
Every 1000 rounds a progress indicator is printed. Its format depends on
a number of things: (1) whether parallelization is turned on or not, (2) the
correlation model [isotropic or separable], (3) whether jumps to the LLM are
allowed. Here is an example with the 2-d exp data with parallel prediction under
the separable correlation function:

(r,l)=(5000,104) d=[0.0144 0.0236] [1.047 0/0.626]; mh=2 n=(59,21)

The first part (r,l)=(5000,104) is indicating the MCMC round number
r=5000 and the number of leaves waiting to be ”consumed” for prediction by
the parallel prediction thread. When parallelization is turned off (default), the
print will simply be "r=5000".

The second part is a printing of the d–(range) parameter to a separable
correlation function. For 2 partitions there are two sets of square brackets.
Inside the square brackets is the mX (2 in this case) range parameters for the
separable correlation function. Whenever the LLM governs one of the input
dimensions a zero will appear. I.e., the placement of 0/0.626 indicates the
LLM is active in the 2nd dimension of the 2nd partition. 0.626 is the d–(range)
parameter that would have been used if the LLM were inactive. Whenever all
dimensions are under the LLM, the d-parameter print is simply [0]. This also
happens when forcing the LLM (i.e., for blm and btlm), where [0] appears for
each partition. These prints will look slightly different if the isotropic instead
of separable correlation is used, since there are not as many range parameters.

B.3 Collaboration with predict.tgp

In this section I revisit the motorcycle accident data in order to demonstrate how
the predict.tgp function can be helpful in collaborative uses of tgp. Consider
a fit of the motorcycle data, and suppose that infer the model parameters only
(obtaining no samples from the posterior predictive distribution). The "tgp"-
class output object can be saved to a file using the R–internal save function.

> library(MASS)

> out <- btgpllm(X = mcycle[, 1], Z = mcycle[, 2],

+ bprior = "b0", m0r1 = TRUE, pred.n = FALSE, verb = 0)

> save(out, file = "out.Rsave")

> out <- NULL

Note that there is nothing to plot here because there is no predictive data.
(out <- NULL is set for illustrative purposes.)

Now imagine e–mailing the “out.Rsave” file to a collaborator who wishes to
use your fitted tgp model. S/he could first load in the "tgp"–class object we just
saved, design a new set of predictive locations XX and obtain kriging estimates
from the MAP model.

> load("out.Rsave")

> XX <- seq(2.4, 56.7, length = 200)

> out.kp <- predict(out, XX = XX, pred.n = FALSE)

41

Another option would be to sample from the posterior predictive distribution
of the MAP model.

> out.p <- predict(out, XX = XX, pred.n = FALSE, BTE = c(0,

+ 1000, 1))

This holds the parameterization of the tgp model fixed at the MAP, and samples
from the GP or LM posterior predictive distributions at the leaves of the tree.

Finally, the MAP parameterization can be used as a jumping-off point for
more sampling from the joint posterior and posterior predictive distribution.

> out2 <- predict(out, XX, pred.n = FALSE, BTE = c(0,

+ 2000, 2), MAP = FALSE)

Since the return–value of a predict.tgp call is also a "tgp"–class object the pro-
cess can be applied iteratively. That is, out2 can also be passed to predict.tgp.

Figure 23 plots the posterior predictive surfaces for each of the three calls to
predict.tgp above. The kriging surfaces are smooth within regions of the par-
tition, but the process is discontinuous across partition boundaries. The middle
surface is simply a Monte Carlo–sample summarization of the kriging one above
it. The final surface summarizes samples from the posterior predictive distri-
bution when obtained jointly with samples from T |θ and θ|T . Though these
summaries are still“noisy”they depict a process with smoother transitions across
partition boundaries than ones conditioned only on the MAP parameterization.

The predict.tgp function can also sample from the ALC statistic and cal-
culate expected improvements (EI) at the XX locations.

C Configuration and performance optimization

In what follows I describe customizations and enhancements that can be made
to tgp at compile time in order to take advantage of custom computing archi-
tectures. The compilation of tgp with a linear algebra library different from the
one used to compile R (e.g., ATLAS), and the configuration and compilation of
tgp with parallelization is described in detail.

C.1 Linking to ATLAS

ATLAS [30] is supported as an alternative to standard BLAS and LAPACK for fast,
automatically tuned, linear algebra routines. If you know that R has already
been linked to tuned linear algebra libraries (e.g., on OSX), then compiling with
ATLAS as described below, is unnecessary—just install tgp as usual. As an
alternative to linking tgp to ATLAS directly, one could re-compile all of R linking
it to ATLAS, or some other platform–specific BLAS/Lapack, i.e., Intel’s Math
Kernel Library, or AMD’s Core Math Library, as described in:

http://cran.r-project.org/doc/manuals/R-admin.html

42

> plot(out.kp, center = "km", as = "ks2")

10 20 30 40 50

−
10

0
−

50
0

50
 z kriging mean

x1

z

10 20 30 40 50

0
20

0
40

0
60

0
80

0

 kriging var

x1

kr
ig

in
g

va
r

> plot(out.p)

10 20 30 40 50

−
10

0
−

50
0

50

 z mean

x1

z

10 20 30 40 50

20
40

60
80

10
0

 quantile diff (error)

x1

qu
an

til
e

di
ff

(e
rr

or
)

> plot(out2)

10 20 30 40 50

−
10

0
−

50
0

50

 z mean

x1

z

10 20 30 40 50

20
40

60
80

10
0

 quantile diff (error)

x1

qu
an

til
e

di
ff

(e
rr

or
)

Figure 23: Predictive surfaces (left) and error/variance plots (right) resulting from three
different uses of the predict.tgp function: MAP kriging (top), sampling from the MAP
(middle), sampling from the joint posterior and posterior predictive starting from the MAP
(bottom).

43

