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1 Introduction
This paper has three goals:

1. To briefly describe algorithmic design in a way that will be helpful to those
who primarily use other experimental design methodologies.

2. To provide examples illustrating the use of the functions in AlgDesign.

3. To document the mathematical expressions used in the programs and call
attention to any differences from those available in the literature.

The general model used for experimental design is

Y =XB+30,Zivi+e (1)

where Y is a vector of N observations, X is a N X k matrix, Z,;, (i =1...b) are
N X m; matrices. The vectors 7;, (¢ = 1...b) and the N vector €, are random
and independent of each other with variances o?I,,, and 021, respectively.

The variance of Y is Vo2 where V = Xb_ X;XTp? + I, and p; = 0?/02.
The generalized least squares estimator of § is § = (XTV-1X)-1XTV -1y,
and thus the covariance is M ~102/N, where M = XTV~1X/N.

From this it may be seen that the “best” estimates of the parameters are
obtained when M ™! is made as small as possible in some sense.

Established, or classical, designs that are described in the various textbooks
and papers on the subject, all fit within a larger framework wherein designs
are constructed to meet various criteria for the information matrix, region of
experimentation, and model. Algorithmic optimization of these criteria will
produce the above mentioned designs. Simply replaying tables of such designs
is not the goal of algorithmic design, but rather the goal is to extend these
criteria to the often awkward conditions of practical experimentation which
defy standard designs, and to produce highly efficient designs not in the canon.

For example, a 36! factorial requires 243 observations to estimate 28 terms
if the model is quadratic; thus, there are 215 degrees of freedom for error, which
even to the most conservative experimenter, must seem to be a great many. Of
course, power calculations may indicate that one needs many observations in
order to estimate the coefficients with adequate precision. More commonly, how-
ever, one would be satisfied with something like 10 degrees of freedom for error
and would like an experiment with about 40 observations. The canon contains
no suitable design, but an algorithmic calculation will create a 40 run design
with coefficient variances only 10% larger than those for the 243 observation
fractional factorial.

The model described by equation (1) contains multiple error terms. This is
quite unrealistic. To be sure, in the analysis, estimates of the several variance
components can be obtained, but in the design phase, there is very seldom a
rational basis for their specification, and the “best” design does depend on their
values. Fortunately, a great many experimental problems involve only one or



at the most two variance components. The problem of designing with multiple
error terms is not one that has not been generally solved for established designs.

A simply written survey of some of the ideas involved is presented in Chapter
7 of Cox and Reid [2], and a longer, but equally simply written, exposition may
be found in the first part of Atkinson and Donev [1].

2 The varieties of designs

2.1 One-way layouts

The very first statistical experiment [12] was a simple one-way layout with equal
numbers of observations at each level. The estimates were uncorrelated because
randomization was employed (its first use in an experimental setting). This
simple experimental arrangement may be represented by a table with observed
values y; in the cells:

level 1 | 1
level 2 | yo
level 3 | ys

For this, the structure of X could be

(0 00)
I= 0 ,
\oo1)
which means that M is diagonal, and the estimates uncorrelated. If there are
n; replications at each level, then X comprises replications of the rows of I, and

( ny 0 0
0 Uy 0

L
N\ o 0 n)
where N = > " n,.

The estimates of the parameters are easy to compute, being the means of
the cells, B; = §; for i = 1,2,3. Simplicity of computation was very important
in the days before computers, and many standard designs require nothing more
than simple arithmetic for their analysis. In order to preserve this simplicity,
various schemes have been developed for “filling in” missing data to preserve
the computational protocol: but this is another topic, and our concern is with
design.

The only design question is the number of observations in each cell. If N is
fixed, then it is easy to see'that the expected variance of any pairwise contrast

O = O
_ o o

M =

x n—x n2 7(1)2 ?
where z is an integral increment or decrement. This is obviously minimized for z = 0.

1The expected variance of a pairwise contrast is proportional to —— + —1— = 2n?



of the parameter estimates is minimized by making the n; equal. Almost all
of the discussion of efficiency in the standard texts, such as Cochran and Cox
[5] is in terms of pairwise contrasts, and by and large this has been the major
criterion in constructing designs. It is however a specialized instance of more
general criteria. In particular, maximizing the determinant of M leads to the
same design.

The form of X is not unique, since any non-singular linear transformation
of the parameters, say from X8 to XTT '3 = Z~, will leave unchanged the
statistical characteristics of the experiment. For example, the F-ratio for the
single factor is unchanged by such a transformation.

A common transformation restates the parameters in terms of deviations
from their mean, producing “main effects.” For example, one might use

/1 -1
T=11 1
1

\ o_ﬁy

moi s )
3\—1 -1 2/

The first form has a parameter (8;,82,0;) for each level, while the new
one has parameters representing a mean 3, = %(,81 + B2 + (33), and the main
effects (B2 — B.), (B3 — B.). Although apparently asymmetric, all main effects
are estimated, since (81 — 8.) = —(82 — 8) — (B3 — B.). Each of these main
effects has the same variance, but in contrast to the original parameters, they
are correlated: the expected value of the correlation is 0.67 in this example.

Correlation among parameter estimates is common in experimental design,
and can lead to misinterpretations, since the observed magnitude of an effect
may be due to a substantial value for another parameter. The usual technique
for dealing with this problem is to use an omnibus test for all parameters of
interest and then to follow this up with multiple comparisons using contrasts
among the parameters. That is to rely on ANOVA. The point is important
especially in connection with response surface designs which can tempt the
experimenter into the misinterpretation of individual parameters.

Another transformation that is frequently used is the orthogonal represen-

tation
( 1 -1 -1 \
T=4{1 0 2

\1 1 -1

which produces uncorrelated estimates of the parameters G, (63 — (81)/2, and
(B2— (81 +83)/2)/3. These parameters are interpretable as linear and quadratic
components if the levels of the variable are from a continuum such as time or
temperature.

There are basically three types of variables in experimentation: (1) cate-
gorical variables, which assume discrete levels unrelated to each other, such as

with
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“old men,” “young men,” etc.; (2) continuous variables such as time or tem-

perature; and (3) random variables such as “first sample,” “second sample,”
etc. For the most part we will be concerned with categorical and continuous
variables, but the distinction is not always clear. In the Peirce-Jastrow [12] ex-
periments, the levels were designated by the ratio of two weights (1.015, 1.030,
and 1.060 in one experiment). These can be interpreted as three categories,
“small,” “medium,” and “large.” They could also be interpreted as continuous,
and one might even prefer to take logarithms so that they represent an ap-
proximate doubling between steps. Some experimental designs assume that the
variables are continuous, and some designs for categorical variables are seldom
used for continuous variables, but in general, the distinction between these two
types is not important as far as design construction is concerned.

For fixed N, minimizing the expected variance of pairwise contrasts leads to
a design with equal sample sizes in each cell, but after transformation, optimiza-
tion in terms of the parameters is no longer obvious, which serves to indicate
that a better understanding of criteria is needed. At the moment it is useful to
note that fixed linear transformations have no effect on the maximization of the
determinant of M; and the maximization of the determinant, in this one-way
example, leads to equal numbers of observations at each level regardless of the
transformation chosen. The trace of M ! is proportional to the average variance
of the parameter estimates, and is also a criterion of interest. Its minimization
is not invariant under linear transformation however, and the number of ob-
servations per level which minimize the trace can differ from transformation to
transformation.

The original form of X was not particularly interesting, since the parameters
represent expectations of cell means. When one observes several levels in for
a factor, one naturally inquires about the differences between them, and the
original parameters are not informative in this. The second form, however, with
a grand mean and main effects as parameters is more informative, in that some
of the most interesting contrasts are expressed as parameters. In times past
this was more important than today, since in certain cases it saved computa-
tional labor. It is of little practical importance nowadays, since one may always
compute any contrast of interest, together with its standard error, with modern
computer software.

There are of course many other possible transformations. One could even

11 00
write X as \ 1 0 1 0 j, which this has more parameters than data val-
1 0 01

ues, leading to multiple solutions. Except in very special cases, one may as
well choose a non-singular transformation, as in the previous forms, since any
function of the parameters is readily computed from such. For the most part,
forms involving a grand mean are preferred. The general structure of X is then
X =[1, X,,], where the column rank of X,, is k — 1.



2.2 Higher way layouts

For two factors, one has a two way layout:

Y11 [ Y12 | Y13
Y21 | Y22 | Y23
Y31 | Y32 | Y33

The basic parameterization of one parameter per cell is seldom used, rather,
more informative parameterizations are common, such a main effect, interaction
form such as

1[-1 -1 -1 -1 1 1 1 1
11 0 -1 -1|-1 -1 0 0
100 1 -1 -1/ 0 0 -1 -1
1/-1 -1 1 0|-1 0 -1 0

X=X Xmt)=| 1| 2 0 1 0ol 1 0 0o o],
100 1 1 0, 0 0 1 0
1/-1 -1 0 1| 0 -1 0 -1
101 0 0 1, 0 1 0 0
10 1 0 1,0 0 0 1

where X; . is an interaction expansion of X g obtained by taking cross prod-
ucts. The main effect estimates for the first factor are (y1. —y.,y2. — Y., ¥s. —Y..),
where dots denote averages, and similar estimates for the other factor. An in-
teraction is a product, a typical one is (y2. —y..)(y.3—y..). All these are obtained
by simple summation as indicated by the pattern in X above.

As before, the optimum allocation is equal numbers of observations in each
cell of the two-way layout, which is also the allocation obtained by maximizing

the determinant of M.

2.3 Factorial Designs

As Lorenzen and Anderson [15] have shown, linear experimental designs may
be expressed as factorial designs involving linear models which are variants of
the fundamental model in equation (1): the usual enhancement is to include
additional error terms.

When there are three factors, there will be columns in X representing three
way interactions, and as the number of factors increase, so does the order of the
maximum interaction. In practice, designs with several factors require substan-
tial numbers of observations, and the question arrises as to their utility. One
solution is to select rows from X which will enable the estimation of main effects
and low order interactions. In doing this, information about the higher order in-
teractions is confounded and they are no longer estimable. The complete layout
is called a factorial layout, and the reduced layout obtained by selecting rows
from X is called a fractional factorial. The idea was first addressed by Finney

[8].



Note that the first three rows for columns 2 and 3 is repeated in the next
three rows and in the last three. Each of these repeats is associated with fixed
values for the second factor, hence one can estimate the parameters for the first
factor in each of the three repeats. Of course these estimates are conditional on
the second factor; however, if it were possible to assume that the second factor
had no effect, then one could use the estimates from the first repeat alone. One
could even pool the estimates from the three repeats to obtain greater precision.

When there are several factors in an experiment, patterns enabling the esti-
mation of low order effects will be found that are associated with fixed values of
high order interactions, and the technique of fractional factorial design consists
of selecting one of the several repeats associated with a fixed high order inter-
action. All this, of course, on the assumption that the high order interaction is
negligible.

An easy illustration of this is the fractioning of a two-level experiment. Part
of the pattern for four two level factors is

-1 -1 -1 -1
-1 -1 1 1
-1 1 -1 1
-1 1 1 -1
1 -1 -1 1
1 -1 1 -1
1 1 -1 -1
1 1 1 1 1
-1 -1 -1 1 -1 1’
-1 -1 1 -1 -1
-1 1 -1 -1 -1
-1 1 1 1 -1
1 -1 -1 -1 -1
1 -1 1 1 -1
1 1 -1 1 -1
1 1 1 -1 -1

= R e e e

e e T T e T e T e e T e o o S Gy Sy S O S R e

where the two-level factor are coded -1 and 1, and only the mean, main effect
and four-way interaction columns are shown. The rows have been rearranged
according to the levels of the four-way interactions, and it is easy to see that if
the experiment were divided in two according to the four-way levels, that each
half would provide data for estimating the main effects of all four factors. Such
a fraction is called a half fraction and denoted 2*1.

As before, the allocation that minimizes the variance of an estimate of pair-
wise contrasts is an equal allocation of observations to the cells, and this is also
the allocation that maximizes the determinant of M for a fixed number of trials.

2.4 Blocked experiments

One of the first problems that arose in the early days of experimental design
was in the practical allocation of experimental units. It often happens that the



amount of material or time available is inadequate for all experimental trials.
Many things happen from trial to trial which are unrelated to the treatment ap-
plied. For the most part these can be lumped together as “experimental error,”
but this becomes less tenable if the material or conditions of the experiment
change. For example, Peirce and Jastrow [12] found that their judgments im-
proved as their experiments progressed, and they did not think it fair to directly
compare results taken from a late series with those from an earlier one.

Early on, the idea of dividing the experiment into “blocks” arose. In this,
one seeks to arrange the trials in such a way that the comparisons of interest
may all be made in close proximity, so that disparities due to extraneous factors
can be avoided. If it is possible to fraction an experiment so that each fraction
fits into a homogeneous block, then one can estimate the parameters in each
block and pool the estimates. To the first order, the differences between blocks
will be captured by the constant terms which can be discarded. If it is not
possible to fraction the experiment, then other methods must be used. ~

In general, for each block there is a constant column, so that X = [I;, X],
where X is the block centered? form of the expanded design matrix and I, is
a block diagonal matrix with columns of unities on the diagonal and zeros off-
diagonal. Thus X for a blocked experiment has as many constant columns as
there are blocks. Since the columns of X and those of I, are orthogonal, the
least squares parameter estimates for the factors do not depend on the block
parameters® when the number of blocks and their sizes are fixed.

The model for a blocked experiment is

Y = [I,,X]6 + ¢, (2)

where Y, X and € correspond to values in equation (1) after centering by block
means, and 87 = (ﬁg, ,8;) The uncentered observations have two error compo-
nents, one within the block and one between the blocks. The centering cancels
the between block error component. Maximizing the determinant of M = X7 X
will lead to the same design as minimizing the variances of pairwise differences
within blocks.

In this formulation, it is assumed that the block parameters (§;, are nuisance
parameters, of no particular interest. Indeed, they are often random, such as
“oven load 1,” “oven load 2,” etc., and although one could treat them in the
usual way and estimate variance components, the number of blocks involved is
often so small that the estimates are hardly worth having.

An incomplete block experiment is one in which the trials are arranged so
that contrasts of interest can be estimated within the several blocks. For exam-
ple, suppose that one can complete only 3 trials per day, but that 7 treatments
are to be compared. If 21 trials are arranged as in Table (1), then it may seen
that each pair of treatments occurs together exactly once in the same block.

v)
nl )’

2The block mean is subtracted from each value in the block.

T
3The least square parameter estimates are (XTX)*lXTY7 and XTX = ( X

o »

when all blocks have n trials.

10



Thus the differences between treatments may all be estimated without the error
that might be caused by block effects.

Table 1: A balanced incomplete block experiment

block 1|1 2 4
block2 |2 3 5
block 3|3 4 6
block 4|4 5 7
block 5|1 5 6
block 6 | 2 6 7
block 7|1 3 7

The X matrix for this experiment has 21 rows selected from a contrast matrix
for a 7 level factor. Any 7 x 7 matrix of full column rank will do. The default
contrast matrix built into R has a constant column followed by 6 mutually
orthogonal columns:

1.0 00 0 0O
110 0 0 0 O
101 0 0 0O
10 01 0 0O
1.0 0 0 1 0O
1.0 0 0 0 1 0
1.0 00 0 0O

The constant column is discarded, because each block has its own constant
column. In this case, the design in Table (1) will be obtained when M is
maximized.

The blocks are not always nuisance parameters, and in some practical sit-
uations, such as split-plots, represent factors of interest. The model for this is
Y = X8+ XpB + Z0 + €, where X, and [} represent the whole plot factors,
while Z and 6 represent the random block components. This model is discussed
in Appendix B.

There are other, more complicated blocking schemes involving blocks in a
two dimensional layout, but these will not be discussed. Blocking of response
surface, and factorial experiments will be discussed later.

2.5 Response surface experiments
2.5.1 The form of X

When the variables are continuous, it is natural to envision the experimental
space as a multidimensional continuum — a multidimensional box or sphere.
Predictions from the “model” may assume any value in the range of the re-
sponse. Equation (1) still applies, but now X = [1,F(z)], where F(z) =

11



{f1(z),..., fu(z)} for vector valued functions f;(x),i=1...k, and x is a set of
N design vectors z = {z1,...,z5}", where {z; = (z;1,...2;,)7,j=1...N}.

For example if p = 2, N = 9, and if both design variables range from -1 to
1, then x might look like

-1 -1
-1 0
-1
0 -1
T = 0 0
0 1
1 —
1 0
1 1

The f;() are terms in the model. Frequently, the f;() describe a polynomial,
for example row j of F(z) might be {z;1,z;2,2? x?’Q,xj)lxm} with k£ = 6,

51
and
-1 -1 1 1 -1
-1 10 0
-1 1 1 -1
0 -1 0 1 0
F(z) = 0 0 0O 0
0 1 0 1 0
1 -1 1 1 -1
1 0 1 0 0
1 1 1 1 1

2.5.2 Design criteria

The design problem becomes one of selecting points in the multidimensional
region that will “best” estimate some important function of the parameters. In
this case, there is no obvious criterion as there was for one-way layouts. See
Federov [13] or Silvey [19] for a discussion of this topic.

The one most generally used is the D criterion, which maximizes the de-
terminant of M = F(z)TF(z) for a fixed number of design points. There are
several rationales for using D. For example, a confidence ellipsoid for 3 is

(B-pB)TM(B—p3) constant,

and since the volume of this ellipsoid is proportional to |M|_%, maximizing
M will make this volume as small as possible. Similarly, the numerator of the
F-test when the errors are iid normal, is proportional to 37 M3, which by the
same argument leads to the minimization of M for a fixed number of design
points.

12



2.5.3 Design spaces

Although response surface problems are defined for continuous variables which
can assume any real value in a region, only a subset of the points support the
design. Any point not in this set of support points may be exchanged for a point
in the set with an increase in the determinant. For quadratic models, this set of
support points is the set of points of a three level factorial. In general, one can
replace the continuous region with a set of discrete points, such as the points
from a factorial with an appropriate number of levels. The actual support points
are always in the neighborhood of the factorial points, and improvements due
to their use are minor [3].

2.5.4 Goals

There are usually two goals of interest in a response surface experiment: para-
meter estimation, and prediction.

Although the parameters themselves are of interest, the fact that the model
is an approximation, makes them less interesting than in other forms of experi-
mentation, where the factors represent important attributes. Polynomial models
act as mathematical French curves to graduate the response surface, and within
a given region will usually mimic the actual underlying functionality, but by
themselves have no meaning; and clearly are false outside the region. It is an
error to think of them as Taylor series approximations, which is a siren that
often tempts those new to the field. One can parcel out the terms in a polyno-
mial model as if they were factors and interactions and perform ANOVA. For
most response surface designs, the ANOVA sums of squares will not be indepen-
dent, but they still provide likelihood ratio tests for the individual sources, and
looking at such is a better practice than attempting to interpret the individual
terms.

Prediction is a related, but independent goal. For approximate theory, where
fractional points are allowed, the general equivalence theorem [1] says that a
D-optimal design is also a G-optimal design, where G is the criterion that mini-
mizes the maximum variance in the experimental region. Thus, for approximate
theory, the maximum prediction variance will be minimized by maximizing? | M|.
For exact theory, where one has a discrete set of N points in the design, the two
criteria are not equivalent, although G can be used to bound D.

A criterion that deals specifically with prediction is the I criterion, which is
defined as the average prediction variance in the region. In spite of the apparent
difference between the two criteria, the points chosen by the D and I criterion
are similar. The I criterion, by and large, tends to select its points from the
support points for the D criterion.

4In approximate theory, the fractional weights add to unity, thus ensuring a maximum

13



2.5.5 Mixture experiments

Since the variables are continuous, they may represent mixtures, as for example,
mixtures of components in a paint. In these, the variables are constrained to
sum to a constant, usually unity. An example of a design for three mixture
components is shown in Table (2).

Table 2: A mixture experiment

1.0 0.0 0.0
0.0 1.0 0.0
0.0 00 1.0
05 05 0.0
05 00 0.5
00 05 0.5

Because of the constraint, ordinary polynomial models will have redundant
terms. This may be dealt with by appending non-estimable constraints to the
design, or by reformulating polynomial models to account for the constraint.
The constraint method may be useful in the analysis in those cases where it is
desired to interpret the coefficients. Cox [7] treats this problem. For design,
there is no advantage in carrying redundant terms through the calculation, and
so reformulated models is appropriate. These have been given by Scheffé [18],
and elaborated upon by Gorman and Hinman [10]. The Scheffé models for three
variables are shown in Table (3). Note that the constant term is omitted from
these models, which among other things, means that they are unaffected by
block effects.

Table 3: Scheffé models

linear X1+ X+ X3
quadratic | X; + Xo + X3+ X1 Xo + X1 X35+ X0 X3
cubic X1+ Xo+ X3+ X1 Xo+ X1 Xo + Xo X3+
X1 Xo(X1 — Xo) + Xi X3(Xy — X3) + XoX5(Xy — X3)

2.5.6 Blocking response surface experiments

Blocking is often required when using response surface designs which require
too many trials for a single physical test. The division into blocks is seldom
symmetrical, and instead of seeking to balance pairs in the blocks, one seeks
to obtain parameter estimates orthogonal to block effects. In general, the D
criterion is useful; however, when the blocks are of a size to allow estimation
of the parameters within each block, the resulting designs may be D-optimal in

14



toto, but are not necessarily D-optimum within blocks. An auxiliary criterion,
D, is then useful, which attempts to maximize the product of the determinants
of the individual blocks. Table (4) shows the cross product matrix for one block
of a 24, blocked into two 8 run blocks by using the D criterion. The model is
linear.

Table 4: Cross product of an 8 run block of a 2*

8 0 -4 0
0 8 0 O
-4 0 8 0
0 0 0 8

Using the D), criterion, the crossproduct matrix becomes diagonal, and the
block is shown in Table (5). Note that this is not the usual fractioning of a
24=1 in that no higher order interaction is used to divide the trials. The usual
fractioning results in interaction columns orthogonal to main effect columns. A
D,, design will not usually have this property.

Table 5: One block from a blocked 24

1 -1 -1 -1
-1 1 -1 -1
-1 -1 1 -1
1 -1 1 -1
-11 1 -1
1 1 1 -1
-1 -1 1 1
1 1 1 1

3 Confounding

Confounding is a very important criterion: it is a dominant factor in the struc-
ture of established designs. The fact that a parameter estimate is significant,
is always tempered by the degree to which the parameter may be confounded
with other parameters in the design. Builders of established designs have taken
pains to eliminate confounding; but this often has the side effect of producing
oversize designs.

A measure of confounding it the degree of diagonality of a design. Since
positive definite information matrices, M, have weighty diagonals®, this may be

5The 2 x 2 principal minors are positive

15



measured by comparing |M| with the product of the diagonal elements of M.
Diagonality may thus be defined as O = [|[M|/[] diag(M)]*/*, where k is the
number of columns of M.

It is important to note that a design which maximized |M]| also seems to
maximize O, which means that the confounding is minimized by designs that
maximize |M]|.

4 Examples using R

4.1 Approximate theory designs

Abstraction and simplification are often useful in understanding difficult prob-
lems, since the simpler structure often leeds to insights into the original prob-
lem. This is the case in experimental design, where the X in the basic model,
Y = X[ + ¢, can assume many forms, and almost always leads to combinator-
ial problems of one sort or another. The useful simplification, due I believe to
Elfving [4], is to write the observational weights as p = 1/N, where N is the
number of observations, and then to substitute a probability. Thus one might
write the matrix M = XTX/N = XTPX, where P is a diagonal matrix, all of
whose diagonal values are p; and then to allow the elements of P to assume any
real values, so long as the trace of P is unity. This is the germ of approximate
theory, which by an large replaces consideration of special combinatorial cases
with a unified analytical approach.

4.1.1 Support Points

One of the interesting results that flow from this simplification is that only a
subset of the possible points in an experimental region are support points for an
experimental design. Consider a simple quadratic model in three variables, and
assume that the variables can assume seven levels (—3,—-2,—1,0,1,2,3). The
candidate set has 37 possible points, and running optFedrov() with a quadratic
model in the following fashion will produce a list of the support points for the
D criterion:

dat<-gen.factorial(levels=7,nVars=3,center=TRUE,varNames=c("A","B","C"))
desD<-optFederov(~quad(.) ,dat,approximate=TRUE)
desD$design[c(1:5,23:27),]

Proportion A B C

1 0.069 -3 -3 -3
4 0.029 0 -3 -3
7 0.072 3 -3 -3
22 0.022 -3 0 -3
25 0.017 0 0 -3
319 0.024 0 0 3
322 0.020 3 0 3
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337 0.071 -3 3 3
340 0.024 0 3 3
343 0.075 3 3 3

There are 27 support points in all, and each assumes only the three values
(—=3,0,3). The support points for a quadratic model in fact correspond to the
points of a 3™ factorial, where m is the number of variables. The support
points for other criteria are different. For example, the support points for the I
criterion in this example are as below, where it may be seen that points not on
the 3™ grid are obtained.

desI<-optFederov(~quad(.),dat,approximate=TRUE,criterion="1I")
desD$design[c(1:5,27:31),]
Proportion A B C

1 0.042 -3 -3 -3
4 0.030 0 -3 -3
7 0.043 3 -3 -3
22 0.034 -3 0 -3
25 0.021 0 O -3
322 0.028 3 0 3
337 0.038 -3 3 3
340 0.035 0 3 3
341 0.002 1 3 3
343 0.040 3 3 3

This result indicates that experimental regions are not quite what they ap-
pear to be with respect to experimental designs. Even though one thinks of a
variable as continuous between some limits, the points in this region are not all
candidates for inclusion in an optimal experimental design. For example the
support points for a quadratic polynomial on the real line are the two extreme
points and the mid point. No other points are involved.

Even after accepting this fact, there are still surprises. The support points
on the real line between 1 and 2 may be obtained as follows. These may be
shown to be the support points on the continuous interval between 1 and 2.

desA<-optFederov(~“quad(.) ,data.frame(A=1+((0:100)/100)) ,approximate=TRUE)
desA$design
Proportion A

1 0.333 1.0
51 0.333 1.5
101 0.333 2.0

The slight change caused by running the interval from 1.01 to 2 produces, the
following, in which the proportions are quite different from the previous ones,
although there still remain only three support points.
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desB<-optFederov(~quad(.) ,data.frame (A=1+((1:100)/100)) ,approximate=TRUE)
desB$design

Proportion A
1 0.485 1.01
50 0.029 1.50
100 0.485 2.00

The difference between these examples is due to the fact that the precise
midpoint is not included in the second set of candidate points. When it is, the
optimum design agrees with the optimum design on the continuous interval, as
the following shows:

desC<-optFederov(~quad(.) ,data.frame (A=c(1+((1:100)/100),1.505)) ,approximate=TRUE)
desC$design

Proportion A
1 0.333 1.010
100 0.333 2.000
101 0.333 1.505

The basic conclusion from these examples is that an optimal design is a
function of the set of candidate points, and if these candidate points fail to
include the support points of the underlying continuum, the design will differ
from the optimal design on the continuum.

Atkinson and Donev [1] give a useful table of support points and their weights
for quadratic models in cubic regions on page 130.

4.1.2 Rounding Approximate Designs

The sample size for an experimental design must be integral, and thus the
question of rounding arises. The proportions in the first example in the previous
section may be rounded by specifying the nTrials parameter, as follows:

dat<-gen.factorial (levels=7,nVars=3,center=TRUE,varNames=c("A","B","C"))
desDR<-optFederov(~quad(.) ,dat,approximate=TRUE,nTrials=20)

desDR$design

Rep.. A B C
1 1 -3-3-3
4 1 0-3-3
7 1 3 -3-3
22 1 -3 0-3
28 1 3 0-3
43 1 -3 3 -3
49 1 3 3 -3
148 1-3-3 0
154 1 3-3 0
175 1 3 0 O
190 1-3 3 0
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193 1 0 3 O
295 1-3-3 3
298 1 0-3 3
301 1 3-3 3
316 1 -3 0 3
319 1 0 0 3
337 1 -3 3 3
340 1 0 3 3
343 1 3 3 3

The unrounded design had 30 support points, but the rounding has discarded
ten of them to produce a 20 run design. Had 40 trials been specified, all 30
support points would have been included and the result would have been:

desDR2<-optFederov(~quad(.),dat,approximate=TRUE,nTrials=40)
desDR$design[c(1:5,26:30),]
Rep.. A B C

1 2 -3-3-3

1 0-3-3
7 2 3-3-3
22 1 -3 0-3
25 1 0 0-3
319 1 0 0 3
322 1 3 0 3
337 2-3 3 3
340 1 0 3 3
343 2 3 3 3

The rounding is done with an algorithm for efficient rounding of experimen-
tal designs by Pukelsheim and Rieder [16] which produces the smallest loss in
efficiency for several criteria. The efficient.rounding() function is included
as part of the package.

4.2 Exact Designs

Away from the world of theory, experimental designs are composed mostly of
unique points. Some replication is done to aid in the estimation of error, but for
the most part, practical constraints dominate and limit the number of points
available. The rounding of approximate theory designs has never been very sat-
isfactory, because such designs can usually be improved upon when the sample
size is fixed. In practice, then, one has to deal with the combinatorial problem;
however, insights from approximate theory are very helpful.

The most successful algorithm for dealing with exact designs is due to
Federov (13). It starts with a non-singular design matrix, and sequentially
exchanges points until a local optima is found. Since local optimas abound, the
process is usually repeated a number of times and the best design reported.
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With the exception of Ge, the criteria efficiencies are not known for exact
designs, and it is therefore not possible to tell from their values whether or not a
design is globally optimal. The efficiencey Ge, is defined relative to the opimum
approximate theory design and is thus a useful guide when judging an exact
design. In particular, a Ge of unity not only indicates that the exact design is
optimum, but that the optimum weights are all equal.

4.2.1 Classical Designs

Classical designs can be produced algorithmically, since they are almost invari-
ably optimal designs. It is simply a matter of choosing the correct number of
trials and repeating the algorithmic calculations until the global optimum is
found. This section illustrates this. The advantage of algorithmic design lies,
however, in its ability to find optimal or near optimal designs for situations in
which classical designs do not or can not exist.

4.2.1.1 Fractional Factorial The following design is a one third fraction
of a 33. The confounding definition is AB2C?.

dat<-gen.factorial(levels=3,nVars=3,varNames=c("A","B","C"))
desT<-optFederov(~.,dat,nTrials=9)

desT$design
ABC
2 211
6 321
7 131
12312
13122
17 2 3 2
19113
23 223
27 3 3 3

4.2.1.2 Orthogonal design An orthogonal design, similar to a 12 run
Plackett-Burman design can be produced by the following. If you try this,
you may need to set nRepeats to more than 20 to get an optimum design,
which is marked by a Ge of unity.

dat<-gen.factorial(levels=2,nVars=11,center=TRUE)
desPB<-optFederov(~.,dat,12,nRepeats=20)
desPB$design
$design
X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11
180 i 1-1-1 1 1-1 1-1 -1 -1
317 -1-1 1 1 1 1-1-1 1 -1 -1
332 i 1-1 1-1-1 1-1 1 -1 -1
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609 -1 -1-1-1-1 1 1-1-1
734 1-1 1 1 1-1 1 1-1
903 -1 1 1 -1-1-1-1 1 1 1 -1
11117 -1 1 1 -1 1 -1 1-1-1 -1 1
1161 -1 -1 -1 1 -1-1-1 1-1 -1 1
156160 1 -1 1 -1-1 1 1 1 1 -1 1
1584 1 1 1 1 -1 1-1-1-1 1 1
1810 1 -1 -1-1 1-1-1-1 1 1 1
2043 -1 1 -1 1 1 1 1 1 1 1 1

4.2.1.3 Central composite A central composite design in three variables
may be obtained. This central composite is an optimal exact design. The D
and G efficiencies of the following, relative to the optimum approximate theory
design, are 98% and 89%.

dat<-gen.factorial(3,3,center=TRUE,varNames=c("A","B","C"))
desC<-optFederov(~quad(A,B,C) ,dat,nTrials=14,evaluateI=TRUE,nR=100)

desC$design
A B C

1 -1-1-1

3 1-1-1

5 0 -1

7 -1 1-1

9 1 1-1

11 0 -1

13 -1 0

15 1 0

17 0 1

-
©
|
-
|
-
B BB R RO 00O

4.2.1.4 Latin square One can even find Latin squares; although this is
more difficult, which is why it is repeated 1000 times, and that may not be
enough if you were to try it.

dat<-gen.factorial(5,3)
desL<-optFederov(~.,dat,nTrials=25,nRepeats=1000)
cs<-xtabs(~.,desL$design)
{xx<-matrix(0,5,5); for (i in 1:5) xx=xx+cs[1:5,1:5,i]l*i;xx}
X2
X1 2
3
1

N
[ B
w > w
N O
NN O
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342135
435241
524513

The reason the above designs appear, is because most classic designs are
D-optimal, and indeed the above designs are D-optimal.

4.2.2 Factorials

According to Lorenzen and Anderson [15], all linear designs are factorial, and
the various names such as Latin square, split-plot, incomplete block, etc. are
due to historical processes and not to anything essentially different in their
construction or analysis. There is considerable justification for this viewpoint,
and it does eliminate the need to treat a host of special cases which in essence
differ mostly in nomenclature. So let’s consider a few factorial designs.

4.2.2.1 Two level Designs Two levels designs are very useful. There are
statistical consultants that except for very occasional forays, use nothing else.
Such designs certainly make possible the screening of many variables, as the
12 run orthogonal design, in the previous section, illustrates. A problem with
factorial designs in general is that the number of experimental trials increases
exponentially with the number of variables, while the number of terms of interest
increases linearally. Thus the need to fraction such designs, but even this soon
runs into difficulties.

Consider a 27 design. A full factorial requires 128 trials, while a half fraction
27-1 requires 64. In both, all two-factor interactions are estimable; however,

7
there are only 1+ < 9 ) such terms. The remaining 35 degrees of freedom

are allocated to error. Surely this is wasteful, but standard methods of frac-
tioning offer no solution, since a quarter fraction leaves some of the two-factor
interactions unestimable. In