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Abstract
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1. Introduction - Automated Redistricting for Political Participation and Analysis

Legislative redistricting is among the most politically charged tasks in American politics. District

lines affect which political party wins control of a legislative body, the reelection success of incum-

bents, and election of minority preferred candidates. A recent United States Supreme Court case,

LULAC v. Perry [547 U.S. 2006], is instructional of the political consequences of redistricting. The

Court upheld parts of a controversial 2003 Texas congressional redistricting plan that promoted

the election of Republicans at the cost of incumbent Democrats, but struck down districts in the

southern part of the state that disadvantaged the election of minority candidates of choice. The

ruling capped a series of sometimes bizarre events that included the state legislature’s closure when

members fled the state and the downfall of a powerful congressional leader due to related campaign

finance violations.

http://www.jstatsoft.org/
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In the 1960s, scholars envisioned taking politics out of redistricting by automatically drawing dis-

tricts using computer programs (Vickrey 1961; Weaver and Hess 1963). After all, at its most basic

level, redistricting can be reduced to a simply stated (albeit computationally difficult) mathemat-

ical partitioning problem. These scholars reasoned that an algorithm following neutral criteria

would draw districts blind to politics. Programs were indeed developed, however, they fell short of

practical use. The problem turned out to be more computationally intensive than anticipated. The

seemingly straight-forward mathematical operationalization of common redistricting goals became

a debate subject as implementation of criteria is often percevied to have partisan consequences.

Even today, the best commercially available software cannot automatically draw congressional or

state legislative districts that would pass federal or state constitutional muster.

Redistricting’s complexity has frozen out the public from the redistricting process. Only well-funded

political organizations are capable of putting together the data, equipment, and expertise needed to

conduct a statewide redistricting. Thus, a conflict of interest develops at the expense of the public

good. While some states have attempted redistricting reform (McDonald 2006), in most states the

people who are draw the lines are the same people affected by them.

We are now revisiting advocates’ aspirations automated redistricting software. Processing power has

increased tremendously even while price has decreased, data are now easily assessible on the internet,

new optimization heuristics have emerged, and the flourishing open source programming community

has facilitated new approaches to the automated redistricting problem. We are developing just such

a program. Our program accepts a draft plan, either supplied by a user or generated randomly by

one of several algorithms. The program then employs metaheuristics to improve the plan on several

goals such as minimizing political bias, maximizing the number of competitive districts, or aligning

districts with local political or community boundaries. Although the computational problem is too

difficult to ensure that the resulting plan is optimal, it may yield a useful improvement over the

starting map and may enable public interest groups to generate viable plans.

While a computer program like this would be a powerful counterbalance to entrenched political

interests, it would be also of scholarly and legal interest by providing a powerful way to explore

the effects of redistricting goals and constraints. By taking existing, proposed, and automatically

generated hypothetical plans, and then having the computer adjust them to fit the proposed redis-

tricting rules, we are able to systematically examine the effects such rules have and the tradeoffs

those rules impose among competing redistricting goals. This methodology has long been used in

the U.K. in the field of political geography, but with rare exceptions has not been applied to U.S.

elections, in part because of the computational difficulties involved in applying this method to large

districting problems. Furthermore, by taking an existing plan and adjusting it to better meet a
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desired goal, we can explore the tradeoffs between that goal and other characteristics of the plan.

In many cases, this even yields a window into the intent of the original plans author.

We call our computer program BARD for Better Automated ReDistricting.1 The program contains

a set of open source software (licensed under the GPL) tools to automatically create and analyze

redistricting plans. These tools support both scientific analysis of existing redistricting plans and

citizen participation in creating new plans.

2. A Mathematical Formulation of Redistricting Criteria

When redistricting authorities draw district boundaries they do not simply take pen to paper.

They also analyze information associated with the geographic components of districts to ensure

that maps satisfy legal requirements. To solve redistricting problems with a computer, we must

formalize the general analogous mathematical problem. Since redistricting intrinsically involves

assigning discrete blocks of geography (or discrete individuals) to districts to achieve a set of goals

that is a function of the redistricting plan as a whole, the corresponding mathematical problem

falls into the general area of combinatoric optimization.

Perhaps among the most important criterion is that districts must have equal population,2 and the

way the U.S. Census Bureau releases population data further guides how the redistricting problem

is formalized. These data are not reported for individuals, rather, to protect the confidentiality of

respondents, data are aggregated into discrete geographic entities known as census “blocks” which

roughly conform to a city block in urban areas. It is not difficult to imagine census blocks as

corresponding to a points on a graph. Indeed, Geographic Information Systems (GIS) programs

plot the vertices of census blocks (and higher geographic units, such as counties and cities) onto a

screen for user manipulation. GIS redistricting modules enable users to assign blocks to districts

through simple point and click operations.

Characteristic data associated with each block can be displayed on screen. For example, in the

case of equal population requirements, blocks can be associated with their total population. If a

district needs more population, a user can click on blocks adjacent to a district to identify those that

will help meet a target population number. GIS programs are well-suited to display and produce

summary statistics of similar data, such as racial population data, which are used to meet target
1Tolkein fans will also recognize the reference to the slayer of the dragon Smaug, perhaps the most terrible of

salamanders.
2Congressional districts must be of less than a one percent population division to ensure that they conform to

legal standards. State legislative districts are permitted a ten percent population deviation under federal law, though

some state laws require less deviation (Cain, Donald, and McDonald 2006) .
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racial population numbers to conform with the Voting Rights Act, and election data, which are

used to predict political outcomes. Indeed, we might think of all such characteristic block data as

belonging to the same family for optimization purposes.

Another important criterion is that districts must (usually) be contiguous, or connect.3 Geospatial

coordinate data used to plot census blocks can also be used to determine if two blocks are connected

to one another. (In normal operation, the boundaries of the blocks are used to generate a complete

contiguity matrix that lists every blocks’s neighbors and thus can be used to quickly determine if

a proposed plan satisfies contiguity.)

Another quasi-geographic set of criteria that are often found in state law is ‘respect’ for geographic

or political features such as city or county boundaries, communities of interest (often defined by

redistricting authorities), or other ‘natural’ features such as rivers or mountain ranges. Capturing

these criteria mathematically is simple: any set of census blocks can be defined as belonging to

a grouping set and a penalty for splitting groups can be added to the overall rule for evaluating

(scoring) a redistricting plan. (We are sympathetic to the argument put forth by Forest (Forest

2004) that using only quantitative data to represent communities of interest can result in ‘thin’

representations of community. Using the technique just described, the BARD system can incor-

porate information about the boundaried of communities of interest based on external qualitative

analysis and “thick” descriptions.) An example of this type of community cost function is included

in the BARD package. The twist is that these criteria are often secondary to equal population,

contiguity, and Voting Rights concerns, and so the scores associated with each criterion needs to

be properly weighted, in order to permit some violation of feature boundaries to accommodate

superseding criteria.

3. Improving Algorithms for Automated Redistricting

Within the general combinatoric optimization framework are many ways to represent particular

redistricting problems mathematically (see Altman 1997). However, representing redistricting as

a graph partitioning problem is the most natural formulation, since it allows the expression of

3While this is a legal requirement in many states, it is not a Federal requirement. And there are documented

instances of non-contiguous districts or districts of questionable contiguity because they are connected over water

without a bridge (Altman 1998). For example, Wisconsin requires districts to be composed entirely of wards which

are sometimes non-contiguous when odd city boundaries create islands of incorporated or unincorporated territory.

The 61st Assembly district created in 2001 is non-contiguous as a result of containing such a ward on its perimeter.

To avoid having non-contiguous districts, the state created a legal fiction by stating that all wards are contiguous,

see Wisconsin Code 5.15(1)(b)
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geographic values, such as compactness and contiguity in a simple and direct way. Furthermore,

in previous research (below), this representation seems to be the most amenable to an efficient

solution. 4

To put the problem in formal terms:

1. Let xi refer to the i th census block, xi ∈ X where X is the set of all census blocks in a

jurisdiction. These blocks are vector-valued, and we will assume that blocks are associated to

various population values, partisan registration percentages, and geographic locations, among

other features. di refers to the i th district. A district is a set of census blocks:

di =
{
xj ,xk,...,xn

}
2. pi refers to a particular plan. A plan is a partition of the set of all census blocks X into a

disjoint set of districts, such that X =
⋃

di and ∅ =
⋂

di:5

pi = {d1,...,dn}

3. G = (V,E) is a mathematical graph representing the underlying census block geography.

Each node vi in g represents a census block, and each edge ei,j denotes physical adjacency of

those block

Figure 1 provides a graphical illustration:

Finding an equipopulous, contiguous plan is then equivalent to the following optimization problem,

known as “Cut into Connected Components of Bounded Weight”(see Altman 1997):

Is there a partition of vertices, V, into disjoint sets V1 and V2 such that∑
v∈V1

s (v) ≤ K

4Less commonly, set-partitioning and integer programming approaches have been used to solve the redistricting

problem. These are mathematically equivalent, although incorporating contiguity requires that a large number of

side constraints be enumerated in formulating each problem instance. Geographic site-selection and facility allocation

problems, as found in the operations research literature, are related to the redistricting problem but no techniques

are available currently to reformulate arbitrary redistricting problems in these terms. In terms of fundamental com-

putational complexity, the particular problem representation is less important, since one could convert a redistricting

problem instance back and forth among any different NP-complete problem representation in polynomial time. How-

ever, in practice, a proper choice of representation can make it much easier to formulate and solve the problem.
5A small number of jurisdictions permit overlapping “floterial” districts, which permit the assignment of census

blocks to more than one district. We have not implemented a metaheuristic optimization algorithm for floterial

districts.
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and ∑
v∈V2

s (v) ≤ K

and both V1 and V2 induce connected subgraphs of G?

3.1. Computational Challenges

Formally, redistricting is a computationally complex optimization problem (Altman 1997). Perhaps

the optimal plan could simply be selected by drawing all feasible redistricting plans. Unfortunately,

for the task of redistricting a state’s congressional or state legislative districts, no algorithm is

guaranteed success in a reasonable time. Consider a modest sized state such as Wisconsin, which

has slightly more than 330,000 census blocks. If blocks were of equal population, then there would

Figure 1: Illustration of redistricting as a graph problem.
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be more possible redistricting plans than there are quarks in the universe. More specifically, the

number of possible districts for a given number of blocks and districts is a Stirling Number of the

Second Kind:

S (n, r) =
1
r!

r∑
i=0

[
(−1)r (r − i)n r!

(r − i)!i!

]
The staggeringly large number of plans is actually an underestimate since blocks do not have equal

population and hence each district might contain a different number of blocks. Enumeration of all

districts with 41,250 blocks would further require drawing equal population districts with 41, 250±ε

blocks. In practice, contiguity will reduce the number of feasible plans that must be enumerated,

however, the number of possible plans is still likely to remain staggering. Thus, selecting the global

optimal plan from a full enumeration of all plans is not feasible even using the fastest computers

currently available.

Lacking enumeration, some sort of heuristic is needed to find an optimal redistricting plan. Perhaps

an optimal plan can be selected from a large number of random plans “sampled” from the feasible

space of redistricting plans. Unfortunately, random assignment of blocks to districts will often

violate equal population and will furthermore violate other criteria, such as contiguity. An algorithm

that simply assigns blocks randomly to districts would be enormously inefficient as it would produce

illegal plans with a high probability. As a consequence, a representative “sample” would still take

a prohibitively long time to draw.

A variant on simple random block assignment is a “greedy” heuristic that starts from a seed block

and randomly assigns additional contiguous blocks to a district until a target population value is

reached. The advantage of such heuristics is that they produce contiguous plans, and have thus been

touted as producing a random sample of feasible districting plans (e.g., Cirincione, Darling, and

O’Rourke 2000). However, as Knuth warns, just because an algorithm is stochastic and appears to

behave unpredictably does not mean that it produces a true random sample (Knuth 1997). Upon

reflection, heuristics such as these have a tendency to draw compact districts, since they grow

snake-like district boundary tendrils with low probability. Thus, greedy heuristics do not randomly

sample from the set of feasible redistricting plans and might fail to create a near-optimal plan even

if run a large number of times.

Perhaps a greedy algorithm could find an optimal redistricting plan if it selected blocks using

a greedy optimization algorithm to increase a more general objective function. Upon reflection,

this will not work either. For example, imagine a state must draw a district with more than a

majority percentage of minorities (so called “minority-majority” districts) to be in compliance with
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the Voting Rights Act. Imagine that there are two sizable minority communities in a state separated

by a white suburb. The only feasible minority-majority district is one that links the communities by

a narrow bridge across the suburb. A greedy algorithm aimed towards maximizing district minority

population might easily miss this arrangement because it would reject drawing the bridge.

Furthermore, districts cannot be drawn in isolation from one another. For example, suppose that

two minority-majority districts were needed to be in compliance with the Voting Rights Act and

the optimal plan was one that divided the larger of two minority communities. A greedy algorithm

might again fail because it would not orient the first district in such a manner as to permit the

creation of the second minority-majority districts (e.g., the first district is composed entirely of the

core of the minority community).

As might be expected from the theoretical computational complexity of the problems, exact (op-

timal) methods have been unsuccessful in yielding solutions to problems of significant size. The

most successful of the exact solution methods, based on integer-programming formulations, have

advanced considerably over the last decade, but are still limited to relatively small problems: In a

recent study a redistricting problem on a 30x30 grid was solved (Aerts, Eisinger, Heuvelink, and

Stewart 2003) for a fixed set of redistricting criteria, and the authors speculated that such methods

could be extended up to a 50x50 grid.

Exact solution methods are difficult or impossible to extend to arbitrary redistricting criteria. Even

integer programming, which is one of the most (if not the most) general formulations for which

exact solution methods are used, requires extensive expertise to reformulate redistricting criteria as

integer partition constraints. In contrast, success using evolutionary algorithms. on artificial grid

data of up to 500x500 has been reported for a related site-search allocation problem (Xiao 2006).

3.2. Available Working Software

Despite the long history of experiments in automated redistricting, there are few tools publicly

available for automated redistricting. To our knowledge, five commercial software tools produced

by Caliper Corporation, ESRI, Digital Engineering Corporation (which provides a redistricting

add-on for ESRI’s GIS program), Corona Solutions, and Manifold Systems provide automated

redistricting functionality (Altman, MacDonald, and McDonald 2005). 6

All of the publicly available tools are limited in several regards. First, they are capable only of

producing districts with equal population and have no means to accommodate other criteria neces-

6In addition to these companies, the Texas Legislative Council developed prior to the 2001 round of redistricting

a promising in-house automated redistricting program known as TARGET with limited exploratory capabilities.
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sary to produce legal plans. All but one program uses variations on steepest ascent heuristics, the

exception is Corona Solutions which claims to uses a single-criterion genetic algorithm. Unfortu-

nately, we do not know much about the internal workings of these programs since they are closed

source and their algorithmic details pooly documented documented (which raises transparency is-

sues similar to the controversies surrounding electronic voting machines). As the basic reditricting

GIS programs typically cost several thousand dollars (Manifold being the single notable exception),

many public interest groups are priced out of redistricting.

In our testing of these programs, we found that they could generate plans automatically, but that

these would not be considered legal plans. For example, ESRI’s automated redistricting algorithm

stops growing districts when the growing circular districts touch, yielding polka-dot districts that

leave much of a state unassigned to any district. Manifold’s algorithm apparently grows districts

around single seed blocks, sometimes producing a single-block district when other districts are first

grown around it. We do not necessarily fault these companies for their rudimentary algorithms.

There is little market demand for automated functionality as well-funded redistricting authorities

and consultants are reticent to hand over highly sensitive political decisions to a machine.

Furthermore, most experimental work, because it focuses on eliminating politics from redistricting

(which we believe to be quixotic) implements heuristics designed to satisfy compactness, contiguity,

and equal population (and much of it often takes an ad-hoc view of compactness). To our knowl-

edge none looked at either maximizing partisan advantage nor competitiveness– which makes it

impossible to use commercial software to examine the trade-offs among these potential goals.

3.3. New Computational Approaches

A more general optimization heuristic is needed. In order to be adaptable to any reasonable

redistricting goal, a successful approach should consider not only additions of single blocks to a

district core, but arbitrary exchanges of multiple blocks among districts. To avoid being trapped

in local optima, such a heuristic must be permitted to make some backwards (non-improving)

steps in search of the global optimum, such as bridging two minority communities through a white

community. These features of the redistricting problem suggest that metaheuristics may be an

effective practical solution.

Over the last two and a half decades, a set of new and surprisingly effective heuristic approaches to

large optimization problems have arisen, including simulated annealing, evolutionary optimization

(including genetic algorithms), iterated local search (including greedy randomized adaptive search),

ant colony optimization, and tabu search. These approaches, although formulated independently,
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have now been recognized as belonging to a more general metaheuristic framework.

Essentially, metaheuristics are a general approach to optimization that involves combining a set of

basic heuristics that find optima only in a local neighborhood with a larger framework for guiding

and applying these heuristics repeatedly in a large search space (See (Blum and Roli 2003), for an

in-depth survey of metaheuristics, and see (Altman 1997; di Cortona, Manzi, Pennisi, Ricca, and

Simeone 1999; Xiao 2003, and the citations therein) for surveys of other optimization algorithms

used to solve the redistricting problem). Designing and applying metaheuristics requires dynami-

cally balancing between diversification and intensification. Diversification involves generating new

candidate solutions in such a way as to thoroughly explore the solution space. Intensification in-

volves using (implicitly or explicitly) the history of candidate solutions that have been previously

evaluated to guide the direction of iterative search. Diversification is needed to have a high prob-

ability of finding the region of solutions that contains an optimal solution and intensification is

needed to find these solutions in a practical amount of time.

Heuristics that are now recognized as being forms of metaheuristic include the aforementioned

simulated annealing, genetic algorithms, tabu search, and ant colony optimization heuristics, as

well as many more. All have many variants and parameterizations, and none work well for all

optimization problems (Wolpert and Macready 1997). Finding the right solution approach for a

particular domain of problems is a matter of craft as much as science.

Although no single metaheuristic is guaranteed to be ideal, there are many reasons why the meta-

heuristic framework is an appropriate one to use for approaching redistricting:

1. First, metaheuristics have a track record of being successful on difficult combinatoric opti-

mization problems. Redistricting is an exemplar of such a problem – no sure solutions are

available and no sure solutions are likely to be discovered due to the problem’s computational

complexity.

2. Second, in experimental work the heuristics that have been most successful for redistricting-

like partitioning problems are forms of metaheuristics.

3. Third, metaheuristics do not assume a-priori a set of particular redistricting goals, or oper-

ationalization of them (Although it is still likely that a particular configuration of selected

metaheuristic is better at optimizing on one type of goal, such as compactness, than another,

such as competitiveness). By using a general metaheuristic framework we can allow the redis-

tricting plan’s author the flexibility to specify goals to be satisified, rather than hard-coding

the goals into the the solution method.
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4. Fourth, by using multiple metaheuristics to “solve” the same problem, we reduce the threat

that a particular heuristics can systematically interact with a redistricting goal (See Altman

1998) to bias the resulting plan.

Of course, we do not know what the world will be like when fully functional automated redistricting

software capable of producing legal maps are available. Our goal is to produce such software and

make it open source and freely available. We envision public interest groups would be enabled to

draw and actively lobby for their maps; courts would no longer necessarily need to adjudicate only

between maps offered to them by the political parties during litigation; academic scholars (and

expert witnesses) could use the program to explore hypothetical scenarios to test the motivations

and outcomes of redistricting; and perhaps even politicians would be interested in the software as

means to remove politics from the process.

The challenge is to develop software that can simultaneously optimize multiple criteria and produce

legal maps. Such software must also be flexible enough to satisfy differing criteria among the several

states. Ideally, the software would permit weighting of the criteria in the objective function. To

make the program politically feasible, it must also be capable of avoiding“second-order bias”(Parker

1990), that is, cleverly selecting criteria to produce a favorable political outcome. Thus, it must

also be capable of analyzing (and even incorporating into the criteria being optimized) political

characteristics.

4. BARD’s Modular Approach to redistricting

The BARD system is divided into separate independent modules in order to facilitate maintenance

and flexibility. Separate modules handle file input/output, visualization of plans, computing each

family of related scores, and each family of optimization heuristics.

Our approach divides the redistricting process into four independent phases.

The first phase comprises all initialization and configuration. The user selects the geography to

load along with any demographic and political variables and selects the set of metaheuristics to

apply. The user also configures the formula used to evaluate the plan. Typically, this formula

is a weighted combination of equal population, target racial population, compactness, geographic

constraints, and election data for predictive election outcomes. We supply these and many other

“building block” scores in BARD and users can write their own scores as well, using any function

supplied in R and any combination of demographic or geographic variables they supply with their

maps.
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The second phase comprises the generation of starting points for redistricting plans. The user may

choose to start from pre-existing plans (e.g. chosen by the legislature, or offered by a public interest

group) if available, or to have BARD generate arbitrary plans using random assignments, random

walks, or other stochastic procedures.

The third phase, applies the metaheuristics and cost function configured in phase one to the starting

points generated in phase two. This involves significant computation and should yield a plan that

is (at least) a local optimum for the given scoring formula.

The second and third phases are repeated, possibly while varying the weighting of components

of the score formula, to generate a set of plans. The resulting plans vary over the values of the

individual score components and overall score (either due to the systematic reweighting of score

components, or due to the variance among starting points).

In phase four, the set of candidate plans is analyzed. BARD outputs the range of overall scores,

the range of scores for each component, the differences among plans, and the correlations among

score components. Candidate plans may also be contrasted with the starting plans if meaningful

pre-existing starting points were selected. This analysis phase can thus reveal the trade-offs among

redistricting criteria between a starting map and an optimized map.

4.1. Optimization Details

The initial version of BARD includes both simulated annealing and genetic algorithms as optimiza-

tion metaheuristics. As (Altman, Gill, and McDonald 2003, chapter 4) explains:

Simulated Annealing (SA) exploits an analogy between the way in which molten metal freezes

into a minimum energy crystalline structure (the annealing process) and the search for a function

optimum. At each iteration, simulated annealing randomly generates a candidate point (or set of

points) within a local neighborhood of the current solution. The probability of moving from the

current solution to one of the candidate points is a function of both the difference in the value of the

objective function at each point, and a temperature parameter. At high temperatures, candidate

points that are “worse” than the current solution can be selected as the solution in the next iterate.

This helps the heuristic to avoid a local optimum. At each iteration, the temperature is reduced

gradually, so that the probability of heading downhill becomes vanishingly small.

Genetic Algorithms (GA) are a form of heuristic inspired by analogies between optimization (and

adaptation) and the evolution of competing genes. In a genetic algorithm, a population set of

candidate solutions are supplied to the optimization problem. Each solution is encoded as a string

of values. At each iteration each member of the population is subject, at random, to mutation
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(an alteration of the solution vector), hybridization (a reshuffling of subsequences between two

solutions). In addition, each round undergoes selection, where some solutions are discarded, and

some are duplicated within the population, depending on the fitness (function evaluation) of that

member.

Solving difficult optimization problems, however, is as much an art as a science. BARD incorporates

many optimizations such as dynamically updating scores based only on the parts of districts that

changed, and use of optimized “C” code to supplement the main R framework.

Optimization algorithm performance can be quite sensitive to starting values when a function has

multiple local optima. The redistricting problem is rife with local optima. In practice, optimization

algorithms can frequently become trapped in a local optima. This is true even for metaheuristics,

unless the metaheuristic can adapt (or is adpated by the researcher to) the particular problem.

Part of the difficulty lies in trying to optimize on multiple constraints, for example the case of equal

population and contiguity. A solution that scores well on equal population may have difficulty

improving to create a map with contiguous districts. Or, a map that is contiguous may have

difficulty improving to create a map that has more equal population among districts.

Another part of the difficulty has to do with the size of the local neighborhood being searched at

each iteration. Sometimes an algorithm must take large steps to escape the basin of attraction that

leads back to a local optima. For example, a simulated annealing algorithm that considered only

a single trade of census blocks among districts at each iteraction may become trapped in a local

optima more easily than one that considers trades of two or more blocks at a time.

Selecting good starting values makes it much easier for metaheuristics to yield improved plans. In

practice, when one starts with a current legal plan, it is much faster to generate a new, better-

scoring plan than when starting from an entirely random district. The problem with using the

former districts as a starting point is that political motivations that predominate the district shapes

will continue to influence the solution. In some cases, we would like to entertain solutions that are

potentially far from the former districts.

We have implemented three types of algorithms to produce district starting seeds. The first is a

simple random assignment of geography to districts, which we implement to create districts that

are near to equal population but have a small probability of being contiguous. Another algorithm,

which we call k -means, creates n districts from a n-number of random seeds by assigning all bits

of geography based on the closest seed centroid to the geography’s centroid. K -means tends to

produce nearly-contiguous (and relatively compact) districts that are of unequal population. A

third algorithm is a greedy algorithm that grows districts from seed values and builds districts by
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assigning geography that best improve on the score function. The greedy algorithm can produce

contiguous equal population districts, but tends to draw elongated districts, can get stuck, and is

computationally intensive.

We have experimented most with optimization using districts generated by random assignment and

k -means. We have found these starting maps tend to be extremes on the two dimensions, scoring

well on equal population or contiguity, but not both. Our optimization algorithm evaluates trades

of a single geography between districts. As such, we find that the optimization algorithm has

difficulty displacing itself from the local optima to one that scores well on both equal population

and contiguity.

A solution we are exploring is to dynamically aggregate selected blocks to speed computations. We

are experimenting with two solutions, one considers trades of aggregate geography, such as counties

rather than census blocks. The other considers a trade of a random point and all geography in

the closest path from the point to the candidate district. These solutions are promising, but as to

date have yet to solve our problems. The aggregate geography approach has led us to re-evaluate

implementation of the greedy starting-seed algorithm, as it may be possible to develop a less-

computationally intensive greedy algorithm that is at the same time “smart” in that it uses the

k-means algorithm to draw relatively compact districts.

5. Plan evaluation and exploration

A unique aspect of BARD’s approach is that it enables one to explore the tradeoffs between re-

districting goals, such as the de-minimis population inequality effect and district compactness, the

creation of an additional majority-minority district and the number of partisan seats, and district

competitiveness and compactness. We can repeatedly generate plans using the same set of redis-

tricting goals, while systematically changing the weight given to one (or two) of those goals, and

then examine systematic trends in plan scores in one more dimensions. For example, if plans that

are generated using a scoring rule that weights compactness heavily have significantly fewer mi-

nority districts than plans generated with a lower weight on compactness, this suggests a tradeoff

exists between compactness and minority representation.

A variant of this technique can also be applied to reveal the preferences of those who created a

districting plan. Informally, if we start with a redistricting plan chosen by a set of participants

and show that a small modification to this plan has a large impact on a particular goal, we can

infer that the author of the plan places a low value on that goal. For example, if one can make

plan more competitive, at the expense of a small degree of compactness, while keeping the plan the



Journal of Statistical Software 15

same in all other relevant ways, then we have reason to believe that the author of the plan valued

compactness over competitiveness.

Courts and litigants have used this approach informally, especially in the absence of smoking gun

evidence, when they examine characteristics of plans that were rejected to illuminate why a par-

ticular plan was accepted. For example, it has been used by academics to assess intent in North

Carolina’s redistricting in the 1990s (Gronke and Wilson 1999). Using automated redistricting it

is possible to systematize this method – BARD facilitates this.

Formally, this technique based on a fundamental axiom in economics, the Weak Axiom of Revealed

Preference (WARP) (Samuelson 1948). Any method to infer preferences from the actions of a

rational actor must rest on WARP. WARP states that if one observes a choice

{a}

from a set

{a, b, c}

then it must be the case that

a ≥ b, a ≥ c

To illustrate with a simple example, WARP implies that if I like chocolate ice cream over vanilla

and strawberry, I will choose chocolate when presented with either a choice between chocolate and

vanilla or chocolate and strawberry.

In a redistricting context, if plans a and b are available, but plan a is chosen, than it must be that

plan a is weakly preferred. Using this method to reject competing hypotheses does not require the

distributional assumptions that limit sampling heuristics. WARP is deterministic: the probability

that b > a when a is chosen, equals zero.7

We can use computationally intensive district generation techniques to reveal intent using WARP.

The optimization algorithm can map out the space of local optimum of a value function that

captures all relevant redistricting goals. For example, if there exists a plan that contains one more

minority district than an adopted map, and there is no difference in terms of other geographic and

political goals, then maximization of minority districts was not a goal of a redistricting authority.

A limitation of this approach is that a redistricting authority must be reasonably aware of the

existance of an alternative map. In some states, maps revealed through public submission phases
7 Any method for inferring intent must assume some weak collective rationality – that what is intended is also

what is chosen. If this assumption is violated, and the preferred plan is not the one chosen (at least probabilistically),

then any attempt to infer intent is futile.
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of a redistricting process can help chart a redistricting authority’s preference structure. Where

public submissions are not permitted, optimization from the starting seed of the adopted map may

reveal if there was an easily discoverable district configuration that would have improved a map on

a given criterion under study.

There are three further limitations to this approach. First, the choice of K, I, and R should

represent plausible explanations of the goals of the redistricting process in the political context

being analyzed: Like any other statistical test, a set of reasonable causal hypotheses must be a

starting point. Second, like any other analytic method, its effectiveness will depend on how

informative the data is. In some cases it may fail to reject any of the competing hypotheses, and

one may need to obtain more data, such as other plans that were under consideration. Finally, to be

interpreted as revealing preference rather than simply opportunity plans used for comparison must

have been reasonably discoverable by a redistricting authority. However, since this method uses

real plans as a starting point, our method requires only that a districting authority be aware only

of plans that were directly related to proposed plans, while most statistical methods of analyzing

plan choice assume that the districting authority was aware of, and had a choice over, of the entire

distribution of plans.

6. How to use BARD

This brief example shows how BARD can be used:

> packageDescription("BARD")

This shows the initial geography being loaded, and random starting point plans created and plotted:

> brown.map <- bardImportShape(system.file("shapefiles/Brown_block.shp",

+ package = "BARD"), galfile = system.file("shapefiles/Brown_block.GAL",

+ package = "BARD"))

> ndists <- 5

> kplan1 <- kmeansPlan(brown.map, ndists)

> kplan2 <- kmeansPlan(brown.map, ndists)

> rplan <- randomPlan(brown.map, ndists)

> cplan <- CDOcontiguityPlan(brown.map, ndists, usebb = TRUE)

> op <- par(ask = TRUE)

> plotPlan(kplan1, brown.map)
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> plotPlan(kplan2, brown.map)

> plotPlan(rplan, brown.map)

> par(op)

This is a comparison of the starting plans:

> comparePlans(list(kplan1, kplan2, rplan), brown.map, scores = list(Pop1 = score1,

+ Pop2 = score2))

This shows the cost function configuration, and optimization phase:

> funcs <- c(pop.bw, pop.mean.var)

> b.vars <- c("POP", "POP")

> var.weight <- c(1, 1)

> optim.env = new.env()

> scoreGenerator <- costWrapper(func.family = funcs, block.vars = b.vars,

+ dataframe = brown.map$shape$att.data, baseMap = brown.map,

+ ndists = 5, weight = var.weight)

> score1 <- function(plan, basemap) {

+ scoreGenerator(plan, resetScore = TRUE)

+ return(pop.bw(dataframe = brown.map$shape$att.data, baseMap = basemap,

+ ndists = 5))

+ }

> score2 <- function(plan, basemap) {

+ scoreGenerator(plan, resetScore = TRUE)

+ return(pop.mean.var(dataframe = brown.map$shape$att.data,

+ baseMap = basemap, ndists = 5))

+ }

> funcs <- c(pop.mean.var, pop.bw, pop.max.dev, compact.REOCK,

+ scoreContiguity)

> b.vars <- c("POP", "POP", "POP", "NULL", "NULL")

> var.weight <- c(2, 2, 1, 1, 2)

> optim.env = new.env()

> mymap <- function(plan, ...) {

+ plotPlan(plan, brown.map$polys, ndists, ...)
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+ }

> myscoreO <- costWrapper(func.family = funcs, block.vars = b.vars,

+ dataframe = brown.map$shape$att.data, baseMap = brown.map,

+ ndists = 5, weight = var.weight)

> gp2 <- optimGenWrapper(genPlanR, basemap = brown.map, onewayprob = 0.2,

+ plotf = NULL, DEBUG = TRUE)

> system.time({

+ plan1a <- optim(round(kplan1), myscoreO, gr = gp2, method = "SANN",

+ control = c(maxit = 1000, temp = 10, tmax = 1))

+ })

> myscoreO(plan1a$par)

> mymap(plan1a$par)

7. Summary

BARD is still in early release. However, even in its current state, it is the only open-source

redistricting system available. Moreover, BARD is the only publicly available (commercial or non-

commercial) software that does multi-criteria optimization, allowing the user to specify a formula

that includes more than one variable. Finally, BARD is unique in providing a framework for the

systematic analysis of tradeoffs in redistricting

Our package can be obtained from the project website bard.sf.net, any CRAN mirror (http:

//cran.r-project.org/).
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