
on this data. The sharp spike in predictive variance near the first regime shift
suggests that the symmetric Gaussian noise model may be inappropriate. A
log Gaussian process might offer an improvement, at least locally. Running the
treed GP MCMC for longer will eventually result in the finding of a partition
near time=17, just after the first regime change. The variance is still poorly
modeled in this region. Since it is isolated by the tree it could potentially be fit
with a different noise model.

3.5 Friedman data

This Friedman data set is the first one of a suite that was used to illustrate
MARS (Multivariate Adaptive Regression Splines) [11]. There are 10 covariates
in the data (x = {x1, x2, . . . , x10}). The function that describes the responses
(Z), observed with standard Normal noise, has mean

E(Z|x) = µ = 10 sin(πx1x2) + 20(x3 − 0.5)2 + 10x4 + 5x5, (18)

but depends only on {x1, . . . , x5}, thus combining nonlinear, linear, and irrele-
vant effects. Comparisons are made on this data to results provided for several
other models in recent literature. Chipman et al. [5] used this data to compare
their treed LM algorithm to four other methods of varying parameterization:
linear regression, greedy tree, MARS, and neural networks. The statistic they
use for comparison is root mean-square error (RMSE)

MSE =
∑

n

i=1
(µi − ẑi)

2/n RMSE =
√

MSE

where ẑi is the model–predicted response for input xi. The x’s are randomly
distributed on the unit interval.

Input data, responses, and predictive locations of size N = 200 and N ′ =
1000, respectively, can be obtained by a function included in the tgp package.

> f <- friedman.1.data(200)

> ff <- friedman.1.data(1000)

> X <- f[, 1:10]

> Z <- f$Y

> XX <- ff[, 1:10]

This example compares Bayesian treed LMs with Bayesian GP LLM (not treed),
following the RMSE experiments of Chipman et al. It helps to scale the re-
sponses so that they have a mean of zero and a range of one. First, fit the
Bayesian treed LM, and obtain the RMSE.

> fr.btlm <- btlm(X = X, Z = Z, XX = XX, tree = c(0.95,

+ 2), pred.n = FALSE, m0r1 = TRUE, verb = 0)

> fr.btlm.mse <- sqrt(mean((fr.btlm$ZZ.mean - ff$Ytrue)^2))

> fr.btlm.mse

[1] 1.939446

30

Next, fit the GP LLM, and obtain its RMSE.

> fr.bgpllm <- bgpllm(X = X, Z = Z, XX = XX, pred.n = FALSE,

+ m0r1 = TRUE, verb = 0)

> fr.bgpllm.mse <- sqrt(mean((fr.bgpllm$ZZ.mean - ff$Ytrue)^2))

> fr.bgpllm.mse

[1] 0.4241515

So, the GP LLM is 4.573 times better than Bayesian treed LM on this data, in
terms of RMSE (in terms of MSE the GP LLM is 2.138 times better).

Parameter traces need to be gathered in order to judge the ability of the GP
LLM model to identify linear and irrelevant effects.

> XX1 <- matrix(rep(0, 10), nrow = 1)

> fr.bgpllm.tr <- bgpllm(X = X, Z = Z, XX = XX1, pred.n = FALSE,

+ trace = TRUE, verb = 0)

Notice that the m0r1=TRUE has been omitted so that the β estimates provided
below will be on the original scale. A summary of the parameter traces show that
the Markov chain had the following (average) configuration for the booleans.

> trace <- fr.bgpllm.tr$trace$XX[[1]]

> apply(trace[, 27:36], 2, mean)

b1 b2 b3 b4 b5 b6 b7 b8 b9 b10

1 1 1 0 0 0 0 0 0 0

Therefore the GP LLM model correctly identified that only the first three input
variables interact only linearly with the response. This agrees with dimension–
wise estimate of the total area of the input domain under the LLM (out of a
total of 10 input variables).

> mean(fr.bgpllm.tr$trace$linarea$ba)

[1] 7

A similar summary of the parameter traces for β shows that the GP LLM
correctly identified the linear regression coefficients associated with the fourth
and fifth input covariates (from (18))

> summary(trace[, 9:10])

beta4 beta5

Min. : 8.623 Min. :4.309

1st Qu.: 9.370 1st Qu.:5.176

Median : 9.564 Median :5.376

Mean : 9.550 Mean :5.375

3rd Qu.: 9.735 3rd Qu.:5.582

Max. :10.431 Max. :6.313

31

and that the rest are much closer to zero.

> apply(trace[, 11:15], 2, mean)

beta6 beta7 beta8 beta9 beta10

-0.23968561 0.37046946 0.13081722 -0.07842566 0.11911203

3.6 Adaptive Sampling

In this section, sequential design of experiments, a.k.a. adaptive sampling, is
demonstrated on the exponential data of Section 3.3. Gathering, again, the
data:

> exp2d.data <- exp2d.rand(lh = 0, dopt = 10)

> X <- exp2d.data$X

> Z <- exp2d.data$Z

> Xcand <- lhs(1000, rbind(c(-2, 6), c(-2, 6)))

In contrast with the data from Section 3.3, which was based on a grid, the
above code generates a randomly subsampled D–optimal design X from LH
candidates, and random responses Z. As before, design configurations are more
densely packed in the interesting region. Candidates X̃ are from a large LH–
sample.

Given some data {X,Z}, the first step in sequential design using tgp is to
fit a treed GP LLM model to the data, without prediction, in order to infer the
MAP tree T̂ .

> exp1 <- btgpllm(X = X, Z = Z, pred.n = FALSE, corr = "exp",

+ verb = 0)

The trees are shown in Figure 16. Then, use the tgp.design function to create
D–optimal candidate designs in each region of T̂ . For the purposes of illustrating
the improv statistic, I have manually added the known (from calculus) global
minimum to XX.

> XX <- tgp.design(200, Xcand, exp1)

sequential treed D-Optimal design in 3 partitions

dopt.gp (1) choosing 55 new inputs from 272 candidates

dopt.gp (2) choosing 53 new inputs from 263 candidates

dopt.gp (3) choosing 93 new inputs from 465 candidates

> XX <- rbind(XX, c(-sqrt(1/2), 0))

Figure 17 shows the sampled XX locations (circles) amongst the input locations
X (dots) and MAP partition (T̂). Notice how the candidates XX are spaced
out relative to themselves, and relative to the inputs X, unless they are near
partition boundaries. The placing of configurations near region boundaries is

32

