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A Personal Summary of 50 Years of “Shrinkage in Regression”

As someone who has been fascinated with the posshility thet shrunken regresson coefficient
edimates might reduce MSE risk via variance-bias trade-offs and who has conducted and
published research in this area, | must say that | am absolutely delighted by the recent wide-
spread tolerance for (f not outright acceptance of) shrinkage methods.  Anyway, | wish to
summarize here some persond perspectives on why and how professona atisticians may have
become somewhat enlightened about shrinkage over the last 50 years, 1955--2005.

Ealy optimism about a theoretica bass for and the practica advantages of shrinkage amost
aurdy darted with the work of Stein(1955) and James and Stein(1961). Unfortunately this
shrinkage was adways “uniform,” thus redly doing nothing to adjust the rdative magnitudes of
corrdated regression coefficient estimates for ill-conditioning. Furthermore, dthough an overdl
improvement in the scaar value of “summed MSE risk” was guaranteed, there was no way to
know “where” in an X-gpace of 3 or more dimensions, risk was actudly being reduced. In
fact, researchers on norma-theory minimax edimaion in regresson [such as
Strawderman(1978) and Casella(1980,1985)] found that, when a specific “location” for
improved risk was specified, their estimates succeeded only by concentrating shrinkage
somewhere else! Besides, the earlier work of Brown (1975) and Bunke(1975a, 1975b), was
redly the beginning of the end for minimax research. After dl, only OLS egtimation can be
minimax when one's risk measures are truly multivariate (matrix rather than scalar valued.) |
persondly would like to think that modern researchers and regression practitioners view
dhrinkage esimators as attractive, practicd dternatives to OLS estimation in ill-conditioned
models even though there cannot be any truly meaningful way to dominate OLS on MSE risk.
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On the other hand, the red gold-rush of interest in (non-uniform) shrinkage in regresson is
undoubtedly due to the pioneering “ridge” work of Hoerl (1962) and Hoerl and Kennard
(1970a, 1970b.) Some of their terminology was mideading (e.g. their “too longness’ argument
was actualy based upon a smple measure of coefficient variability), and their conjectures that it
should be “easy” to pick shrunken estimators from a graphica trace display tha would
dominate OLS in MSE risk were, in fact, unquestionably naive. Meanwhile, amgor frugtration
for me, personally, was that my research on shrinkage at Bell Labs in the 1970s lead to open
conflict with John Tukey. This started when my management was informed that Tukey had
been consgently disparaging shrinkage methods a professona mestings in the 1970s and
continued to the point where, ultimately, we formaly commented on each other’s papers and
regresson traning maeriads. There were many authoritative critics of shrinkage “optimism”
back then, and | hope that their unyielding skepticism will someday be discounted and forgotten.

The most widely accepted forms of shrinkage in regression today are undoubtedly the random
coeffident BLUP estimates from Henderson's mixed modd equations, as implemented in SAS
proc mixed and the Ime() and nime() R functions. See Robinson (1991), Littel, Milliken, Stroup
and Wolfinger(1996) and Pinheiro and Bates(1996).

Looking back upon my persona contributions to the literature on shrinkage in regression, | can
only lament that my writings lacked focus and clarity. | clearly love detals, mysdf, and my
papers have always been chuck-full of many-too-many aternative concepts. For example, my
1975 invited paper in Technometrics might have had much moreimpact if | had only picked a
dightly different title!  With some minor changesin emphass, that paper could have easily been,
say, “Maximum Likelihood Shrinkage in Regression.” Instead, this work became identified with
both “ridge andyds’ (as averse the ridge regresson) and “preiminary-test estimation” ...and
rightfully remains obscure today.

Next, | became sufficiently frustrated by the process of getting a second shrinkage paper
published in Technometrics (delayed until 1977) that | decided to submit an important
gpplications manuscript on shrinkage to Annals of Statistics. Some inexplicable delays again
occurred, and that paper was delayed until 1978. This paper derived the “ridge function
theorem,” the “excess mean squared error matrix,” the “inferior direction,” and the “2/P-thsrule
of thumb” for limiting shrinkage, plus their individud Maximum Likdihood (ML) estimators for
disolay in TRACE plots. These graphics have clear practicd implicaions; they show exactly
“where and how” MSE risk migt be reduced by shrinkage. These diverse TRACE
visudization tools are implemented in my freeware dgorithms for regresson ghrinkage in
XligpStat, R, S-plus, Stata, GAUSS and SASIML.

Findly, | developed a closed form expression, Obenchain(1981), for the norma-theory ML

edimator within the 2-parameter Goldstein and Smith (1974) shrinkage family. Unfortunately,
none of my atempts to present this materia in a peer-reviewed publication succeeded.

sof t RX Shrinkage in Regression Page 2



The bottom-line on ML shrinkage is Smply that the linear estimator that is Mogt Likely to be
“optima” under normd-digtribution-theory is actudly a nonlinear estimator. The MSE risk
profile of an ML shrinkage estimator can dways be smulated, if not computed exactly. While
being nowhere close to the “dominant” risk profile of the unknown optima linear estimator,
achievable ML profiles can neverthdess be impressively “conservative” In smple one-
dimensiona cases, ML shrinkage can reduce MSE risk by about 50% in favorable cases (with
low sgnd and/or high uncertainty) while increasing risk by a most 20% in unfavorable cases.
In high-dimensond Stuations, a savings of more than 50% is possible when the worst caseis a
loss of less than 5% in MSE risk. However, as Burr and Fry(2005) have noted, the key tactic
in shrinkage estimation is definitdy to be “cautious’ rather than “greedy.”

Frank and Freidman(1993), Breiman (1995), Tibshirani (1996), LeBlanc and Tibshirani (1998)
and Efron et a. (2004) are currently keeping the shrinkage regresson “home fires’ burning for
exploratory andyses of gigantic datasets. Least Angle (LA) regression usudly starts with an
intial solution vector longer that the OLS vector. No reduction is MSE risk reativeto OLSis
then possible until the LA solution ultimately becomes a genuine shrinkage estimator.

The RXshrink Package

The RXshrink package for R is fully documented with *.Rd, *.tex, *.html and *.chm files.
The additiond information provided here is purely supplementd.

Traditiond visudizations of shrinkage regresson computations use "trace’ plots. In atrace, P
quantities (several estimated coefficients, risks, shrinkage factors, etc.) are plotted verticaly
againg a horizontd indicator of the extent of shrinkage. Traditiona “ridge’ traces digplay the
Ordinary-Least-Squares (OLS) solution at their left-hand extreme and cover the full range of
ghrinkage that culminates in "totd" shrinkage a their right-hand extreme (where al * centered”
regresson coefficient estimates become zero.) Here, P denotes the number of non-constant
predictor variables in the regression model. RXshrink functions require Pto be at least 2.

RXridge, RXtrisk and RXtsmu use the "Multicollinearity Allowance," denoted by MCAL
(or amply M), as its measure of the EXTENT of shrinkage aong generdized ridge paths
whose SHAPE (or curvature) is controlled by a parameter denoted by QPAR (or smply
Q.) Seethe TECHNICAL APPENDIX at the end of this documentation for definitions of
both MCAL and QPAR.

RXlalso and RXudars use a horizontd trace scding equivdent to "Multicollinearity
Allowance' but display a P-parameter path with shrinkage factors ordered by the strengths
of observed correlaions with Y instead of by the relative spreads of the given X-regressor
coordinates (in the same order as the precison of component estimates.) In fact, RXucdlars
could use a closed form expression for its LA shrinkage ddlta-factors (which exists because
X-space principa coordinates are uncorrelated.)
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RXghrink functions attempt to identify shrunken coefficient estimates that are either "good"” in the
sense that they dominate least squares estimates in every (multivariate) Mean Squared Error
sense or are "optimd” in one well-defined (univariate) MSE sense.  Definitions for "good" or
"optima" ridge shrinkage factors are based upon risk (expected loss) caculations that gpply to
al forms of atidticd digributions. But the ML inferences for the P-parameter and 2- parameter
dhrinkage paths explored by RXshrink functions are based upon standard normal-distribution-
theory.

GUIDELINES for Interpretation of Shrinkage Trace Plots

| This trace shows how regression coefficient point estimates |
| change as shrinkage (along a path of shape Q occurs. Any |
| coefficient estimate that is numerically "stable” will plot |
| close to the straight Iine fromits |east-squares estimte at

| MCAL=0 to zero at MCAL=P. Unstable coefficient estimates |
| will change nore quickly, possibly sw tching nunerical sign, as

| soon as MCAL starts increasing fromzero. Super-stable |
| estimates will change only very little initially, finally |
| approaching zero only as MCAL approaches P. |

| Estimated "Scal ed” Ri sk (Mean-Squared-Error) Trace

This trace gives normal distribution theory, "nodified" maxinmum
i kelihood estimtes of "scaled" risk (nmean-squared-error
| oss) as shrinkage of shape Q occurs.
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| error (disturbance term) variance. In other words, scal ed
| ri sk expresses inprecision in fitted coefficients as a
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Maxi mum | i kel i hood scaled risk estimates are "nodified,"”
first of all, so as to be unbiased. Then they are adjusted
upward, if necessary, to have correct range relative to a
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known | ower bound on scal ed risk, which re-introduces bi as.
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| Excess EigenVal ues Trace

e .. +

| This trace plots the EigenValues of the estimated difference in
| Mean Squared Error matrices, ordinary |east squares minus ridge.
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| As long as all EigenValues are zero or positive, there is good
| reason to hope that the corresponding ridge estimtors yield |
| smaller MSE risk than Least Squares for all directions in |
| P-space (i.e. all possible |inear conmbinations.) As shrinkage
I I

conti nues, at nost one negative EigenValue will appear.
o m ot m e e o e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e oo o - +
o e m e e e e e e e e e e e em oo o s +
| Inferior Direction-Cosine Trace
o e m o e e e e e e e e oo oo o e e e e e e e e e e e e e e e o — oo +

| This trace plots the Direction Cosines (nornmelized Ei genVector)

| corresponding to any negative EigenValue of the difference in |
| MeanSquaredError matrices, OLS - ridge. This direction gives

| that single Iinear conbination of ridge regression coefficients

| that not only fails to benefit fromridge shrinkage of shape Q

| but probably actually suffers increased risk due to shrinkage.

| Shrinkage Factor Pattern Trace |
| This trace plots the Delta Shrinkage-Factor Pattern as shrinkage
| of shape Q occurs. All deltas are equal when Q=1; the trailing

| deltas are small when Q < 1; and the | eading deltas are small
| when Q > 1.
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| TECHNI CAL APPENDI X. . . ... "Extent" and "Shape" of Shrinkage in the
| Two- Par aneter Generalized Ridge Famly.

MCAL = the "Multicollinearity Allowance" paraneter that indexes
the "extent" of ridge shrinkage al ong any ridge path.
R - trace( R x R diagonal matrix of Delta Shrinkage Factors ).

MCAL = 0 ...yields zero shrinkage. This is the "starting point" of the
ri dge path, where the ridge estimtor coincides with the
Ordinary Least Squares estimator at the | eft-hand extrene
(because all R of the Delta factors are equal to 1.)

MCAL = R ...yields "total" shrinkage. This is the right-hand "end

point" of the path, where the ridge estimator is all ZEROCS
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Again, MCAL = R - Delta[l] -...- Delta[R], where Delta[j] is the ridge
"shrinkage factor" applied to the j-th uncorrel ated conponent, c[j], of

Bzero . The average value of Delta[l],...,Delta[R] is (RM/R which is
Theil's "proportion of posterior precision in Bstar due to sanple
information." Mre inportantly, MCAL can be interpreted as the
approximate deficiency in the rank of (I - 11'/ N) X For exanple, if

the regressor matrix has only two relatively small singular val ues, then
the coefficient ridge trace is expected to "stabilize" at about MCAL =
2. Perfectly stable relative nagnitudes plot on the MCAL-scal e as
straight lines all intersecting at MCAL = R and Bstar = 0.

Q = the ridge paraneter that controls the "shape" (or "curvature") of
the ridge path through regression coefficient |ikelihood space.

+

.yields uniform shrinkage (all Shrinkage Factors equal.)
.yields Hoerl-Kennard "ordi nary" ridge regression

.is usually very close, nunerically, to "Principa
Conmponents Regression,” with exact agreenent in the
limt as Q approaches mnus infinity.

OO0
(TR
g o

Shri nkage Factor Fornmul as. ..

Nunmber of Predictor Variables (non-constant Regressors),
Rank of the Centered Predictor Variable X-matrix,
Nunber of Observations (or Regressor Conbinations), and

Z 070
I n

generalized ridge regression "Shrinkage Factors" are of the form..

Ei genVal ue

Del ta

or, equivalently,... 1

1 + Konstant *Ei genVal ue®"(Q 1)

Enmpirical evidence that choice of "shape" as well as "extent" of
shri nkage can be rewarding is given in the follow ng table..

M n. MeanSqErr M n. MeanSqEr r

Dat a Set Nunber of Nunber of Ext ent of Shri nkage
Nane bservations Predictors Shrinkage Shape

FACE dat a N = 21, R = 10, MCAL = 2.3, shape = +. 77
Air Pollution N = 60, R = 15, MCAL = 5. 4, &shape = +.07
and Mortality

Acetyl ene N = 16, R =09, MCAL = 5. 2, shape = -.35
Ten- Fact or N = 36, R = 10, MCAL = 3.6, shape = -.78
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Stack Loss N = 15, R = 3, MCAL = 0. 24, shape = -.95

Mantel |, Bell N = 25, R = 3, MCAL = 0. 95, shape = -1.1
Productivity

Wbod Beam N = 10, R = 2, MCAL = 0. 26, shape = -1.4
Longl ey N = 16, R = 6, MCAL = 4.0, shape = -1.4
Hocki ng MPG N = 32, R = 10, MCAL = 8.8, shape = -7.6
Di esel data N = 44, R =09, MCAL = 4.9, shape = -20
Port ! and N = 13, R = 4, MCAL = 3.0, shape = -1 NF.

Cenment, Hal d.

Dat a Set Nunber of Nunber of M n. MeanSqErr M n. MeanSqEr r
Nane bservations Predictors Extent of Shri nkage
Shri nkage Shape
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