
RandVar: Implementation of random variables by means of

S4 classes and methods

Matthias Kohl
e-Mail: matthias.kohl@stamats.de

October 2, 2007

Abstract

In this package we implement random variables by means of S4 classes and methods.
This vignette corresponds to Appendix D.2 in Kohl (2005) [3].

Contents

1 S4 Classes 2

2 Functions and Methods 3

3 Odds and Ends 9

1



1 S4 Classes

The S4 class RandVariable (cf. Figure 1) has the slots Map, Domain and Range where Map
contains a list of functions which are measurable maps from Domain to Range. The elements
contained in the list Map must be functions in one argument named x. We do not allow
further parameters for these functions as this would lead to inconsistent objects. Strictly
speaking, an object of class RandVariable would represent not only one random variable
but a whole set of random variables depending on these parameters.

The slots Domain and Range are filled with an object of class OptionalrSpace; i.e.,
they contain NULL or an object of class rSpace (see package distr [4]). In case of Eu-
clRandVariable and RealRandVariable the slot Range is filled with an object of class
Euclideanspace and Reals, respectively. The class EuclRandMatrix additionally has the
slot Dim which is a vector of integers and contains the dimensions of the Euclidean random
matrix.

Using these S4 classes there are two possibilities to implement a Rk valued random
variable. First, we could define a EuclRandVariable whose slot Map contains a list with
one function which maps to Rk; i.e., the slot Range is a k-dimensional Euclidean space.
Second, we could define a EuclRandVariable whose slot Map contains a list with n functions
(projections) which map to Rm where k = m ∗n. Now, the slot Range is an m-dimensional
Euclidean space. Since it is sometimes convenient to regard a Rk valued random variable as
measurable map consisting of Rki valued maps where

∑
ki = k, we introduce a further class

called EuclRandVarList. With this class we can now define Rk valued random variables as
a list of Rki valued random variables with compatible domains. More precisely, the elements
of a EuclRandVarList may even have very different ranges (not necessarily Euclidean
spaces) they only need to have compatible domains which is checked via the generic function
compatibleDomains.

2



RandVariable

Map : list

Domain : OptionalrSpace

Range : OptionalrSpace

EuclRandVariable

Range : EuclideanSpace

EuclRandMatrix

Dim : integer

RealRandVariable

Range : Reals

Figure 1: Class RandVariable and subclasses.

2 Functions and Methods

As in case of package distrEx [4], we follow the advices of Section 7.3 of [1] and [2]. That
is, we introduce generating functions as well as accessor and replacement functions. A
short description of the implemented generating functions is given in Table 1.
While there are accessor functions for all slots of the newly defined S4 classes, replacement
functions are only implemented for those slots a user should modify.

Our next goal was that one can use these classes of random variables like ordinary

3



Generating Function Description
EuclRandMatrix Generates an object of class EuclRandMatrix
EuclRandVariable Generates an object of class EuclRandVari-

able
EuclRandVarList Generates an object of class EuclRand-

VarList
RandVariable Generates an object of class RandVariable
RealRandVariable Generates an object of class RealRandVari-

able

Table 1: Generating functions of package RandVar.

numeric vectors or matrices. Hence, we overloaded the S4 group generic functions Arith
and Math as well as matrix multiplication %*%. For the matrix multiplication of EuclRand-
VarLists we additionally introduced the operator %m%. Now, if we have random variables
X and Y, a numerical vector v and a numerical matrix M (with compatible dimensions) we
can for instance generate

> library(RandVar)

> (X <- RealRandVariable(Map = list(function(x) {

+ x

+ }, function(x) {

+ x^2

+ }), Domain = Reals(), Range = Reals()))

An object of class "RealRandVariable"
length of Map: 2
Domain: Real Space with dimension 1
Range: Real Space with dimension 1

> Map(X)

[[1]]
function (x)
{

x
}

[[2]]
function (x)
{

4



x^2
}

> evalRandVar(X, 2)

[,1]
[1,] 2
[2,] 4

> evalRandVar(X, as.matrix(seq(2, 10, 2)))

, , 1

[,1] [,2] [,3] [,4] [,5]
[1,] 2 4 6 8 10
[2,] 4 16 36 64 100

> R1 <- exp(X - 1)

> Map(R1)

[[1]]
function (x)
{

f1 <- function (x)
{

f1 <- function (x)
{

x
}
f1(x) - 1

}
exp(f1(x))

}
<environment: 0x024d9e60>

[[2]]
function (x)
{

f1 <- function (x)
{

f1 <- function (x)
{

5



x^2
}
f1(x) - 1

}
exp(f1(x))

}
<environment: 0x024d9e60>

> R2 <- exp(X - 1:2)

> Map(R2)

[[1]]
function (x)
{

f1 <- function (x)
{

f1 <- function (x)
{

x
}
f1(x) - 1L

}
exp(f1(x))

}
<environment: 0x022ca494>

[[2]]
function (x)
{

f1 <- function (x)
{

f1 <- function (x)
{

x^2
}
f1(x) - 2L

}
exp(f1(x))

}
<environment: 0x022ca494>

> (Y <- RealRandVariable(Map = list(function(x) {

6



+ sin(x)

+ }, function(x) {

+ cos(x)

+ }), Domain = Reals(), Range = Reals()))

An object of class "RealRandVariable"
length of Map: 2
Domain: Real Space with dimension 1
Range: Real Space with dimension 1

> Map(Y)

[[1]]
function (x)
{

sin(x)
}

[[2]]
function (x)
{

cos(x)
}

> R3 <- X %*% Y

> dimension(R3)

[1] 1

> 2 * sin(2) + 2^2 * cos(2)

[1] 0.1540075

> (R4 <- X %*% t(Y))

An object of class "EuclRandMatrix"
Dim of Map: 2 2
Domain: Real Space with dimension 1
Range: Euclidean Space with dimension 1

> dimension(R4)

[1] 4

7



> (M <- matrix(c(2 * sin(2), 2^2 * sin(2), 2 * cos(2), 2^2 * cos(2)),

+ ncol = 2))

[,1] [,2]
[1,] 1.818595 -0.8322937
[2,] 3.637190 -1.6645873

> (R5 <- M %*% R4)

An object of class "EuclRandMatrix"
Dim of Map: 2 2
Domain: Real Space with dimension 1
Range: Real Space with dimension 1

We also implemented S4 methods for the generic function E of package distrEx [4]. That is,
given some distribution D, respectively some conditional distribution CD and some random
variable X we can compute the (conditional) expectation of X under D, respectively CD
simply by

> D <- Norm()

> E(object = D, fun = X)

[1] 2.792788e-16 9.999942e-01

> E(D)

[1] 0

> var(D)

[1] 1

> (CD <- LMCondDistribution(theta = 1))

Distribution object of class: AbscontCondDistribution
theta : 1
intercept : 0
scale : 1
## cond:
name: conditioning by an Euclidean space
Range: Euclidean Space with dimension 1

> E(object = CD, fun = X, cond = 2)

8



[1] 2.000000 4.999993

> E(Norm(mean = 2))

[1] 2

> E(Norm(mean = 2), fun = function(x) {

+ x^2

+ })

[1] 4.999993

for some given condition cond.
In addition, we define methods for the generic function show for the classes RandVari-

able, EuclRandMatrix and EuclRandVarList. There are also methods for the generic
functions dimension (see package distr [4]), length, ncol, nrow, t and [ (cf. package
base). For more details we refer to the corresponding help pages.

Finally, we introduce several new generic functions. A brief description of these func-
tions is given in Table 2.

Generic Function Description
%m% matrix multiplication for EuclRandVarLists
compatibleDomains test if the domains of two random variables are

compatible
evalRandVar evaluation of random variables
imageDistr image distribution of some distribution under

some random variable
numberOfMaps number of functions contained in the slots Map

of the members of a EuclRandVarList

Table 2: New generic functions of package RandVar (without accessor and replacement
functions).

For more details about the full functionality of package RandVar we refer to the source
code and the corresponding help pages, respectively.

3 Odds and Ends

The main issue is to reduce the computation time for methods using objects of class Rand-
Variable and its subclasses as these classes play an important role in the computation of
optimally robust estimators; confer Kohl (2005) [3]. In particular, we are looking for ways
to increase the computation speed of evalRandVar and E.

9



References

[1] Chambers J.M. Programming with data. A guide to the S language. Springer.
http://cm.bell-labs.com/stat/Sbook/index.html 3

[2] Gentleman R. Object Orientated Programming. Slides of a Short Course held in Auck-
land . http://www.stat.auckland.ac.nz/S-Workshop/Gentleman/Methods.pdf 3

[3] Kohl M. Numerical Contributions to the Asymptotic Theory of Robustness. Disserta-
tion, Universität Bayreuth. See also http://stamats.de/ThesisMKohl.pdf 1, 9

[4] Ruckdeschel P., Kohl M., Stabla T., and Camphausen F. S4
Classes for Distributions. R-News, 6(2): 10–13. http://CRAN.R-
project.org/doc/Rnews/Rnews 2006-2.pdf See also http://www.uni-
bayreuth.de/departments/math/org/mathe7/RUCKDESCHEL/pubs/distr.pdf 2,
3, 8, 9

10


	S4 Classes
	Functions and Methods
	Odds and Ends

