
AN INTRODUCTION TO RGGOBI

An introduction to rggobi
Hadley Wickham, Michael Lawrence,
Duncan Temple Lang, Deborah F Swayne

Introduction

The rggobi package provides a command-line inter-
face to GGobi, an interactive and dynamic graph-
ics package. Rggobi complements GGobi’s graphi-
cal user interface, providing a way to fluidly transi-
tion between analysis and exploration, as well as au-
tomating common tasks. It builds on the first version
of rggobi to provide a more robust and user friendly
interface. In this article, we will show you how you
can starting using rggobi now, and learn some ways
to gain insight into your data using a combination of
analysis and visualisation.

We do assume some familiarity with GGobi. If
you’re not familiar, but would like to learn more
have a look at the GGobi web site, http://www.
ggobi.org, especially the demos of GGobi’s capa-
bilities found at http://www.ggobi.org/docs. You
will also need to have a copy of GGobi installed be-
fore continuing: download a version for your plat-
form from http://www.ggobi.org/downloads. You
can then install rggobi and it’s dependencies using
install.packages("rggobi", dep=T).

This article introduces the three main compo-
nents of rggobi, with examples of how you might use
them in day-to-day tasks:

• Getting data into and out of GGobi.

• Modifying observation-level attributes, or au-
tomatic brushing.

• Basic plot control.

We will also disucess some advanced techniques
such as creating animations with GGobi, edges and
longitudinal data. Finally, a case study shows how
to use rggobi to create a visualisation for a statistical
algorithm: manova.

Data

Getting data from R into GGobi is easy:
g <- ggobi(mtcars). This creates a GGobi object
called g. Getting data out isn’t much harder, just
index that GGobi object by position, g[[1]], or
by name, g[["mtcars"]], g$mtcars. These return
GGobiData objects which are linked to the data in
GGobi. These act just like regular data frames, except
that changes are synchronised with GGobi. You can
get a static copy of the data using as.data.frame.

Once you have your data in GGobi, it’s easy to do
something that was hard before: finding multivariate

outliers. It is customary to look at uni- or bivariate
plots to look for uni- or bivariate outliers, but higher
dimensional outliers may go unnoticed. Looking for
these outliers is easy to do with the tour. Open your
data with GGobi and then change to the tour view
and select all the variables. Watch the tour and look
for points that are far away or move differently from
the others—these are outliers.

Adding more data sets to an open GGobi is also
easy: g$mtcars2 <- mtcars will add another data
set named “mtcars2”. You can load any file type
that GGobi recognises by passing the path to that file.
In conjunction with ggobi_find_file, which locates
files in the GGobi installation directory, this makes it
easy to load GGobi sample data. This example loads
the olives data set included with GGobi.

ggobi(ggobi_find_file("data", "olives.csv"))

Modifying observation-level
attributes, or automatic brushing

Brushing lets you interactively change the colour,
glyph type and size of points. Brushing is linked,
which means that these changes will propagate to
every plot in which the brushed observations are dis-
played. Brushing includes shadowing, where points
sit in the background and have less visual impact,
and exclusion, where points are completed excluded
from the plot. You can brush points “automatically”,
from R, using the following functions to:

• change glyph colour with glyph_colour

• change glyph size with glyph_size

• change glyph type with glyph_type

• shadow and unshadow points with shadowed

• exclude and include points with excluded

Each of these get or set the current values for
the specified GGobiData. The getters are useful for
retrieving information that you have created while
brushing in GGobi, and the setters can be used to
change the appearance of points based on model in-
formation, or to create animations. They can also be
used to store, and then later recreate, the results of a
complicated sequence of brushing steps.

This example demonstrates the use of the
glyph_colour to show the results of clustering the
infamous Iris data using hierachical clustering. Us-
ing GGobi allows us to investigate the clustering in
the original dimensions of the data. The graphic
shows a single projection from the grand tour.

1

http://www.ggobi.org
http://www.ggobi.org
http://www.ggobi.org/docs
http://www.ggobi.org/downloads

DISPLAYS AN INTRODUCTION TO RGGOBI

g <- ggobi(iris)
clustering <- hclust(dist(iris[,1:4]),
method="average")

glyph_colour(g[1]) <- cuttree(clustering, 3)

Another function, selected, returns a logical vec-
tor indicating if each point is currently under the
brush. This could be used to further explore inter-
esting or unusual points.

Displays

A GGobiDisplay represents a window containing
one or more related plots. With rggobi you can cre-
ate new displays, change the interaction or projection
mode of an existing plot, or change which variables
are displayed.

To retrieve a list of displays, use the displays
function. To create a new display use the display
method on a GGobiData object. You’ll need to specify
the type of plot you want (the default is a XY Plot)
and which variables to include. For example:

g <- ggobi(mtcars)
display(g[1], vars=list(X=4, Y=5))
display(g[1], vars=list(X="drat", Y="hp"))
display(g[1], "Parallel Coordinates Display")
display(g[1], "2D Tour")

The following types of displays are available in
GGobi:

Name Variables
1D Plot 1 X
XY Plot 1 X, 1 Y
1D Tour n X
Rotation 1 X, 1 Y, 1 Z
2D Tour n X
2x1D Tour n X, n Y
Scatterplot Matrix n X
Parallel Coordinates Display n X
Time Series 1 X, n Y
Barchart 1 X

After creating a plot you can get and set the dis-
played variables using the variable and variable<-
methods. Because of the range of plot types in

GGobi, variables should be specified as a list contain-
ing X, Y and Z character vectors listing the variable or
variables to be used for each component.

g <- ggobi(mtcars)
d <- display(g[1],
"Parallel Coordinates Display")

variables(d)
variables(d) <- list(X=8:6)
variables(d) <- list(X=8:1)
variables(d)

Another useful function is ggobi_display_save_picture,
which saves the contents of a GGobi display to a
file on disk. This is what we used to create the im-
ages in this document. This creates an exact (raster)
copy of the GGobi display. If you want to create
publication quality graphics from GGobi, have a
look at the DescribeDisplay plugin and package at
http://www.ggobi.org/describe-display. These
create R versions of your GGobi plots.

Animation

Any changes that you make to the GGobiData objects
are updated in GGobi immediately, so you can eas-
ily create animations. This example scrolls through a
long time series:

df <- data.frame(
x=1:2000,
y=sin(1:2000 * pi/20) + runif(2000, max=0.5)

)
g <- ggobi_longitudinal(df[1:100,])

df_g <- g[1]
for(i in 1:1901) {
df_g[, 2] <- df[i:(i + 99), 2]

}

Edge data

Edge data sets are a special type of dataset. Instead
of representing points, they represent connections, or
edges, between observations. These can be used to
represent many different types of data, for example,
distances between observations, social relationships,
biological pathways, and so on.

2

http://www.ggobi.org/describe-display

CASE STUDY AN INTRODUCTION TO RGGOBI

In this example we are going to visualise some
data from the social network analysis package: mar-
ital and business relationships between Florentine
families in the 15th century.

library(graph)
library(SNAData)

data(business, marital, florentineAttrs)

g <- ggobi(florentineAttrs)
edges(g) <- business
edges(g) <- marital

This example creates two edge datasets. We can
use the edges menu in GGobi to change between the
different edge sets.

How is this stored in GGobi? An edge dataset
records the names of the source and destination ob-
servations for each edge. You can convert a regular
dataset into a edge dataset with the edges function.
This takes a matrix with two columns, source and
destination names, with a row for each edge obser-
vation. Typically, you will need to add a new data
frame with number of rows equal to the number of
edges you want to add

Longitudinal data

A special case of data with edges is time series or
longitudinal data, in which observations adjacent in
time are connected with a line. Rggobi provides a
convenient function for creating edge sets for longi-
tudinal data, ggobi_longitudinal. This will link to-
gether observations in sequential time order and is
good for looking at time series or longitudinal data.

This example uses the stormtracks data in-
cluded in rggobi. The first argument gives the
dataset to use, the second the variable that specifies
the time component, and the third variable separates
different observations.

ggobi_longitudinal(stormtracks, seasday, id)

For regular time series data (already in
order, with no grouping variables), just use
ggobi_longitudinal with no other arguments.

Case study

Graphical methods are great for determining if two
(or more) clusters of data are non-overlapping, but
they are less useful for examining differences be-
tween means. This case study explores using rggobi
to add model information to data; here will add con-
fidence ellipsoids around the means so we can per-
form a graphical manova.

The first (and most complicated) step is to gener-
ate the confidence ellipsoids. The ellipse function
does this. First we generate random points on the
surface of sphere, by drawing npoints from a random
normal distribution and then standardising each di-
mension. This sphere is then skewed to match the
desired variance-covariance matrix, and its size ad-
justed to give the appropriate cl-level confidence el-
lipsoid. Finally, the ellipsoid is translated to match
the column locations.

ellipse <- function(data, npoints=1000,
cl=0.95, mean=colMeans(data), cov=var(data),
n=nrow(data)

) {
norm.vec <- function(x) x / sqrt(sum(x^2))

p <- length(mean)
ev <- eigen(cov)

sphere <- matrix(rnorm(npoints*p), ncol=p)
cntr <- t(apply(sphere, 1, norm.vec))

cntr <- cntr %*%
diag(sqrt(ev$values))
%*% t(ev$vectors)

cntr <- cntr * sqrt(p * (n-1) *
qf(cl, p, n-p) / (n * (n-p)))

if (!missing(data))
colnames(cntr) <- colnames(data)

cntr + rep(mean, each=npoints)
}

We can look at the output with ggobi:

ggobi(ellipse(mean=c(0,0), cov=diag(2), n=100))

3

CONCLUSION AN INTRODUCTION TO RGGOBI

cv <- matrix(c(1,0.15,0.25,1), ncol=2)
ggobi(ellipse(
mean=c(1,2), cov=cv, n=100

))

ggobi(ellipse(
mean=c(0,0,1,2), cov=diag(4), n=100

))

ggobi(ellipse(
matrix(rnorm(20), ncol=2

))

In the next step, we will need to take the original
data and supplement it with the generated ellipsoid:

manovaci <- function(data, cl=0.95) {
dm <- data.matrix(data)
ellipse <- as.data.frame(
ellipse(dm, n=1000, cl=cl)

)

both <- rbind(data, ellipse)
both$SIM <- factor(
rep(c(FALSE, TRUE), c(nrow(data), 1000))

)

both
}
ggobi(manovaci(matrix(rnorm(30), ncol=3)))

Finally, we create a method that will break a
dataset into pieces based on a categorical variable
and compute the mean confidence ellipsoid for each
one. We will then use the automatic brushing func-
tions to make the ellipsoid distinct, and colour each
of the groups a different colour. Here we use 68%
confidence ellipsoids so that non-overlapping ellip-
soids imply a significant different in the means.

ggobi_manova <- function(data, catvar, cl=0.68) {
each <- split(data, catvar)

cis <- lapply(each, manovaci, cl=cl)

df <- as.data.frame(do.call(rbind, cis))
df$var <- factor(rep(
names(cis), sapply(cis, nrow)

))

g <- ggobi(df)
glyph_type(g[1]) <- c(6,1)[df$SIM]
glyph_colour(g[1]) <- df$var
invisible(g)

}

These images show a graphical manova. You can
see that in some projections the means overlap, but
in others they do not.

Conclusion

GGobi is a powerful tool for data exploration, and
the integration with R that rggobi allows a seamless
workflow between analysis and exploration. Much
of the potential of rggobi has yet to be explored, but
some ideas are demonstrated in the classifly pack-
age, http://had.co.nz/classifly which visualises
high-dimensional classification boundaries. We are
also keen to hear about your work—if you develop
a package using rggobi please let us know so we can
highlight your work on the GGobi homepage.

We are currently working on the infrastructure
behind GGobi and rggobi to allow greater control
from within R. The next version of rggobi will offer a
direct low-level binding to every function in GGobi,
giving total control. We are also working on con-
sistently generating events in Ggobi so that you will
be able respond to events that you are interesting in
from your R code. Together with the RGtk2 package,
this should allow the development of custom inter-
active graphics for specific tasks, written purely with
high-level R code.

4

http://had.co.nz/classifly

	An introduction to rggobi
	Introduction
	Data
	Modifying observation-level attributes, or automatic brushing
	Displays
	Animation
	Edge data
	Longitudinal data

	Case study
	Conclusion

