
MULTISCALE BOOTSTRAP USING SCALEBOOT PACKAGE

HIDETOSHI SHIMODAIRA

1. Introduction

scaleboot is an add-on package for R. It is for calculating approximately unbi-
ased (AU) p-values for a general problem from a set of multiscale bootstrap probabil-
ities (BPs). Scaling is equivalent to changing the sample size of a data in bootstrap
resampling. We compute BPs at several scales, from which a very accurate p-value
is calculated (Shimodaira 2002). This multiscale bootstrap method has been imple-
mented in CONSEL (Shimodaira and Hasegawa 2001) for phylogenetic inference and
as the R add-on package pvclust (Suzuki and Shimodaira 2006) for hierarchical
clustering. The point of the scaleboot package is to calculate an improved version
of the AU p-value that is justified even for hypotheses with nonsmooth boundaries
(Shimodaira 2006).

The basic usage of this package is illustrated in a simple example below. Then
real applications in hierarchical clustering and phylogenetic inference are shown
later.

2. Install

scaleboot is easily installed from CRAN online. Windows users can install the
package by choosing “scaleboot” from the pull-down menu. Otherwise, run R on
your computer and type
> install.packages("scaleboot")

You can also download the package file from the URL below and install it manually.
http://www.is.titech.ac.jp/~shimo/prog/scaleboot/

3. Simple Example

3.1. Simulation Data. We first generate a simulation data.
> simdata <- function(n, y, sd) {

+ m <- length(y)

+ x <- matrix(rnorm(m * n, 0, sd), m, n)

+ t(x + (y - apply(x, 1, mean)))

+ }

> X <- simdata(100, c(0, 1, 1, 1, 1, 1, 1, 1, 1, 1), 10)

> round(X[1:3, ], 3)

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
[1,] -6.558 0.925 0.312 10.095 2.894 3.519 -4.529 7.589 -6.712 -2.012
[2,] -0.638 0.573 -0.915 8.625 2.958 0.040 -2.599 5.552 -7.598 24.689
[3,] -5.917 7.251 3.721 8.961 -6.419 -4.051 -5.913 2.753 -10.037 4.057

> y <- apply(X, 2, mean)

> round(y, 3)

[1] 0 1 1 1 1 1 1 1 1 1
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The matrix X = (xij) above is of size n ×m with n = 100, m = 10. We consider
X as a data of sample size n, and rows xi = (xi1, . . . , xim), i = 1, . . . , n, are
observations of a random vector of m dimensions.

3.2. Null Hypothesis. Let µ be the unknown population mean of the row vectors.
An estimate of µ is the sample average of the rows defined as y = x̄ = 1

n

∑n
i=1 xi.

Let f(µ) be a 0/1-valued (or false/true valued) function of µ. The null hypothesis
we are going to test is represented as f(µ) = 1. For example, f(µ) = 1 if µ1 is the
largest among µ1, . . . , µm, and f(µ) = 0 otherwise. This f(µ) is implemented as
mc1(mu) below.
> mc1 <- function(x) all(x[1] >= x[-1])

> mc1(y)

[1] FALSE

Although f(y) = 0 gives a rough idea whether f(µ) = 1, we want to calculate a
real number ranging between 0 and 1 which indicates the possibility of f(µ) = 1.
This is what scaleboot calculates as p-values.

3.3. Bootstrap Probabilities. A naive way to calculate a p-value is by bootstrap
resampling. Let X∗ = (x∗ij) be a bootstrap sample of X; each row x∗i is obtained
by resampling with replacement from the rows x1, . . . , xn. Let n′ be the size of
the resampling so that X∗ is a matrix of size n′ ×m. The bootstrap replicate is
y∗ = x̄∗ = 1

n′

∑n′

i=1 x
∗
i . The following code generates an X∗ with n′ = n, and

calculates f(y∗). The resampling is made via a weight vector w; wi is the number
of times that xi is resampled in X∗.
> countw <- function(x, w, fn) {

+ y <- apply(w * x, 2, sum)/sum(w)

+ fn(y)

+ }

> w <- as.vector(rmultinom(1, 100, rep(1, 100)))

> w

[1] 2 2 2 0 1 1 2 0 2 1 2 0 1 0 2 1 0 1 0 0 0 2 0 1 1 0 1 0 0 0 1 1 1 2 0 1 1
[38] 2 1 0 1 1 1 0 2 1 1 1 0 0 1 1 0 2 1 0 2 1 1 1 3 1 0 2 1 3 0 0 0 0 1 1 2 1
[75] 1 0 1 1 3 1 2 1 2 0 2 2 1 0 1 4 1 1 0 1 1 1 2 1 1 1

> countw(X, w, mc1)

[1] FALSE

Let B be the number of bootstrap samples we will generate, and y∗1 , . . . , y
∗
B

be the bootstrap replicates. Typically, B = 10, 000. The BP is computed as∑B
i=1 f(y∗i )/B, where the ordinary BP uses n′ = n. Since first introduced by

Felsenstein (1985), it has been widely used as a p-value, but the bias is in fact
rather large.

3.4. P -value Calculation. scaleboot calculates corrected p-values for improving
BPs. First load the package by
> library(scaleboot)

Below, sa specifies the scales, and nb specifies B for each scale, so that 10, 000×
13 = 130, 000 bootstrap samples are generated internally. It takes a few minutes
on a pc.
> sa <- 9^seq(-1, 1, length = 13)

> nb <- 10000

> X.sb <- scaleboot(X, nb, sa, countw, mc1)

The result is shown by
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> summary(X.sb)

Raw Bootstrap Probability: 0.98 (0.10)

Corrected P-values (percent):
k.1 k.2 k.3 aic

poly.1 0.07 (0.00) 0.07 (0.00) 0.07 (0.00) 3666.22
poly.2 1.05 (0.05) 6.59 (0.35) 6.59 (0.35) 198.16
poly.3 1.21 (0.05) 15.03 (0.95) 18.37 (1.30) 17.23
sing.3 1.03 (0.04) 17.67 (0.74) 40.71 (1.47) -18.05

Best Model: sing.3

A class of AU p-values pk indexed by k = 1, 2, 3, are calculated, and they are
labelled as k.1, k.2, and k.3. The p-values are shown in percent, and the standard
errors are given in parentheses. We should look at the row of sing.3 as indicated
as the best model in terms of AIC, and we can ignore the other rows. p1 ≈ 1%
corresponds to the ordinary BP, and p2 ≈ 18% corresponds to the AU p-value of
Shimodaira (2002). What we recommend to use here is p3 ≈ 41%; this is the AU
p-value of Shimodaira (2006). For this particular example, the common practice
for calculating a p-value is to use the multiple comparisons method. If it is applied
to y, the p-value is p = 66%, which is rather close to p3 in our example, whereas p1

is obviously too small.

3.5. Internal Steps. We consider the following three steps (i)-(iii). Internally,
the scaleboot function (i) performs the multiscale bootstrap, and (ii) estimates
coefficients for candidate models. Then the summary method (iii) calculates the
corrected p-values. These steps are explained below.

The results of steps (i) and (ii) are shown here.
> X.sb

Multiscale Bootstrap Probabilities (percent):
1 2 3 4 5 6 7 8 9 10 11 12 13
0.00 0.01 0.05 0.14 0.33 0.66 0.98 1.55 2.16 2.61 3.39 3.92 4.61

Numbers of Bootstrap Replicates:
1 2 3 4 5 6 7 8 9 10 11 12 13
10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000

Scales (Sigma Squared):
1 2 3 4 5 6 7 8 9 10 11 12 13
0.1111 0.1603 0.2309 0.3333 0.4808 0.6944 1 1.449 2.083 3.03 4.348 6.25 9.091

Coefficients:
beta0 beta1 beta2

poly.1 3.2017 (0.0182)
poly.2 1.9077 (0.0217) 0.4004 (0.0069)
poly.3 1.6103 (0.0279) 0.6756 (0.0209) -0.0335 (0.0024)
sing.3 0.9280 (0.0287) 1.3860 (0.0203) 1.0000 (0.0000)

Model Fitting:
rss df pfit aic

poly.1 3690.22 12 0.0000 3666.22
poly.2 220.16 11 0.0000 198.16
poly.3 37.23 10 0.0001 17.23
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Figure 1. Model Fitting

sing.3 1.95 10 0.9967 -18.05

Best Model: sing.3

The results of (i) are the BPs for the 13 scales shown at first. Let ασ2 denote
the BP at scale σ2. Each BP is calculated from 10,000 bootstrap samples of size
n′ as the frequency of observing f(y∗) = 1. In scaleboot, n′ is round(n/sa[i]),
for i = 1, . . . , 13. Then, the scale is recalculated as σ2 = n/n′ for taking account of
the discreteness.

Step (ii) is performed by the sbfit function called internally from the scaleboot
function for fitting parametric models to observed ασ2 ’s. By default, four models
are considered as candidates; poly.1, poly.2, poly.3, and sing.3. Each of these
models is denoted as ψ(σ2|β). Let zσ2 = Φ−1(1 − ασ2) be the bootstrap z-value
at scale σ2, where Φ−1(p)=qnorm(p). We work on σzσ2(y), which may be called
a normalized bootstrap z-value. Considering σzσ2 as a function of σ2, the coeffi-
cient vector β is estimated by fitting σzσ2 = ψ(σ2|β). Let β̂ denote the estimated
value; the details of fitting β̂ are explained later. We may choose the model which
minimizes AIC value. The fitted curves are shown (Fig. 1) by plotting ψ(σ2|β̂) as

> plot(X.sb, legend = "topleft")

The same plot but in other variables can be shown (Fig. 2) by, for example,

> plot(X.sb, xval = "sigma", log = "x", yval = "pvalue", legend = "topleft")

poly.k model is specified as a polynomial of σ2; ψ(σ2|β) =
∑k−1

j=0 βjσ
2j for

k ≥ 1. sing.k model is specified as ψ(σ2|β) = β0 +
∑k−2

j=1 βjσ
2j/(1 + βk−1(σ − 1))
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Figure 2. Model Fitting (x = log σ, y = ασ2)

for k ≥ 3, where 0 ≤ βk−1 ≤ 1. The number k for each model denotes the number
of coefficients in β.

The details of model fitting are as follows. Let Bi and Ci be the number of
replicates and the observed number of times that f(y∗) = 1, respectively, for the
bootstrap resampling of scale σ2

i , i = 1, . . . , S. Since each Ci is binomially dis-
tributed, the log-likelihood is

`(β) =
S∑

i=1

{
Ci log Φ(−ψ(σ2

i |β)/σi) + (Bi − Ci) log Φ(ψ(σ2
i |β)/σi)

}
,

where Φ(q)=pnorm(q). The estimate β̂ is obtained by maximizing `(β) numerically.
The goodness of fit is measured by the difference of AIC values between the specified
model and an unconstrained binomial model;

AIC = (−2`(β̂) + 2k)− (−2ˆ̀+ 2S),

where ˆ̀=
∑S

i=1(Ci log(Ci/Bi) + (Bi − Ci) log(1− Ci/Bi)).
Step (iii) is performed by the the summary method as already mentioned. The

first line shows the “raw” BP α1 (the BP obtained from the ordinary bootstrap
resampling). The main results are the corrected p-values, which follow next. For
each model, we calculate qk, k = 1, 2, 3, by

qk =
k−1∑
j=0

(−1− σ2
0)j

j!
∂jψ(σ2|β̂)
∂(σ2)j

∣∣∣
σ2
0

.

Then the corrected p-values are calculated by pk = 1 − Φ(qk). By default σ2
0 = 1.

The calculation of qk is interpreted as extrapolation of σzσ2 to σ2 = −1 by using the
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Figure 3. Extrapolation

first k terms of the Taylor series. According to the theory of Shimodaira (2006),
the unbiased p-value is, if it exists, obtained by taking the limit k → ∞. The
extrapolated curves are shown (Fig. 3) by
> plot(summary(X.sb), legend = "topleft")

4. Hierarchical Clustering

4.1. Pvclust Package. The scaleboot package includes an interface for the pv-
clust package (Suzuki and Shimodaira 2006). We use pvclust to calculate mul-
tiscale BPs for clusters by bootstrapping hierarchical clustering, from which we
calculate an improved version of AU p-values using scaleboot. See help(lung73)
for further details of the following example.

4.2. Using Pvclust. This example uses the lung dataset (Garber et al. 2001)
included in pvclust. It is a DNA microarray data of 73 lung tissues (arrays)
with 916 observations of genes. To draw dendrograms in terms of the arrays, we
resample genes in our analysis; this may be interpreted as assessing the uncertainty
due to the variability of genes. The function pvclust first obtains a dendrogram by
a hierarchical clustering method, and then calculates the multiscale BPs for each
cluster of the dendrogram.
> library(pvclust)

> data(lung)

> sa <- 9^seq(-1, 1, length = 13)

> nb <- 10000

> lung73.pvclust <- pvclust(lung, r = 1/sa, nboot = nb)
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The above code may take a day, so it would be a good idea to run with nb=1000
so that it would run 10 times faster. However, nb=1000 should be used just for
checking the program, and nb=10,000 (at least) is recommended for publishing the
results.

4.3. Model Fitting. We next apply the sbfit function of scaleboot to the mul-
tiscale BPs. For each cluster of the dendrogram, parametric models are fitted to
the BPs.
> library(scaleboot)

> lung73.sb <- sbfit(lung73.pvclust)

4.4. Lung73 Dataset. The results of the previous two sections (lung73.pvclust
and lung73.sb) are in fact stored in the lung73 dataset of scaleboot. For users
who want to try the examples, just type as follows.
> library(scaleboot)

> data(lung73)

We have used a cluster computer of 40 cpus for parallel computing using the
snow package. The following code may run in under an hour.
> library(snow)

> cl <- makeCluster(40)

> library(pvclust)

> data(lung)

> sa <- 9^seq(-1, 1, length = 13)

> nb <- 10000

> lung73.pvclust <- parPvclust(cl, lung, r = 1/sa, nboot = nb)

> library(scaleboot)

> lung73.sb <- sbfit(lung73.pvclust, cluster = cl)

4.5. P -value Calculation. To calculate AU p-values (p3) from lung73.sb and
write them back to lung73.pvclust, we do
> lung73.k3 <- sbpvclust(lung73.pvclust, lung73.sb)

To see the results, we simply plot the dendrogram (Fig. 4) by
> library(pvclust)

> plot(lung73.k3, cex = 0.5, cex.pv = 0.7)

> pvrect(lung73.k3)

To calculate p2 instead of p3, specify k=2,
> lung73.k2 <- sbpvclust(lung73.pvclust, lung73.sb, k = 2)

4.6. Diagnostics of Fitting. The fitted curves are drawn by the plot method.
For node 67, say, a plot with legend is obtained (Fig. 5) by
> plot(lung73.sb[[67]], legend = "topleft")

All the calculated p-values for node 67 are given by
> summary(lung73.sb[[67]])

Raw Bootstrap Probability: 3.63 (0.19)

Corrected P-values (percent):
k.1 k.2 k.3 aic

poly.1 18.41 (0.10) 18.41 (0.10) 18.41 (0.10) 52878.29
poly.2 5.46 (0.09) 83.51 (0.32) 83.51 (0.32) 1356.63
poly.3 3.95 (0.08) 86.05 (0.29) 92.56 (0.28) 464.71
sing.3 3.31 (0.07) 77.02 (0.47) 95.10 (0.17) 25.11
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Figure 4. Dendrogram of lung73 dataset (k = 3)

Best Model: sing.3

The extrapolation using the best model is shown (Fig. 6) by
> plot(summary(lung73.sb[[67]]), legend = "topleft")

For a set of nodes, p-values are given by
> summary(lung73.sb[c(62, 67, 69, 71)])

Corrected P-values (percent):
raw k.1 k.2 k.3 model aic

62 95.68 (0.20) 95.92 (0.10) 98.64 (0.10) 98.61 (0.12) poly.3 -12.01
67 3.63 (0.19) 3.31 (0.07) 77.02 (0.47) 95.10 (0.17) sing.3 25.11
69 29.49 (0.46) 29.65 (0.17) 75.37 (0.22) 75.83 (0.34) poly.3 -14.09
71 25.20 (0.43) 25.95 (0.17) 84.44 (0.18) 85.91 (0.27) poly.3 11.49

Also plots are shown (Fig. 7) by
> plot(lung73.sb[c(62, 67, 69, 71)])

5. Phylogenetic Inference

5.1. CONSEL Software. scaleboot has a front end for phylogenetic inference,
and it may eventually replace the CONSEL software (Shimodaira and Hasegawa 2001)
for testing phylogenetic trees. Currently, scaleboot does not have a method for
converting files obtained from other commonly used phylogenetic software packages,
and so we must use CONSEL for this purpose before applying scaleboot to calculate
an improved version of AU p-values for trees and edges. See help(mam15) for further
details of the following example.
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Figure 5. Model fitting for node 67

5.2. Mammal Dataset. We work on an example of phylogenetic analysis of six
mammal species: Homo sapiens (human), Phoca vitulina (harbor seal), Bos taurus
(cow), Oryctolagus cuniculus (rabbit), Mus musculus (mouse), Didelphis virginiana
(opossum). The dataset was originally used in Shimodaira and Hasegawa (1999).

For Unix users, download mam15-files.tgz, and for Windows users download
mam15-files.zip. The details of dataset files are as follows. mam15.aa: amino
acid sequences (n = 3414) of mtDNA for the six mammals. mam15.ass: association
vectors for edges and trees. mam15.lnf: site-wise log-likelihood values (output from
PAML). mam15.log: detailed information for the associations. mam15.mt: site-wise
log-likelihood values (output from seqmt). mam15.tpl: 15 tree topologies.

5.3. Likelihood Calculation of Trees. The main body of the dataset is the
amino acid sequences (mam15.aa). We consider m = 15 tree topologies of the six
mammals (mam15.tpl);
((Homsa,(Phovi,Bosta)),Orycu,(Musmu,Didvi)); t1
(Homsa,Orycu,((Phovi,Bosta),(Musmu,Didvi))); t2
(Homsa,((Phovi,Bosta),Orycu),(Musmu,Didvi)); t3
(Homsa,(Orycu,Musmu),((Phovi,Bosta),Didvi)); t4
((Homsa,(Phovi,Bosta)),(Orycu,Musmu),Didvi); t5
(Homsa,((Phovi,Bosta),(Orycu,Musmu)),Didvi); t6
(Homsa,(((Phovi,Bosta),Orycu),Musmu),Didvi); t7
(((Homsa,(Phovi,Bosta)),Musmu),Orycu,Didvi); t8
(((Homsa,Musmu),(Phovi,Bosta)),Orycu,Didvi); t9
(Homsa,Orycu,(((Phovi,Bosta),Musmu),Didvi)); t10
(Homsa,(((Phovi,Bosta),Musmu),Orycu),Didvi); t11
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Figure 6. Extrapolation for node 67

((Homsa,((Phovi,Bosta),Musmu)),Orycu,Didvi); t12
(Homsa,Orycu,(((Phovi,Bosta),Didvi),Musmu)); t13
((Homsa,Musmu),Orycu,((Phovi,Bosta),Didvi)); t14
((Homsa,Musmu),((Phovi,Bosta),Orycu),Didvi); t15

The maximum likelihood estimates for these trees are calculated by PAML (Yang
1997). Let xij be the site-wise log-likelihood for sites i = 1, . . . , n, and trees j =
1, . . . ,m. The log-likelihood of tree-j is

∑n
i=1 xij . A large n justifies the central

limit theorem for y = x̄, and allows us to resample xij directly without recalculation
of the maximum likelihood estimates. The matrix X = (xij) is produced by PAML
and stored in mam15.lnf. It is converted by CONSEL to a simpler format and
stored in mam15.mt. The command is

seqmt --paml mam15.lnf

5.4. P -value Calculation for Trees. The AU p-values for trees are calculated
simply by

> library(scaleboot)

> mam15.mt <- read.mt("mam15.mt")

> mam15.trees <- relltest(mam15.mt)

> summary(mam15.trees)

The relltest function above may take a half hour. The next section can be skipped
if only tree selection is of interest.

5.5. P -value Calculation for Clusters. We can also calculate AU p-values for
clusters (edges) of trees. We have to know, for each cluster, in which of the 15 trees
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Figure 7. Model fitting for a set of nodes

it is included. The file mam15.ass has this information, which was generated using
CONSEL by the command

treeass --outgroup 6 mam15.tpl > mam15.log
It also produces mam15.log for human readable information. A part of mam15.log

is as follows.

# leaves: 6
6
1 Homsa
2 Phovi
3 Bosta
4 Orycu
5 Musmu
6 Didvi

# base edges: 10
10 6

123456
1 +++--- ;
2 ++++-- ;
3 +--+-- ;
4 -+++-- ;
5 ---++- ;
6 +--++- ;
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7 -++++- ;
8 +++-+- ;
9 +---+- ;
10 -++-+- ;

The clusters (edges) defined above are named e1,...,e10. For example, e1 = +++--
= (Homsa, Phovi, Bosta).

The AU p-values for clusters as well as trees are calculated simply by
> library(scaleboot)

> mam15.mt <- read.mt("mam15.mt")

> mam15.ass <- read.ass("mam15.ass")

> mam15.relltest <- relltest(mam15.mt, ass = mam15.ass)

> summary(mam15.relltest)

5.6. Mam15 Dataset. The results of the previous sections ( mam15.mt, mam15.ass,
and mam15.relltest) are in fact stored in mam15 dataset of scaleboot. For users
who want to try the examples, just type as follows.
> library(scaleboot)

> data(mam15)

The results for trees are extracted by
> mam15.trees <- mam15.relltest[1:15]

We have used a cluster computer of 40 cpus for parallel computing using the
snow package. The following code may take only 10 minutes, although we have
used the number of resamples 10 times larger than the default value.
> library(snow)

> cl <- makeCluster(40)

> library(scaleboot)

> mam15.mt <- read.mt("mam15.mt")

> mam15.ass <- read.ass("mam15.ass")

> mam15.relltest <- relltest(mam15.mt, nb = 1e+05, ass = mam15.ass)

5.7. Interpreting the Results. First we sort the results in increasing order of
log-likelihood difference,
> stat <- attr(mam15.trees, "stat")

> o <- order(stat)

> mam15.trees <- mam15.trees[o]

> summary(mam15.trees)

Corrected P-values (percent):
raw k.1 k.2 k.3 model aic

t1 57.58 (0.16) 56.16 (0.04) 74.55 (0.05) 74.55 (0.05) poly.2 964.33
t3 31.86 (0.15) 30.26 (0.05) 46.41 (0.09) 45.33 (0.13) poly.3 1306.50
t2 3.68 (0.06) 3.68 (0.03) 12.97 (0.20) 16.12 (0.45) sing.3 -6.21
t5 1.34 (0.04) 1.33 (0.02) 7.92 (0.25) 10.56 (0.56) sing.3 -14.11
t6 3.18 (0.06) 3.15 (0.02) 13.15 (0.21) 15.86 (0.44) sing.3 -2.49
t7 0.49 (0.02) 0.52 (0.01) 3.66 (0.21) 4.75 (0.42) sing.3 -12.04
t4 1.55 (0.04) 1.53 (0.02) 10.54 (0.27) 14.84 (0.66) sing.3 -7.57
t15 0.08 (0.01) 0.07 (0.00) 1.11 (0.19) 1.85 (0.48) sing.3 -17.08
t8 0.00 (0.00) 0.00 (0.00) 0.04 (0.03) 0.07 (0.07) sing.3 -13.68
t14 0.22 (0.01) 0.23 (0.01) 2.76 (0.26) 4.59 (0.71) sing.3 -10.79
t13 0.02 (0.00) 0.01 (0.00) 0.50 (0.20) 1.30 (0.83) sing.3 -15.14
t9 0.00 (0.00) 0.00 (0.00) 0.23 (0.05) 1.41 (0.29) sing.3 -15.86
t11 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) poly.3 -19.71
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Figure 8. Model fitting for the top four trees

t10 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) poly.3 -17.27
t12 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) poly.3 -19.61

Next we look at the p-values. We confirm that p1 (the second column) is almost
the same as the raw BP (the first column); this should be so if the model fitting is
good. Only two trees, i.e., t1 and t3, have p1 > 0.05. It is known that the bias of
p1 is large so that often leads to false positives for tree selection. p2 improves upon
p1 by correcting the bias. Six trees, i.e., t1, t3, t2, t5, t6, and t4, have p2 > 0.05.
p3 improves upon p2 even more, although the trees of p3 > 0.05 are the same six
trees in this example.

Finally we examine model fitting. According to the AIC values, the fitting is
good overall except for the top two trees; however note that the AIC values should
be about 10 times smaller if the default value of nb=10,000 was used. The fitting
curves for the top four trees are shown (Fig. 8) by

> plot(mam15.trees[1:4])

According to the plots, the fitting is rather good even for the top two trees.
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