
Using Random Variables to Manipulate and Summarize

Simulations in R

Jouni Kerman
jouni@kerman.com

Andrew Gelman
Department of Statistics

Columbia University
gelman@stat.columbia.edu

July 4, 2007

Abstract

A fully Bayesian computing environment calls for the
possibility of defining vector and array objects that
may contain both random and deterministic quanti-
ties, and syntax rules that allow treating these objects
much like any variables or numeric arrays. Working
within the statistical package R, we introduce a new
object-oriented framework based on a new random
variable data type that is implicitly represented by
simulations.

We seek to be able to manipulate random vari-
ables and posterior simulation objects conveniently
and transparently and provide a basis for further de-
velopment of methods and functions that can access
these objects directly. This new environment is fully
Bayesian in that the posterior simulations can be han-
dled directly as random variables.

Keywords: Bayesian inference, object-oriented pro-
gramming, posterior simulation, random variable ob-
jects

1 Introduction

In practical Bayesian data analysis, inferences are
drawn from an L × k matrix of simulations repre-
senting L draws from the posterior distribution of a
vector of k parameters. This matrix is typically ob-
tained by a computer program implementing a Gibbs
sampling scheme or other Markov chain Monte Carlo
(MCMC) process. Once the matrix of simulations
from the posterior density of the parameters is avail-
able, we may use it to draw inferences about any
function of the parameters.

In the Bayesian paradigm, any quantity is mod-

eled as random; observed values (constants) are but
realizations of random variables, or are random vari-
ables that are almost everywhere constant. In this pa-
per, we demonstrate how an interactive programming
environment that has a random variable (and random
array) data type makes programming for Bayesian
data analysis considerably more intuitive. Manip-
ulating simulation matrices and generating random
variables for predictions is of course possible using
software that is already available. However, an intu-
itive programming environment makes problems eas-
ier to express in program code and hence also easier
to debug.

Our implementation integrates seamlessly into the
R programming environment and is transparent in
the sense that functions that accept numerical argu-
ments will also accept random arguments. There are
also no new syntax rules to be learned.

1.1 Our programming environment

Convenient practice of Bayesian data analysis requires
a programmable computing environment, which, be-
sides being able to write a program to draw the poste-
rior simulations, allows for random variate generation
and easy manipulation of simulations.

Finding posterior simulations is an essential part
of any Bayesian programming environment, but in
this paper we concentrate in the post-processing phase
of Bayesian data analysis, and in our examples we as-
sume that we have access to an application that draws
posterior simulations. Such programs include MCM-
CPack (Martin and Quinn, 2004), JAGS (Plummer,
2004), OpenBUGS (Thomas and O’Hara, 2004).

Once the simulations have been obtained, we post-
process them using R (R Development Core Team,

1

2004). The combination of BUGS and R has proven
to be a powerful combination for Bayesian data anal-
ysis. R is an interactive, fully programmable, object-
oriented computing environment originally intended
for data analysis. R is especially convenient in vector
and matrix manipulation, random variable genera-
tion, graphics, and common programming.

R was not developed with Bayesian statisticians in
mind, but fortunately it is flexible enough to be mod-
ified to our liking. In R, the data are stored in vector
format, that is, in variables that may contain sev-
eral components. These vectors, if of suitable length,
may then have their dimension attributes set to make
them appear as matrices and arrays. The vectors may
contain numbers (numerical constants) and symbols
such as Inf (∞) and the missing value indicator NA.
Alternatively, vectors can contain character strings
or logical values (TRUE, FALSE). Our implementation
extends the definition of a vector or array in R, allow-
ing any component of a numeric array to be replaced
by an object that contains a number of simulations
from some distribution.

1.2 A simple example

We illustrate the “naturalness” of our framework with
a simple example of regression prediction. Suppose
we have a class with 15 students of which all have
taken the midterm exam but only 10 have taken the
final. We shall fit a linear regression model to the ten
students with complete data, predicting final exam
scores y from midterm exam scores x,

yi|β1, β2, xi, σ ∼ N(β1 + β2xi, σ2)

and then use this model to predict the final exam
scores of the other five students. We use a noninfor-
mative prior on (β, log(σ)), or (β, σ) ∝ 1/σ2.

The posterior predictive distribution of y is ob-
tained by simulating β = (β1, β2) and σ from their
joint posterior distribution and then generating the
missing elements of y from the normal distribution
above. Assume that we have obtained the classical
estimates (β̂, σ̂) along with the unscaled covariance
matrix Vβ using the standard linear fit function lm()
in R. The posterior distribution of σ is then

σ|x, y ∼ σ̂ ·
√

(n− 2)/z, where z ∼ χ2(n− k).

Using our random variable package for R, this math-
ematical formula translates to the statement,

sigma <- sigma.hat*sqrt((n-2)/rvchisq(df=n-2))

> y.pred
name mean sd Min 2.5% 25% 50% 75% 97.5% Max

[1] Alice 59.0 27.3 (-28.66 1.66 42.9 59.1 75.6 114 163)
[2] Bob 57.0 29.2 (-74.14 -1.98 38.3 58.2 75.9 110 202)
[3] Cecil 62.6 24.1 (-27.10 13.25 48.0 63.4 76.3 112 190)
[4] Dave 71.7 18.7 (2.88 34.32 60.6 71.1 82.9 108 182)
[5] Ellen 75.0 17.5 (4.12 38.42 64.1 75.3 86.2 108 162)

Figure 1: Quick summary of the posterior predictive dis-
tribution of y is obtained by typing the name of the vector
(y.pred) on the console.

which is remarkably similar to the corresponding math-
ematical notation. The posterior distribution of β is
β|σ, x, y ∼ N

(
β̂, Vβσ2|x, y, σ2

)
, simulated by

beta <- rvnorm(mean=beta.hat, var=V.beta*sigma^2)

The predictions for the missing y values are obtained
by

y.pred <- rvnorm(mean=beta[1]+beta[2]*x[is.na(y)], sd=sigma)

and quickly summarized by typing the name of the
variable on the console. This is shown in Figure 1.

We now can impute the predicted values. Our
object-oriented framework allows us to combine con-
stants with random variables to produce a “mixed”
vector: y[is.na(y)] <- y.pred replaces the miss-
ing values (indicated by the symbol NA) by the pre-
dicted values, which are implicitly represented by sim-
ulations. The predictions can be plotted along with
the observed (x, y) pairs using the command plot(x,
y) which shows the determinate values as points, and
the random values as intervals.

Any function of the random variables is obtained
as easily as a function of constants. For example, the
distribution of the mean score of the class is mean(y),

> mean(y)
mean sd Min 2.5% 25% 50% 75% 97.5% Max

[1] 70.9 5.22 (50.7 60.5 67.9 70.8 74 80.9 98.5)

which is the mean of ten constants and five random
variables. The probability that the average is more
than 80 points is given by Pr(mean(y)>80) which
comes to 0.04 in this set of simulations.

1.3 Motivation

The motivation for a new programming environment
has grown from our practical needs. Suppose, for ex-
ample, that we have obtained posterior simulations
for the coefficients β = (β1, . . . , βk) of a large regres-
sion model y ∼ N(Xβ, σ2). The posterior simulations
are then (typically) stored in an L × k -dimensional

2

m00M0M

0

2020M20M

20

4040M40M

40

6060M60M

60

8080M80M

80

100100M100M

100

m00M0M

0

2020M20M

20

4040M40M

40

6060M60M

60

8080M80M

80

100100M100M

10
0

xMxM

x

Intervals for predicted examination scoresMIntervals for predicted examination scoresM

Intervals for predicted examination scores

Predictions for the y values

y.pred <- rvnorm(

mean=beta[1]+beta[2]*x

sd=sigma)

Imputing the missing values

y[is.na(y)] <- y.pred[is.na(y)]

plot(x,y)

Figure 2: Predicting the final examination scores: un-
certainty intervals of the five predicted final exam scores.
The 50% intervals are shown as solid vertical lines and
the 95% intervals as dotted vertical lines. The observed
values are shown as circles.

matrix beta with L simulations per parameter. Our
wish list for a “fully Bayesian” programming lan-
guage includes the following features:

Hiding unnecessary details. Once we have ob-
tained posterior simulations for the quantities of in-
terest, we wish to concentrate on the essential and
not to think about such details as which dimension
of the matrix beta contains the simulations for some
βj . Suppose we want to work with a rotated vector

γ = Rβ where R =
(

1/
√

2 1/
√

2
1/
√

2 −1
√

2

)
. We can then

simply write gamma <- R %*% beta and not

gamma <- array(NA,c(L,length(beta[1,])))
for (i in 1:L) {

gamma[i] <- R %*% beta[i,]
}

For another example, to compute the posterior
distribution of β1/β2, we wish to write
ratio <- beta[1]/beta[2] and not
ratio <- beta[,1]/beta[,2].1

1ratio <- beta[,1]/beta[,2] with output equivalent to
for (i in 1:L) ratio[i] <- beta[i,1]/beta[i,2] where

Intuitive programming. To draw inferences from
the posterior distribution, we wish that our program
code be as close to mathematical notation as possible.
Ideally, we should be able to express the statement
y = Xβ as y <- X %*% beta in the same way we
express matrix multiplication for numeric vectors.

To implement this for a random (or constant) ma-
trix X and random vector β in “traditional” program
code would require at least one loop. While writ-
ing loops and other typical programming structures
are certainly not difficult things to do, nevertheless
it takes our mind away from the essence of our work:
Bayesian data analysis, or more specifically, computa-
tion of posterior inferences and predictions. We also
believe that any program code that does not resemble
mathematical notation is but an attempt to emulate
such notation. For instance, draws from the posterior
predictive distribution ypred|X , β, σ, y ∼ N(Xβ, σ2 | y)
should be accessible using a statement that resembles
the mathematical expression as much as possible:

y.pred <- rvnorm(mean=X %*% beta, sd=sigma)

This statement, which features random arguments,
generates a normally distributed (column) vector of
length equal to the length of Xβ.

Transparency. In a fully Bayesian computing en-
vironment, program code should not be dependent on
the nature of the parameters: the same code should
apply to both random variables and constants. For
example, p <- invlogit(X %*% beta) (where
invlogit is the inverse logit function 1/(1+exp(-x)))
works for constant beta vectors and compatible ma-
trices X, but ideally it should also work if beta is a
mixed vector of random variables and constants. If
any of the arguments are random, the result should
be the distribution of p.

In R, many functions adapt automatically to the
length of the argument n: if x = (x1, . . . , xn) is a
vector of length n, then such a “vectorized” function
f returns (f(x1), . . . , f(xn)) of length n. Combined
with this convenient feature, it is possible to write
code that does not depend on the length of vectors
and that does not depend on the nature of arguments.

Faster development and debugging cycle. Short,
compact expressions are more readable and easier to
understand than traditional code with looping struc-
tures and awkward matrix indexing notation. Such
code is less prone to contain typographical errors and
other mistakes.
ratio will then contain the componentwise ratio of the sim-
ulations, that is, the distribution of the ratio of β1 and β2.

3

2 The implementation

Our implementation of the ideal Bayesian program-
ming environment is based on putting all numerical
quantities on a conceptually equal level: any numeri-
cal vector component is either a random variable or is
missing. Missing values are represented by the special
value NA. We refer to this new data type as random
variable and instances of random variables as ran-
dom variable objects or simply as random variables,
vectors, or arrays.

A random variable is internally represented by
simulations, that is, random draws from its distri-
bution. Typically these are obtained either from an
MCMC process or generated using built-in random
number generators. For compatibility, pure constants
are allowed in any component of a random vector.

A random variable x = x1 is represented inter-
nally by a numerical column vector of L simulations:

x1 = (x(1)
1 , x

(2)
1 , · · · , x

(L)
1)T

The number of simulations L is user-definable, typi-
cally to a value such as 200 or 1,000 (Gelman et al.,
2003, pp. 277–278). We refer to x1 as a vector of
simulations; this is not usually visible to the user, al-
though it is possible to retrieve the simulations and
manipulate them directly. The user only sees a ran-
dom variable x[1]: the index [1] is the subscript 1
in x1.

Let n be a fixed number. A random vector x =
(x1, . . . , xn) being by definition an n-tuple of random
variables, is represented internally by n vectors of
simulations. Conceptually, these n column vectors
form an L× n matrix of simulations

M =


x

(1)
1 x

(1)
2 · · · x

(1)
n

x
(2)
1 x

(2)
2 · · · x

(2)
n

x
(3)
1 x

(3)
2 · · · x

(3)
n

...
...

. . .
...

x
(L)
1 x

(L)
2 · · · x

(L)
n


Each row x(`) of the matrix M is a random draw
from the joint distribution of x. The components
of x(`) may be dependent or independent. In our
implementation, each column j of the matrix is stored
separately in the slot allocated for random variable
xj .

In general, we may allow random vectors to have
random length. For example, suppose that n is a

Poisson-distributed random variable. Then n is in-
ternally represented by the vector of L simulations
(n(1), n(2), · · · , n(L))T . A random vector xn of ran-
dom length n is then represented by a ragged array
(a list) consisting of rows x(`) where row ` has length
n(`). This array is stored as N = max`{n(`)} column
vectors of length L. The missing values are repre-
sented by NA: x

(`)
j equals NA if j > n(`). In particular,

if n(`) = 0, all components in row i are NAs.
Each vector x(`) = (x(`)

1 , . . . , x
(`)
n) may be thought

of as the beginning of an infinitely long vector with
the rest of the vector “missing.” The missing part of
the vector will then consist of all NAs, but the tail of
the vector is of course not stored in memory.

2.1 Vector operations

A function f : Rn 7→ Rk taking a random vector x
as its argument yields a new random vector of length
k; f(x) is thus equivalent to the L × k matrix of
simulations consisting of rows f(x(`)), ` ∈ {1, . . . , L}.
where x(`) is the `th row of the matrix of simulations
of x.

For example, the summation function “+” taking
two arguments, say x1, x2, will in effect yield a ran-
dom variable represented by a matrix of simulations
with each row ` equal to x

(`)
1 +x

(`)
2 . In our implemen-

tation, given that the random vector x is defined, this
summation can be performed using the natural state-
ment y <- x[1] + x[2].

If x.sim is the corresponding matrix of simula-
tions, this code is then equivalent to y <- x.sim[,1]
+ x.sim[,2]. This statement adds two vectors of
length L componentwise; this produces the same out-
put as the loop

y <- array(NA,L)
for (i in 1:L)
y[i] <- x.sim[i,1] + x.sim[i,2]

Besides the basic arithmetic operators, also the
elementary functions such as exp(), log(), sin(),
cos(), etc. have been adapted to accept random vec-
tors. For example, if x is a random vector of length
n, then exp(x) returns a random vector of length n
consisting of components exp(x[i]) for i = 1, . . . , n,
corresponding to a L× n matrix of simulations.

Logical operations such as <, ≤, produce indica-
tors of events. For example, x>y yields an indicator
random variable of {x > y}. We may naturally ap-
ply functions involving indicators and other random

4

variables: (x-y) * (x>y) yields a random variable
with the distribution of (x− y) · 1{x>y} ≡ (x− y)+.

2.2 Matrix and array operations

A random matrix is implemented as a random vector
possessing a dimension attribute. This corresponds
to the way matrices are implemented in R. To multi-
ply two (compatible) random matrices, say X and Y ,
one can simply write Z <- X %*% Y which in effect is
equivalent to the code

Z <- array(NA,c(L,k,m))
for (i in 1:L)

Z[i,,] <- X[i,,] %*% Y[i,,]

where k is the number of rows in X and m is the num-
ber of columns in Y.

It is possible to define any matrix function to work
with random variables. For example det(M) returns
the distribution of the determinant of the matrix M.

The user can be oblivious to the way the simula-
tions are manipulated “behind the scenes.” Usually
there is no need to access the matrices of simulations;
most of the functions that work with numerical arrays
also work with random arrays.

2.3 Random variate generation

In practice, we often need to generate random vari-
ates to generate simulations. In R, this is typically
done using built-in functions. A single n-dimensional
draw of independent standard normal random vari-
ates is generated by the statement
z <- rnorm(n,mean=0,sd=1).

Our implementation features a number of func-
tions that return independently and indentically dis-
tributed (iid) simulations as random vector objects;
let us call such functions random variable-generating
functions. For example, to generate a n-dimensional
standard normal random vector object, the random
vector z generated by the statement

z <- rvnorm(n,mean=0,sd=1)

is internally represented by n column vectors of sim-
ulations (draws from N(0, 1)) of length L each. The
user sees z as an n-dimensional object. The matrix
of simulations is accessible via the method sims(z)
if needed.2

2as.matrix(z) would instead return the n× 1 random ma-
trix object z and not the simulations.

Consider another example. To simulate the distri-
bution of the random variable y =

∑n
i=1 zi1{zi>0}/n

we can write y <- mean(z*(z>0)) where mean re-
turns the distribution of the arithmetic average. This
code will also work with a numerical vector.

To compute marginal distributions of quantities
integrated over random parameters, we also need to
pass random arguments to random variable-generat-
ing functions. Take for example the random variable
z ∼ N(µ, σ2), where µ and σ are themselves ran-
dom variables. We wish to draw simulations from
the marginal density of z. two parameters. This is
obtained by drawing z(`) ∼ N

(
µ(`), (σ(`))2

)
where

(µ(`), σ(`)) are simulations from the joint density of
µ and σ. If mu and sigma are each random variables
(random scalars), then
z <- rvnorm(mean=mu, sd=sigma) will be a random
variable whose vector of simulations consists of com-
ponents with the distribution of z.

The parameters may also be of arbitrary length.
If mu and sigma are vectors of length k, then

z <- rvnorm(mean=mu,sd=sigma)

will generate a random vector of length k where the
jth component z[j] has mean mu[j] and standard
deviation sigma[j]. Thus the matrix of simulations
of z contains components z[j] distributed as z

(`)
j ∼

N
(
µ

(`)
j , (σ(`)

j)2
)

. If the lengths of the vectors do not
match, the shorter vector is “recycled” as necessary.
Typically mu has k different means, but σ is a scalar,
so zj ∼ N(µj , σ

2) for j = 1, . . . , k.

2.4 Numerical summaries

Once we have the desired distributions (that is, ran-
dom vectors or arrays), we need to summarize the
results. The distributions being represented by vec-
tors of simulations, the only thing we need to access is
the simulations. We have provided a method sims(x)
to access the matrix of simulations of a random vec-
tor object x; the user may summarize these any way
she or he likes. However, this is not the preferred
way of doing things in an object-oriented computing
environment. It is usually more productive to write
a function (method) that accesses the simulations of
the argument objects, and produces the desired re-
sults.

Our function simapply() applies a given function
to each column of the matrix of simulations of a ran-
dom vector, returning an array of numbers. For ex-
ample, to find the mean (expectation) of the random

5

variable x1, we need obtain the simulations x
(1)
1 , . . . , x

(L)
1

and compute
∑L

`=1 x
(`)
1 /L. This is accomplished by

simapply(x[1], mean) which is equivalent to
mean(sims(x[1])), the arithmetic mean of the sim-
ulations of the first component of the random vec-
tor x, x1. simapply(x, mean) applies the mean()
function to the simulation vectors of each component
x[1],...,x[n] and thus yields a numeric vector of
length n.

On the other hand, if x is a random vector, the
function mean(x) returns the average of the indi-
vidual random components x[1],...,x[n], that is,
sum(x)/length(x) which is a (one-dimensional) ran-
dom variable, internally represented by a vector of L
simulations from the distribution of

∑n
i=1 xi/n.

We can imagine mean(x) taking the rowwise mean
of the matrix of simulations sims(x) and simapply(x,
mean) taking the columnwise means of the individual
components. The former yields a column vector of
length L, that is, a random variable. The latter yields
a row vector of length n consisting of constants. In
the same fashion, var(x) gives the sample variance; if
any of the components of x is a random variable, the
result will be the a random variable with L random
draws from the distribution of the random variable∑n

i=1(xi− x̄)2/(n− 1), but simapply(x, var) gives
the n componentwise variances for the n-dimensional
vector x.

Several familiar functions taking numerical vec-
tors as arguments have been adapted to accept ran-
dom vector objects: for example, quantile() for
finding quantiles, sort() for creating distributions
of the order statistics, var() for the sample variance,
sd() for the sample standard deviation. Given ran-
dom variables as arguments, these functions return
always random variables. The argument can of course
be a mixed vector constants and random variables.

The most often used summaries can be viewed
most conveniently by entering the name of the ran-
dom vector on the console; the default printing method
returns the mean, standard deviation, minimum value,
maximum, median, and the 2.5% and 97.5% quan-
tiles. This output routine is customizable. See Figure
1.

2.5 Graphical summaries

We have provided some basic graphical summary meth-
ods that work on the random vector objects. plot(x)
draws a scatterplot with credible intervals drawn for
each random component of x. If all components are

constants, the command reduces to plot function.
rvhist(x) draws a grid of histograms of simulations,
each grid cell containing one histogram for each com-
ponent of x. Many other functions are being devel-
oped. Most functions can be adapted easily to accept
random variable objects as arguments.

2.6 Toward fully Bayesian computing

We believe that we have managed to lay the foun-
dation of an essential component in an ideal, fully
Bayesian computing environment. The next chal-
lenge is to integrate a Bayesian (probabilistic) mod-
eling language to R. Ideally, this language should be
part of the R syntax and not just a module that parses
BUGS-like models saved in a text file: this way of
programming introduces redundancy. We need to ex-
press our statistical model in a language that BUGS
understands, but also in R to draw replications and
predictions.

Since computation is an essential part of prac-
tical Bayesian data analysis, we wish that making
Bayesian programming easier will make Bayesian data
analysis methods more effective by routinely consid-
ering all uncertain quantities as random variables.

References

Andrew Gelman, John B. Carlin, Hal S. Stern, and
Donald B. Rubin. Bayesian Data Analysis. Chap-
man & Hall/CRC, London, 2nd edition, 2003.

Andrew D. Martin and Kevin M. Quinn. MCMCpack
0.5-2. http://mcmcpack.wustl.edu/, 2004.

Martyn Plummer. JAGS: Just Another Gibbs
Sampler. http://www-fis.iarc.fr/∼
martyn/software/jags/, 2004.

R Development Core Team. R: A language and en-
vironment for statistical computing. R Foundation
for Statistical Computing, Vienna, Austria, 2004.
URL http://www.R-project.org.

Andrew Thomas and Robert B. O’Hara. OpenBUGS.
http://mathstat.helsinki.fi/openbugs/,
2004.

6

