotype. Some of the haplotypes which meet the haplo.freq.min and haplo.count.min
cut-offs may occur as homozygous in only a few of the subjects. As stated in 5.7, recessive models
should be used when the region has common haplotypes.

The default haplo.effect is additive, whereas the example below illustrates the fit of a dominant
effect of haplotypes for the gaussian trait with the gender covariate.

> fit.dom <- haplo.gim(y ~ male + geno.glm, family = gaussian,

+ data = my.data, na.action = "na.geno.keep",

+ locus.label = label, allele.lev = attributes(geno.gim)$unique.alleles,

+ control = haplo.glm.control(haplo.effect = "dominant”,

+ haplo.min.count = 8))

> print(fit.dom)

Call:

haplo.gim(formula = y ~ male + geno.gim,
family = gaussian, data = my.data, na.action = "na.geno.keep",
locus.label = label, allele.lev = attributes(geno.gim)$unique.alleles,
control = haplo.glm.control(haplo.effect = "dominant”,

haplo.min.count = 8))

Coefficients:

coef se t.stat pval
(Intercept) 1.6493 0.373 4.416 1.61e-05
male 0.0797 0.157 0.507 6.13e-01

geno.glm.17 -0.0604 0.423 -0.143 8.87e-01
geno.gim.34 -0.6650 0.364 -1.827 6.91e-02
geno.gim.77 -0.0734 0.347 -0.212 8.33e-01
geno.gim.78 0.8537 0.364 2.344 2.00e-02
geno.gim.100 0.2470 0.346 0.715 4.76e-01
geno.gim.138 0.6729 0.282 2.389 1.78e-02
geno.gim.rare 0.1120 0.340 0.329 7.42e-01

Haplotypes:
DQB DRB B hap.freq

30

geno.gim.17 21 7 44 0.0230
geno.gim.34 31 4 44 0.0286
geno.glm.77 32 4 60 0.0302
geno.glm.78 32 4 62 0.0239
geno.gim.100 51 135 0.0300
geno.gim.138 62 2 7 0.0502

geno.gimrare * * * 0.7100
haplo.base 21 3 8 0.1041

6.6.2 Selecting the Baseline Haplotype

The haplotype chosen for the baseline in the model is the one with the highest frequency. Sometimes
the most frequent haplotype may be an at-risk haplotype, and so the measure of its effect is desired.
To specify a more appropriate haplotype as the baseline in the binomial example, choose from the
list of other common haplotypes, fit.bin$haplo.common. To specify an alternative baseline, such as
haplotype 77, use the control parameter haplo.base and haplotype code, as in the example below.

> fit.bin$haplo.common
[1] 17 34 77 78 100 138
> fit.bin$haplo.freq.init[fit.bin$haplo.common]

[1] 0.02332031 0.02848720 0.03060053 0.02349463 0.03018431
[6] 0.05097906

> fit.bin.base77 <- haplo.gim(y.bin ~ male + geno.gim,

+ family = binomial, data = my.data, na.action = "na.geno.keep”,
+ locus.label = label, allele.lev = attributes(geno.gim)$unique.alleles,
+ control = haplo.glm.control(haplo.base = 77,

+ haplo.min.count = 8))

> print(fit.bin.base77)

Call:
haplo.gim(formula = y.bin ~ male + geno.glm,
family = binomial, data = my.data, na.action = "na.geno.keep",
locus.label = label, allele.lev = attributes(geno.gim)$unique.alleles,
control = haplo.glm.control(haplo.base = 77,
haplo.min.count = 8))

Coefficients:
coef se t.stat pval

31

(Intercept) -0.431 1.359 -0.317 0.7513
male -0.480 0.331 -1.452 0.1481
geno.gim.4 0.988 0.733 1.349 0.1788
geno.gim.17 0.266 1.025 0.259 0.7958
geno.gim.34 1.353 0.922 1.466 0.1440
geno.gim.78 -0.421 1.043 -0.404 0.6870
geno.gim.100 -1.602 1.301 -1.232 0.2194
geno.gim.138 -1.727 1.032 -1.674 0.0957
geno.gim.rare -0.273 0.683 -0.399 0.6904

Haplotypes:
DQB DRB B hap.freq

geno.gim.4 21 3 8 0.1041
geno.gim.17 21 7 44 0.0230
geno.gim.34 31 4 44 0.0284
geno.gim.78 32 4 62 0.0235
geno.gim.100 51 135 0.0298
geno.gim.138 62 2 7 0.0518
geno.glm.rare * * * 0.7088
haplo.base 32 460 0.0306

Explanation of Results

The above model has the same haplotypes as fit.bin, except haplotype 4, the old baseline, now
has an effect estimate while haplotype 77 is the new baseline. Due to randomness in the starting
values of the haplotype frequency estimation, different runs of haplo.glm may result in a different
set of haplotypes meeting the minimum counts requirement for being modeled. Therefore, once you
have arrived at a suitable model, and you wish to modify it by changing baseline and/or effects, you
can make results consistent by controlling the randomness using set.seed, as described in section
3.4. In this document, we use the same seed before making fit.bin and fit.bin.base77.

7 Extended Applications

The following functions are designed to wrap the functionality of the major functions in Haplo
Stats into other useful applications.

7.1 Combine Score and Group Results: haplo.score.merge

When analyzing a qualitative trait, such as binary, it can be helpful to align the results from
haplo.score with haplo.group. To do so, use the function haplo.score.merge, as illustrated in the
following example:

32

> merge.bin <- haplo.score.merge(score.bin, group.bin)
> print(merge.bin, nlines = 10)

Haplotype Scores, p-values, and Frequencies
By Group

DQB DRB B Hap.Score p.val Hap.Freq y.bin.0 y.bin.1

62 2 7 -2.19387 0.02824 0.05098 0.06789 0.01587
51 1 35 -1.58421 0.11315 0.03018 0.03754 0.00907
63 13 7 -1.56008 0.11874 0.01655 0.02176 NA
21 7 7 -1.47495 0.14023 0.01246 0.01969 NA
32 4 7 -1.00091 0.31687 0.01678 0.02628 0.00794
32 4 62 -0.67990 0.49657 0.02349 0.01911 NA

51 1 27 -0.66509 0.50599 0.01505 0.01855 0.00907

31 11 35 -0.58380 0.55936 0.01754 0.01982 0.01587

31 11 51 -0.43721 0.66196 0.01137 0.01321 NA
0 51 1 44 0.00826 0.99341 0.01731 0.01595 0.00000

P OO ~NOOOTA,WDNPRE

Explanation of Results

The first column is a row index, the next columns (3 in this example) illustrate the haplotype,
the Hap.Score column is the score statistic and p.val the corresponding x? p-value. Hap.Freq is the
haplotype frequency for the total sample, and the remaining columns are the estimated haplotype
frequencies for each of the group levels (y.bin in this example). The default print method only
prints results for haplotypes appearing in the haplo.score output. To view all haplotypes, use the
print option all. haps=TRUE, which prints all haplotypes from the haplo.group output. The output
is ordered by the score statistic, but the order.by parameter can specify ordering by haplotypes or
by haplotype frequencyies.

7.2 Case-Control Haplotype Analysis: haplo.cc

It is possible to combine the results of haplo.score, haplo.group, and haplo.glm for case-control data,
all performed within haplo.cc. The function peforms a score test and a glm on the same haplotypes.
Haplotypes used in the analysis have an expected count at least as large as haplo.min.count, which
is explained in section 6.2.

Below, we execute haplo.cc, view a print-out of the results, then look at the names of the objects
stored within the cc.hla result.

> y.bin <- 1 * (hla.demo$resp.cat == "low")
> cc.hla <- haplo.cc(y = y.bin, geno = geno, haplo.min.count = 8,

33

+ locus.label = label, control = haplo.gim.controllem.c = haplo.em.control(iseed = 10)))
> print(cc.hla, nlines = 25, digits = 2)

Global Score Statistics

global-stat = 27, df = 7, p-val = 0.00029

Counts for Cases and Controls

control case
157 63

Haplotype Scores, p-values, Hap-Frequencies
(hf), and Odds Ratios (95% CI)

DQB DRB B Hap-Score p-val pool.hf control.hf case.hf

147 62 2 7 -2.166 0.03030 0.0504 0.0679 0.0159

99 51 135 -1.583 0.11340 0.0302 0.0376 0.0088

77 32 4 62 -0.680 0.49660 0.0235 0.0191 NA

7% 32 460 0.029 0.97683 0.0306 0.0315 0.0397

15 21 7 44 1.090 0.27568 0.0219 0.0175 0.0476

49 31 4 44 2.514 0.01193 0.0285 0.0145 0.0635

10 21 3 8 3.778 0.00016 0.1040 0.0697 0.1897

1 21 1 8 NA NA 0.0023 0.0033 NA
2 21 10 8 NA NA 0.0018 0.0032 NA
3 21 13 8 NA NA 0.0027 NA NA
4 21 2 18 NA NA 0.0023 0.0032 NA
5 21 2 7 NA NA 0.0023 0.0032 NA
6 21 3 18 NA NA 0.0046 0.0064 NA
7 21 3 35 NA NA 0.0057 0.0064 NA
8 21 3 44 NA NA 0.0038 0.0033 0.0166
9 21 370 NA NA 0.0023 NA NA
11 21 4 14 NA NA 0.0045 0.0064 NA
12 21 4 62 NA NA 0.0045 0.0064 NA
13 21 7 13 NA NA 0.0108 NA 0.0238
14 21 7 35 NA NA 0.0023 NA 0.0079
16 21 7 45 NA NA 0.0023 0.0032 NA

34

17 21 7 50 NA NA 0.0045 0.0032 0.0079

18 21 7 57 NA NA 0.0045 NA NA

19 21 7 62 NA NA 0.0077 0.0074 NA

20 212 7 7 NA NA 0.0142 0.0197 NA
glm.eff OR.lower OR OR.upper

147 Eff 0.014 0.075 0.39

99 Eff 0.010 0.092 0.81

77 Eff 0.049 0.259 1.37

76 Eff 0.082 0.338 1.40

15 Eff 0.133 0.639 3.07

49 Eff 0.362 1.386 5.31

10 Base NA 1.000 NA

1 R 0.147 0.293 0.58

2 R 0.147 0.293 0.58

3 R 0.147 0.293 0.58

4 R 0.147 0.293 0.58

5 R 0.147 0.293 0.58

6 R 0.147 0.293 0.58

7 R 0.147 0.293 0.58

8 R 0.147 0.293 0.58

9 R 0.147 0.293 0.58

11 R 0.147 0.293 0.58

12 R 0.147 0.293 0.58

13 R 0.147 0.293 0.58

14 R 0.147 0.293 0.58

16 R 0.147 0.293 0.58

17 R 0.147 0.293 0.58

18 R 0.147 0.293 0.58

19 R 0.147 0.293 0.58

20 R 0.147 0.293 0.58

> names(cc.hla)

[1] "cc.df" "group.count” "score.lst"
[4] “fitlst" "ci.prob” "exclude.subj"

Explanation of Results

First, from the names function we see that cc.hla also contains score.Ist and fit.Ist, which are the
haplo.score and haplo.glm objects, respectively. For the printed results of haplo.cc, first are the
global statistics from haplo.score, followed by cell counts for cases and controls. The last portion
of the output is a data frame containing combined results for individual haplotypes:

35

e Hap-Score: haplotype score statistic

e p-val: haplotype score statistic p-value

e sim p-val: (if simulations performed) simulated p-value for the haplotype score statistic
e pool.hf: haplotype frequency for the pooled sample

e control.hf: haplotype frequencies for the control sample only

e case.hf: haplotype frequencies for the case sample only

e glm.eff: one of three ways the haplotype appeared in the glm model: Efff modeled as an
effect; Base: part of the baseline; and R: a rare haplotype, included in the effect of pooled
rare haplotypes

e OR.lower: Odds Ratio confidence interval lower limit
e OR: Odds Ratio for each effect in the model
e OR.upper: Odds Ratio confidence interval upper limit

Significance levels are indicated by the p-values for the score statistics, and the odds ratio
(OR) confidence intervals for the haplotype effects. Note that the Odds Ratios are effect sizes of
haplotypes, assuming haplotype effects are multiplicative. Since this last table has many columns,
lines are wrapped in the output in this manual. You can align wrapped lines by the haplotype
code which appears on the far left. Alternatively, instruct the print function to only print digits
significant digits, and set the width settings for output in your session using the options() function.

7.3 Score Tests on Sub-Haplotypes: haplo.score.slide

To evaluate the association of sub-haplotypes (subsets of alleles from the full haplotype) with a
trait, the user can evaluate a "window” of alleles by haplo.score, and slide this window across the
entire haplotype. This procedure is implemented by the function haplo.score.slide. To illustrate
this method, we use all 11 loci in the demo data, hla.demo.

First, make the geno matrix and the locus labels for the 11 loci. Then use haplo.score.slide for
a window of 3 loci (n.slide=3), which will slide along the haplotype for all 9 contiguous subsets of
size 3, using the previously defined gaussian trait resp.

> geno.11 <- hla.demo[, -c(1:4)]

> label.11 <- c("DPB", "DPA", "DMA", "DMB", "TAP1",
+ "TAP2", "DQB", "DQA", "DRB", "B", "A")

> score.slide.gaus <- haplo.score.slide(hla.demo$resp,
+ geno.ll, trait.type = "gaussian", n.slide = 3,

+ min.count = 5, locus.label = label.11)
> print(score.slide.gaus)

36

start.loc score.global.p global.p.sim max.p.sim

1 1 0.215498 NA NA
2 2 0.093664 NA NA
3 3 0.390424 NA NA
4 4 0.487713 NA NA
5 5 0.137468 NA NA
6 6 0.149241 NA NA
7 7 0.110008 NA NA
8 8 0.009963 NA NA
9 9 0.029047 NA NA

Explanation of Results

The first column is the row index of the nine calls to haplo.score, the second column is the number
of the starting locus of the sub-haplotype, the third column is the global score statistic p-value for
each call. The last two columns are the simulated p-values for the global and maximum score
statistics, respectively. If you specify simulate=TRUE in the function call, the simulated p-values
would be present.

7.3.1 Plot Results from haplo.score.slide

The results from haplo.score.slide can be easily viewed in a plot shown in Figure 2 below. The
x-axis has tick marks for each locus, and the y-axis is the —logio(pval). To select which p-value to
plot, use the parameter pval, with choices "global’, "global.sim”, and "max.sim” corresponding to
p-values described above. If the simulated p-values were not computed, the default is to plot the
global p-values. For each p-value, a horizontal line is drawn at the height of —logio(pval) across
the loci over which it was calculated. For example, the p-value score.global.p = 0.009963 for loci
8-10 is plotted as a horizontal line at y = 2.002 spanning the 8 9! and 10** x-axis tick marks.

37

> plot(score.slide.gaus, las = 2)

2.0

15

1.0

-log10(score.global.p)

DPB —
DPA —
DMA -
DMB -
TAP1 —
TAP2 —
DQB
DQA
DRB -

Figure 2: Global p-values for sub-haplotypes; Gaussian Response

38

7.4 Scanning Haplotypes Within a Fixed-Width Window: haplo.scan

Another method to search for a candidate locus within a genome region is haplo.scan, an imple-
mentation of the method proposed in Cheng et al. 2005 [3]. This method searches for a region for
which the haplotypes have the strongest association with a binary trait by sliding a window of fixed
width over each marker locus, and then scans over all haplotype lengths within each window. This
latter step, scanning over all possible haplotype lengths within a window, distinguishes haplo.scan
from haplo.score.slide (which considers only the maximum haplotype length within a window). To
account for unknown linkage phase, the function haplo.em is called prior to scanning, to create a
list of haplotype pairs and posterior probabilities. To illustrate the scanning of window, consider a
10-locus dataset. When placing a window of width 3 over locus 5, the possible haplotype lengths
that contain locus 5 are three (loci 3-4-5, 4-5-6, and 5-6-7), two (loci 4-5 and 5-6) and one (locus
5). For each of these loci subsets a score statistic is computed, which is based on the difference
between the mean vector of haplotype counts for cases and that for controls. The maximum of
these score statistics, over all possible haplotype lengths within a window, is the locus-specific test
statistic, or the locus scan statistic. The global test statistic is the maximum over all computed
score statistics. To compute p-values, the case/control status is randomly permuted. Below we run
haplo.scan on the 11-locus HLA dataset with a binary response and a window width of 3, but first
we use the results of summaryGeno to choose subjects with less than 50,000 haplotype pairs to
speed calculations with all 11 polymorphic loci with many missing alleles.

> geno.11 <- hla.demo[, -c(1:4)]

> y.bin <- 1 * (hla.demo$resp.cat == "low")

> hla.summary <- summaryGeno(geno.11, miss.val = c(0,
+ NA))

> many.haps <- (1:length(y.bin))[hla.summary[, 4] >

+ 50000]

> geno.scan <- geno.ll[-many.haps,]

> y.scan <- y.bin[-many.haps]

> scan.hla <- haplo.scan(y.scan, geno.scan, width = 3,
+ sim.control = score.sim.control(min.sim = 100,

+ max.sim = 100), em.control = haplo.em.control())
> print(scan.hla)

Call:
haplo.scan(y = y.scan, geno = geno.scan,
width = 3, em.control = haplo.em.control(),
sim.control = score.sim.control(min.sim = 100,
max.sim = 100))

Locus Scan-statistic Simulated P-values

39

loc-1 loc-2 loc-3 loc-4 loc-5 loc-6 loc-7 loc-8
sim.p-val 0.03 0.02 0.03 0.01 0.01 0.03 0.01 o0.01
loc-9 loc-10 loc-11
simp-val 0.01 0.01 0.01

Loci with max scan statistic: 2
Max-Stat Simulated Global p-value: 0.02
Number of Simulations: 100

Explanation of Results

In the output we report the simulated p-values for each locus test statistic. Additionally, we
report the loci (or locus) which provided the maximum observed test statistic, and the Max-Stat
Simulated Global p-value is the simulated p-value for that maximum statistic. We print the number
of simulations, because they are performed until p-value precision criteria are met, as described in
section 5.8. We would typically allow simulations to run under default parameters rather than
limiting to 100 by the control parameters.

7.5 Sequential Haplotype Scan Methods: seqhap (NEW)

Another approach for choosing loci for haplotype associations is by seqhap, as described in Yu and
Schaid, 2007 [13]. The seqhap method performs three tests for association of a binary trait over a
set of bi-allelic loci. When evaluating each locus, loci close to it are added in a sequential manner
based on the Mantel-Haenszel test [9]. For each marker locus, three tests are provided:

e single locus, the traditional single-locus x? test of association,
e sequential haplotype, based on a haplotype test for sequentially chosen loci,

e sequential summary, based on the sum of a series of conditional y? statistics.

All three tests are assessed for significance with permutation p-values, in addition to the asymp-
totic p-value. The point-wise p-value for a statistic at a locus is the fraction of times that the statistic
for the permuted data is larger than that for the observed data. The regional p-value is the chance
of observing a permuted test statistic, maximized over a region, that is greater than that for the
observed data.

Below is an example usage of seqhap on data with case-control response for a chromosome region.
Set up the binary response, y, with 0=control, 1=case, a genotype matrix with two columns per
locus, and a vector of chromosome positions. In S-PLUS, example data is available in seqhap.dat
and chromosome positions seqhap.pos. In R, these objects must be loaded using data(). Run
seqhap with 1000 permutations (n.sim=1000), and default settings for threshold parameters.

40

VvV + +V VVYVVYV

data(seghap.dat)

data(seghap.pos)

y <- seghap.dat$disease

geno <- seghap.dat[, -1]

pos <- seghap.pos$pos

seghap.out <- seghap(y = y, geno = geno, pos = pos,
n.sim = 1000, r2.threshold = 0.95, mh.threshold = 3.84,
miss.val = c(0, NA))

print(seghap.out)

Regional permuted P-value based on single-locus test is 0.134
chi.stat perm.point.p asym.point.p

loc-1 1.22062 0.299 0.26924
loc-2 1.35462 0.234 0.24447
loc-3 5.20288 0.022 0.02255
loc-4 3.36348 0.062 0.06666
loc-5 3.55263 0.067 0.05945
loc-6 0.39263 0.553 0.53092
loc-7 5.54913 0.024 0.01849
loc-8 3.74740 0.062 0.05289
loc-9 0.03602 0.824 0.84947
loc-10 1.99552 0.158 0.15777

Loci Combined in Sequential Analysis
seg-loc-1 1

seq-loc-2
seg-loc-3
seqg-loc-4
seq-loc-5
seq-loc-6
seq-loc-7
seq-loc-8
seq-loc-9
seg-loc-10 10

O O~NO UL WN
\l

41

Regional permuted P-value based on sequential haplotype test is 0.015
hap.stat df perm.point.p asym.point.p

seg-loc-1 1.22062 1 0.333 0.26924
seg-loc-2 24.15359 12 0.024 0.01938
seg-loc-3 19.77899 6 0.006 0.00303
seg-loc-4 14.95667 3 0.002 0.00185
seg-loc-5 3.55263 1 0.100 0.05945
seg-loc-6 5.45808 2 0.114 0.06528
seg-loc-7 554913 1 0.048 0.01849
seg-loc-8 3.74740 1 0.119 0.05289
seg-loc-9 0.03602 1 0.848 0.84947
seg-loc-10 1.99552 1 0.208 0.15777

Regional permuted P-value based on sequential summary test is 0.003
sum.stat df perm.point.p asym.point.p

seqg-loc-1 1.22062 1 0.333 0.26924
seg-loc-2 21.15624 4 0.000 0.00029
seqg-loc-3 18.65425 3 0.000 0.00032
seg-loc-4 14.62017 2 0.004 0.00067
seg-loc-5 3.55263 1 0.105 0.05945
seg-loc-6 5.43926 2 0.115 0.06590
seg-loc-7 554913 1 0.048 0.01849
seg-loc-8 3.74740 1 0.120 0.05289
seg-loc-9 0.03602 1 0.848 0.84947
seg-loc-10 1.99552 1 0.208 0.15777

Explanation of Results

For the printed results, the first section (Single-locus Chi-square Test) shows a table with columns
for single-locus tests. The table includes test statistics, permuted p-values, and asymptotic p-values
based on a x? distribution. The second section (Sequential Scan) shows which loci are combined
for association. In this example, the table shows the first locus is not combined with other loci,

42

whereas the second locus is combined with loci 3, 4, and 5. The third section (Sequential Haplotype
Test), shows the test statistics for the sequential haplotype method with degrees of freedom and
permuted and asymptotic p-values. The fourth section (Sequential Summary Test) shows similar
information for the sequential summary tests.

7.5.1 Plot Results from seqghap

The results from seqhap can be viewed in a useful plot shown in Figure 3. The plot is similar
to the plot for haplo.score.slide results, with the x-axis having tick marks for all loci and the y-
axis is the -logl0() of p-value for the tests performed. For the sequential result for each locus,
a horizontal line at the height of -logl0(p-value) is drawn across the loci combined. The start
locus is indicated by a filled triangle and other loci combined with the start locus are indicated
by an asterisk or circle. The choices for pval include ”hap” (sequential haplotype asymptotic p-
value), "hap.sim” (sequential haplotype simulated p-value), "sum” (sequential summary asymptotic
p-value), and “sum.sim” (sequential summary simulated p-value). The other parameter option is
single, indicating whether to plot a line for the single-locus tests.

43

> plot(seghap.out, pval = "hap", single = TRUE,

+

—log10(hap.pval)

2.5

2.0

15

1.0

0.5

0.0

las = 2)

Figure 3: Plot p-values for sequential haplotype scan and single-locus tests

44

o—A
| A — ¢
A A
/A\ !
’ N '
/ \ [}
/ \ n
’ N A
\
/ _ - -A
1 N - \ 4\
/ TR
’ - \
/ \
/ v \
/ [\ A
’ V! /
’ vl ’
A------"-7-° o
2
i
V
l
\
X
I I I I L I I
i N ™ <t [L3)) (@] o
| | | | 1l | i
(&) (&) [&] [&] ()] [S] |
g} g} & ©& se g} g

7.6 Creating Haplotype Effect Columns: haplo.design (NEW)

In some instances, the desired model for haplotype effects is not possible with the methods given
in haplo.glm. Examples include modeling just one haplotype effect, or modeling an interaction of
haplotypes from different chromosomes, or analyzing censored data. To circumvent these limita-
tions, we provide a function called haplo.design, which will set up an expected haplotype design
matrix from a haplo.em object, to create columns that can be used to model haplotype effects in
other modeling functions.

The function haplo.design first creates a design marix for all pairs of haplotypes over all subjects,
and then uses the posterior probabilities to create a weighted average contribution for each subject,
so that the number of rows of the final design matrix is equal to the number of subjects. This is
sometimes called the expectation-substitution method, as proposed by Zaykin et al. 2002 [14], and
using this haplotype design matrix in a regression model is asymptotically equivalent to the score
statistics from haplo.score (Xie and Stram 2005 [12]). Although this provides much flexibility, by
using the design matrix in any type of regression model, the estimated regression parameters can
be biased toward zero (see Lin and Zeng, 2006 [8] for concerns about the expectation-substitution
method).

In the first example below, using default parameters, the returned data.frame contains a column
for each haplotype that meets a minimum count in the sample min.count. The columns are named
by the code they are assigned in haplo.em.

> hap.effect.frame <- haplo.design(save.em)
> names(hap.effect.frame)

[1] "hap.4" "hap.13" "hap.17" "hap.34" "hap.50"
[6] "hap.55" "hap.69" "hap.77" "hap.78" "hap.99"
[11] "hap.100" "hap.102" "hap.138" "hap.140" "hap.143"
[16] "hap.155" "hap.162" "hap.165"

> hap.effect.frame[1:10, 1:8]

hap.4 hap.13 hap.17 hap.34 hap.50 hap.55 hap.69
0.0000000 0.0000000
0.1253234 0.8746766
0.0000000 0.0000000
0.2862131 0.7137869
0.0000000 0.0000000
0.0000000 1.0000000
0.0000000 0.0000000
0.0000000 0.0000000
0.0000000 0.0000000
0.0000000 0.0000000

O oO~NOUDA~WNLEPE
O O0OO0OO0OPFrP,ROOOO0OOo
[eNeoNeoNoNeolNelNoNolNoNo)
[eNeoleoNoNolNoelNoNolNoNe)
O OO0 OFr OO0OOOo
[oNeoNeoNeoNoNoNoNolNolNo

=
o

W
at

hap.77

©CoO~NOOUD~WNLE
eNeolNeolNoNeoNelNoNolNolNo)

=
o

Additionally, haplo.design gives the user flexibility to make a more specific design matrix with
the following parameters:

e hapcodes: codes assigned in the haplo.em object, the only haplotypes to be made into effects
e haplo.effect: the coding of haplotypes as additive, dominant, or recessive
e haplo.base: code for the baseline haplotype

e min.count: minimum haplotype count

This second example below creates columns for specific haplotype codes that were most inter-
esting in score.gaus.add, haplotypes with alleles 21-3-8 and 62-2-7, corresponding to codes 4 and
138 in haplo.em, respectively. Assume we want to test their individual effects when they are coded
with haplo.effect="dominant”.

> hap4.hapl38.frame <- haplo.design(save.em, hapcodes = c(4,
+ 138), haplo.effect = "dominant™)
> hap4.hap138.frame[1:10,]

hap.4 hap.138

0.0000000
0.8746766
0.0000000
0.0000000
0.0000000
0.0000000
1.0000000
0.0000000
0.1358697
0.0000000

P OoO~NOOOTS,WDNPRE
OO O0OO0OPFrOO0OO0OO0oOOo

46

vV + V + V

dat.glm <- data.frame(resp, male, age, hap.4 = hap4.hap138.frame$hap.4,
hap.138 = hap4.hap138.frame$hap.138)
glm.hap4.hap138 <- glm(resp ~ male + age + hap.4 +
hap.138, family = "gaussian", data = dat.glm)
summary(glm.hap4.hap138)

Call:
gim(formula = resp ~ male + age + hap.4 + hap.138, family = "gaussian",
data = dat.gim)

Deviance Residuals:
Min 1Q Median 30 Max
-2.3261 -1.0749 -0.0656 1.0448 2.3904

Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.913834 0.229577 8.336 9.le-15 ***

male 0.048588 0.155290 0.313 0.7547
age -0.002651 0.011695 -0.227 0.8209
hap.4 -0.405530 0.195857 -2.071 0.0396 *
hap.138 0.584480 0.261763 2.233 0.0266 *

Signif. codes: 0 ** 0.001 ** 0.01 * 0.05,, 01, ,1
(Dispersion parameter for gaussian family taken to be 1.318277)
Null deviance: 297.01 on 219 degrees of freedom

Residual deviance: 283.43 on 215 degrees of freedom

AIC: 692.07

Number of Fisher Scoring iterations: 2

47

8 License and Warranty

License:
Copyright 2003 Mayo Foundation for Medical Education and Research.

This program is free software; you can redistribute it and/or modify it under the terms of the
GNU General Public License as published by the Free Software Foundation; either version 2 of the
License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program; if
not, write to

Free Software Foundation, Inc.

59 Temple Place, Suite 330

Boston, MA 02111-1307 USA

For other licensing arrangements, please contact Daniel J. Schaid.
Daniel J. Schaid, Ph.D.

Division of Biostatistics

Harwick Building - Room 775

Mayo Clinic

200 First St., SW

Rochester, MN 55905

phone: 507-284-0639

fax: 507-284-9542

email: schaid@mayo.edu

9 Acknowledgements

This research was supported by United States Public Health Services, National Institutes of Health;
Contract grant numbers R01 DE13276, RO1 GM 65450, NO1 AlI45240, and R01 2A133144. The
hla.demo data is kindly provided by Gregory A. Poland, M.D. and the Mayo Vaccine Research
Group for illustration only, and may not be used for publication.

48

Appendix

A Counting Haplotype Pairs When Marker Phenotypes Have Miss-
ing Alleles

The following describes the process for counting the number of haplotype pairs that are consistent
with a subject’s observed marker phenotypes, allowing for some loci with missing data. Note that
we refer to marker phenotypes, but our algorithm is oriented towards typical markers that have a
one-to-one correspondence with their genotypes. We first describe how to count when none of the
loci have missing alleles, and then generalize to allow loci to have either one or two missing alleles.
When there are no missing alleles, note that homozygous loci are not ambiguous with respect
to the underlying haplotypes, because at these loci the underlying haplotypes will not differ if we
interchange alleles between haplotypes. In contrast, heterozygous loci are ambiguous, because we do
not know the haplotype origin of the distinguishable alleles (i.e., unknown linkage phase). However,
if there is only one heterozygous locus, then it doesn’t matter if we interchange alleles, because the
pair of haplotypes will be the same. In this situation, if parental origin of alleles were known, then
interchanging alleles would switch parental origin of haplotypes, but not the composition of the
haplotypes. Hence, ambiguity arises only when there are at least two heterozygous loci. For each
heterozygous locus beyond the first one, the number of possible haplotypes increases by a factor of
2, because we interchange the two alleles at each heterozygous locus to create all possible pairs of
haplotypes. Hence, the number of possible haplotype pairs can be expressed as 2*, where x = H—1,
if H (the number of heterozygous loci) is at least 2, otherwise z = 0.

Now consider a locus with missing alleles. The possible alleles at a given locus are considered
to be those that are actually observed in the data. Let a; denote the number of distinguishable
alleles at the locus. To count the number of underlying haplotypes that are consistent with the
observed and missing marker data, we need to enumerate all possible genotypes for the loci with
missing data, and consider whether the imputed genotypes are heterozygous or homozygous.

To develop our method, first consider how to count the number of genotypes at a locus, say the
it" locus, when either one or two alleles are missing. This locus could have either a homozygous
or heterozygous genotype, and both possibilities must be considered for our counting method. If
the locus is considered as homozygous, and there is one allele missing, then there is only one pos-
sible genotype; if there are two alleles missing, then there are a; possible genotypes. A function
to perform this counting for homozygous loci is denoted f(a;). If the locus is considered as het-
erozygous, and there is one allele missing, then there are a; — 1 possible genotypes; if there are two
alleles missing, then there are % possible genotypes. A function to perform this counting for
heterozygous loci is denoted g(a;) These functions and counts are summarized in Table A.1.

Table A.1: Factors for when a locus having missing allele(s) is counted as homozygous(f()) or
heterozygous(g())

49

Number of | Homozygous | Heterozygous
missing alleles | function f(a;) | function g(a;)
1 1 a; — 1
9 a; ai(aé-—l)

Now, to use these genotype counting functions to determine the number of possible haplotype
pairs, first consider a simple case where only one locus, say the it" locus, has two missing alleles.
Suppose that the phenotype has H heterozygous loci (H is the count of heterozygous loci among
those without missing data). We consider whether the locus with missing data is either homozygous
or heterozygous, to give the count of possible haplotype pairs as

ai(ai — 1)
2

where again x = H — 1 if H is at least 2, otherwise x = 0. This special case can be represented by
our more general genotype counting functions as

a;2% + { PARE (1)

fai) 2 4 g(a;) 27 (2)

When multiple loci have missing data, we need to sum over all possible combinations of het-
erozygous and homozygous genotypes for the incomplete loci. The rows of Table A.2 below present
these combinations for up to m = 3 loci with missing data. Note that as the number of heterozy-
gous loci increases (across the columns of Table A.2), so too does the exponent of 2. To calculate
the total number of pairs of haplotypes, given observed and possibly missing genotypes, we need to
sum the terms in Table A.2 across the appropriate row. For example, with m = 3, there are eight
terms to sum over. The general formulation for this counting method can be expressed as

Total Pairs = Z Z C(combo, j) (3)

7=0 combo

where combo is a particular pattern of heterozygous and homozygous loci among the loci with
missing values (e.g., for m = 3, one combination is the first locus heterozygous and the 2" and 3"
third as homozygous), and C(combo, j) is the corresponding count for this pattern when there are
i loci that are heterozygous (e.g., for m = 3 and j =1 , as illustrated in Table A.2).

Table A.2: Genotype counting terms when m loci have missing

alleles, grouped by number of heterozygous loci (out of m)

20

’mH j:Oofm‘]zlofm‘ j:20fm‘ j:3ofm‘
0 2%
1 fla1)2® g(ar)2"*!
2 fla1)f(a2)2” g(a1) f(az)2°+ g(a1)g(az)2"
fla1)g(az)2"*!
3| flar)f(az)f(a3)2” | g(a1)f(az)f(az)2"%" | g(a1)g(az)f(a3)2"* | g(a1)g(az)g(az)2*H*
fla1)g(az) f(az)2*t | g(ar)f(az)g(az)2"+?
fla1) f(ag)g(az)2*t! | f(a1)g(az)g(az)2”+?

References

[1] Besag J, Clifford P (1991) Sequential Monte Carlo p-Values. Biometrika 78:301-304.

[2] Cheng R, Ma JZ, Wright FA, Lin S, Gau X, Wang D, Elston RC, Li MD. (2003) Nonparametric
disequilibrium mapping of functional sites using haplotypes of multiple tightly linked single-
nucleotide polymorphism markers. Genetics 164:1175-1187.

[3] Cheng R, Ma JZ, Elston RC, Li MD. (2005) Fine Mapping Functional Sites or Regions from
Case-Control Data Using Haplotypes of Multiple Linked SNPs. Annals of Human Genetics 69:
102-112.

[4] Clayton, David. Personal web page, software list. April 1, 2004.
<http://www-gene.cimr.cam.ac.uk/clayton/software/>.

[5] Epstein MP, Satten GA (2003) Inference on haplotype effects in case-control studies using
unphased genotype data. Am J Hum Genet 73: 1316-13209.

[6] Harrell, FE. Regression Modeling Strategies, Springer-Verlag, NY, 2001.

[7] Lake S, Lyon H, Silverman E, Weiss S, Laird N, Schaid D (2003) Estimation and tests of
haplotype-environment interaction when linkage phase is ambiguous. Human Heredity 55:56-65.

[8] Lin DY, Zeng D (2006) Likelihood-based inference on haplotype effects in genetic association
studies. J Am Stat Assoc Vol 101, No. 473.

[9] Mantel N, Haenszel W. (1959) Statistical aspects of the analysis of data from retrospective
studies of disease. J Nat Cancer Inst 22:719-48.

[10] Schaid DJ, Rowland CM, Tines DE, Jacobson RM, Poland GA (2002) Score tests for as-
sociation between traits and haplotypes when linkage phase is ambiguous. Am J Hum Genet
70:425-34.

o1

[11] Stram D, Pearce C, Bretsky P, Freedman M, Hirschhorn J, Altshuler D, Kolonel L, Henderson
B, Thomas D (2003) Modeling and E-M estimation of haplotype-specific relative risks from
genotype data for case-control study of unrelated individuals. Hum Hered 55:179-190.

[12] Xie R, Stram DO (2005) Asymptotic equivalence between two score tests for haplotype-specific
risk in general linear models. Gen Epi 29:166-170.

[13] Yu Z, Schaid DJ. (2007) Sequential haplotype scan methods for association analysis. To appear
in Gen Epi.

[14] Zaykin DV, Westfall PH, Young SS, Karnoub MA, Wagner MJ, Ehm MG (2002) Testing
Association of Statistically Inferred Haplotypes with Discreet and Continuous Traits in Samples
of Unrelated Individuals. Human Heredity 53:79-91.

02

