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Abstract

Motivation: Designed gene expression micro-array experiments, consisting of several treat-
ment levels with a number of replicates per level, are analyzed by applying simple tests for group
differences at the per gene level. The gene level statistics are sorted and a criterion for selecting
important genes which takes into account multiplicity is applied. A caveat arises in that false
positives near the top of the sorted list can occur when genes having very small fold-change
are compensated by small enough variance to yield a large test statistic. Several authors have
proposed the incorporation of shrinkage estimators to stabilize the estimated per gene variance
paramters. We propose the use of a shrinkage variance Hotelling T-squared statistic in which
the per gene sample covariance matrix is replaced by a shrinkage estimate borrowing strength
from across all genes.
Results: Benchmarking simulation study comparing the performance of the proposed statistic
against another recently proposed statistic was conducted using data drawn from (i) our model
assumptiions: conditionally multivariate normal with inverse Wishart variance/covariance (ii)
the model assumptions of the recently proposed statistic: conditionally i.i.d. normal with inverse
gamma variance and (iii) a model violating both sets of assumptions. The previously proposed
statistic performs slightly better only under its more restrictive set model assumptions. In all
other cases our statistic performs as well when expected group variances are the same and better
when the expected group variances differ.
Availability: An R package, SharedHT2, capable of performing all calculations mentioned
in this manuscript and more is available from the R project website, www.r-project.org, in the
contributed packages section.
Contact: izmirlian@nih.gov
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1 Introduction

Designed gene expression micro-array experiments, consisting of several treatment levels with a

number of replicates per level, are analyzed by applying simple tests for group differences at the

per gene level. The gene level statistics are sorted and a criterion for selecting important genes

which takes into account multiplicity is applied. A caveat arises in that false positives near the top

of the sorted list can occur when genes having very small fold-change are compensated by small

enough variance to yield a large test statistic. One of the first attempts around this caveat was the

development of “significance analysis of micro-arrays” or (SAM), [Tusher et al., 2001], which used a

modified t-type statistic thresholded against its permutation distribution. The key innovation of the

modified t-statistic was the addition of a constant to the per gene standard errors in order to stabi-

lize the coefficient of variation of the resulting test statistic. Since then, ([Wright and Simon, 2003],

[Lönnstedt and Speed, 2002]) several authors have proposed the use of shrinkage variance estimator

in conjunction with t-type and more generally, ANOVA type tests at the gene level. One advantage

of this latter approach is that it doesn’t require the computation of ad-hoc fudge constants. In the

situation under study, e.g. a hypothesis driven experiment consisting of a small number of experi-

mental groups, a natural model is the per gene linear model on the appropriate scale, leading to a

per gene ANOVA type test of the null. Recent work, ([Wright and Simon, 2003], [Cui et al., 2005],

[Lönnstedt et al., 2005]), presented a model in which the per gene residual variance parameters were

considered to be draws from an inverse gamma distribution, resulting in a “(equal variance) shrink-

age variance test” that could potentially have gains in efficiency depending on the heterogeneity of

the extra gene variability. The idea of using a shrinkage estimate of within group variance has also

been persued by others such as [Baldi and Long, 2001], and [Menezes, 2003]. A common assump-

tion made is that, conditional upon a per gene random variance parameter, that the experimental

group expression values are independant and have common variances. In order to circumvent this

restrictive assumption, we extend that work to the multivariate setting arriving now at a whole class

of hypothesis tests based upon a shrinkage variance Hotelling T-squared. If there is any appreciable

between-group correlation, this approach constitutes a more efficient use of the scarce data available

per gene data. Furthermore, as we shall point out in this work, the incorporation of a shrinkage

variance/covariance estimator into the usual Hotelling T-squared statistic accomplishes the goals of

the earlier innovations to an even greater degree.
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2 Background and Motivation: Designed Gene Expression

Micro-Array experiments

The impetus for this work were two microarray studies with which the authors have been in-

volved. The first of these was a spotted cDNA array experiment studying the effects of the

isoflavone/phytoestrogen genestein on gene expression in the LnCAP cell line. Several batches of

colonies were treated with either 1µM, 5µM, 25µM, genestein or control media and allowed to grow

for 24 hours. Messenger RNA (mRNA) isolated from each of the treated groups was hybridized onto

the green channel of a corresponding micro-array, while mRNA isolated from the control treated

colony was hybridized onto the red channel of each micro-array. This experiment was conducted

independently and in identical fashion on three separate dates. Systematic variability occuring from

array to array and within array were adjusted out in the manner suggested by [Duduoit et al., 2000].

Within each experimental replicate and for each gene, the log base two of the ratio of normalized

green to red channel expression values were calculated and used in subsequent analysis. The research

questions being investigated were (i) whether there was differential expression between the green and

red channels under treatment with genestein at any of the three concentrations, and if so (ii) was

there a trend in this effect.

The second study was an oligonucleotide micro-array experiment studying the effects of two

hormones, dehydroepiandrosterone (DHEA) and dihyrotestosterone (DHT), on gene expression in

the LnCAP line. Again, several batches of colonies were treated with either DHEA, dhT, or control

media and allowed to grow for 24 hours. mRNA isolated from each of the two treated colonies

as well as from the control treated colony was hybridized onto one of three corresponding single

channel oligonucleotide arrays. The raw image files, in CEL format, were imported into the R

statistical computing platform [R Development Core Team, 2004]. For each gene, the probe set was

summarized into a model based gene expression index [Li and Wong, 2001], using the Bioconductor

suite of add-on libraries for R [Bioconductor Development Team, 2004]. Within each experimental

replicate and for each gene, the log base two of the expression ratios of treatment to control were

calculated and used in subsequent analysis. The research questions here were (i) whether there was

differential expression between treatment and control under treatment with either hormone, any

of the three conditions, and if so (ii) was there differential expression between the two treatments.

These questions were investigated at two levels: a stringent criterion produced four significantly

3



differentially expressed genes, and then a less stringent criterion was used to form a longer list for

cross-referencing with simple gene ontology genelists for purposes of identifying potentially important

pathways. We return to discussion of these two applications in a later section.

3 The Shared Hotelling T-squared statistic

As indicated in the introductory remarks above, the new methodologic tool introduced here is a

Hotelling T-squared statistic for a variety test of the null which incorporates a shrinkage estimate

of the per gene residual variance/covariance matrix. Suppose that each preprocessed microarray

yields expression levels on each of G genes. In the type of studies dealt with here we have a total of

n × d such microarrays arising from n identical replicates of an experiment having d experimental

conditions or “treatments”. Here as is usually the case, the measurements being analyzed will be

the log base two of a treatment to control ratio. For each of the 1 ≤ g ≤ G genes, we consider these

measurements as an i.i.d. sequence of d-demensional random variables, {Yg,i : i = 1, 2, . . . , ng},

where we allow the possibility that there may be a different number of measurements for different

genes due to reading errors. We assume such missingness is completely at random. Let Ȳg and

Sg be the d-dimensional sample mean and unbiased sample covariance matrix corresponding to the

sample {Yg,i : i = 1, 2, . . . , ng}. Denote by Fn1,n2 and Fn1,n2,θ the CDFs corresponding to central

and non-central F−distributions, respectively, of degrees n1 and n2, the latter having non-centrality

parameter θ. The following theorem shows that, under an assumed conjugate prior, we can replace

the estimated covariance matrix in the usual Hotelling T-squared test with a shrinkage estimate and

still retain the property that the resulting test has an F distribution under the null hypothesis with

the usual degrees of freedom incremented by the shape parameter corresponding to the prior.

Theorem 1: Suppose that ming ng > d and for a given gene, g, that

1. conditional upon Σ| g, {Yg,i : i = 1, 2, . . . , ng} is i.i.d. Nd(µ,Σ| g),

2. {Σ| g : g = 1, 2, . . . , G} is i.i.d. InvWishartd(ν,Λ) and independant of the above.

Let T 2
g = ngȲ

′
g

(
(ng − 1)Sg + Λ

)−1

Ȳg.

Then under H0 : µ = 0d, ShHT2g =
ng + ν − 2d− 1

d
T 2
g

has the Fd,ng+ν−2d−1 distribution. (1)
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The model in items 1 and 2 above is called the multivariate normal/inverse Wishart (MVN/IW)

model in the following. The above statistic has the potential for fair sized gains in efficiency. The

most ideal situation occurs when the average (over genes) of the within gene variability is reasonably

small but there is reasonable spread across genes in the magnitude of this variation. In such a case,

the parameter Λ would not add so much magnitude to the denomenator, while the shape parameter,

ν would gives us extra degrees of freedom as if we had more replicates per experimental condition.

In reality there is trade off between these two phenomena, and one checks for gain in efficiency by

comparing with the standard Hotelling T-squared.

Next, we note that, as is the case in the usual Hotelling T-squared statistic, a whole family

of statistics arises by applying a linear transformation. We state this as a corollary to the above

theorem.

Corollary 1: Assume conditions (1) and (2) above except without any restriction on d and ng

relative to oneanother. Consider the matrix M , which is chosen to be of dimension q × d of rank

r < ming ng. Then we can replace Ȳg , Sg ,Λ and d by MȲg,MSgM
′,MΛM ′ and r in the theorem

above and the conclusions still follow.

The above theorem and its corollary are used to test a variety of null hypotheses, H0 : Mµ = 0

where µ = IEY1. There are three natural choices for M . Call these the “zero means” contrast,

Mµ0 = Id, the “equal means” contrast, Mµeq = Id − 1
nJd,d,and the “no trend” contrast, Mtrend0 =

{(uu′)−1 u′}2. Here, Id is the d-dimensional identity matrix, Jp,q is a p × q dimensional matrix of

ones, and u = [Jd,1, [0, 1, . . . , d − 1]′]. Note the requirement in corollary 1 above that the rank of

M be less than the number of replicates, n. This results in the following requirements for each of

the three above mentioned contrasts: (i) zero means: n > d, (ii) equal means: n > d − 1, (iii) no

trend: n > 1 and d > 2. The application of these results to testing hypotheses in the analysis of

both cDNA and oligonucleotide arrays will be clearly laid out in the section which follows.

Notice in the definition of the statistics ShHT2g given above in 1, the parameter matrix, Λ, and

the shape parameter, ν arising in the prior distribution of Σ| g are assumed to be “known”. The next

result is used to estimate Λ and ν via maximum likelihood using data on the per gene empirical

variance/covariance matrices, Sg , g = 1, . . . , G which under our model are i.i.d. draws from the

density given below in 2.
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Theorem 2: Under the conditions of theorem 1, Ag = (n− 1)Sg has density function equal to

f(A) =
Γd

(
ν+ng−d−2

2

)
|Λ|(ν−d−1)/2 |A|(ng−d−2)/2

Γd

(
ng−1

2

)
Γd

(
νg−d−1

2

)
|Λ +A|(ν+ng−d−2)/2

. (2)

4 Software: R package SharedHT2

An R package for conducting analyses using the methods of this paper has been created and is

available for download at the CRAN website. One of the most desirable facets of this package is

that it is entirely coded in C with minimal processing done in R. The main function “EB.Anova”

fits the MVN/IW model to micro-array data and calculates the per gene ShHT2 statistics shown

in formula 1 in theorem 1 when the argument “Var.Struct” is set to “general”. In this case, the

ordinary HT2 statistics are calculated as well. In addition, the same function can be used to fit

the normal/inverse gamma model of [Wright and Simon, 2003] and calculate the ShAnF statistics

shown in formula 4 in the preceding section by setting the argument “Var.Struct” to “simple”. In

this case, the ordinary AnF statistics are calculated as well. In both cases, the models are fit using

maximum likelihood estimation. There is flexibility in the choice of hypothesis test via setting the

argument “H0” to one of the following choices. Under the “general” variance structure option, (i)

if n > d, the H0=“zero.means” null may be tested, (ii) if n > d − 1, the H0=“equal.means” null

may be tested, and (iii) if n > 1, the H0=“no.trend” null may be tested, but of course this only

makes sense if d > 2. Also, (iv) the user may also set H0 to an custom contrast matrix of dimension

r× d and of rank r. Under the “simple” variance structure option, any of the above null hypotheses

may be tested as long as n > 1. By default, “H0” is set to “equal.means”. The package uses S3

classes, has defined ‘print’, ‘update’ and ‘as.data.frame’ for the class “fit.n.data”, which contains

a model fit and a data-frame component. There are other nice features. For example, if the user

specifies “na.action=na.pass” then NA’s are treated as missing-at-random as long as the minimum

number of replicates per group meets the above requirements. Next, the genelist, sorted on p-value

corresponding to either of the two computed statistics, can be browsed in the html viewer. If the

data comes from an affy experiment and the rows are named after the affy gene identifiers, then the

rows of the genelist in the html viewer are linked to the Weizmann Institute’s “GeneCards” database,

or an alternate genecards database of the users choice. Additionally, the simulation study presented

in the following section may be repeated using included functions. It is worth mention here that

these simulations were only made possible by migrating the entire procedure including the loop over
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simulation replicates, into C. The interested reader is encouraged to browse the documentation.

5 Other Statistics under Study

In anticipation of the simualation study presentation which is to follow, we now present three other

statistic against which we benchmarked our proposed ShHT2 statistic, together with corresponding

distributions under the null. First, recall the form of the ShHT2 statistic in expression 1, its model

assumptions, MVN/IW, and the form of its null distribution listed in theorem 1. As mentioned in

the introduction, the results presented here generalize results in [Wright and Simon, 2003]. Thus

the main comparison will be with the statistic proposed in that work, which we shall call the

shared ANOVA F-statistic (ShAnF). The ShHT2 and ShAnF are each themselves shrinkage-variance

modifications of standard textbook statistics, namely the Hotelling T-squared (HT2) and anova F

(AnF) statistics. Thus we will benchmark our proposed ShHT2 statistic agasint the ShAnF, the

HT2 and the AnF. In our benchmarking comparisons, we restricted attention to tests of the null

hypothesis that all group means are zero. This is of course no loss of generality as tests of all other

nulls amount to a mere linear transformation of the data. The following expressions are based upon

the notation of theorem 1 and its corollary above, only with the dependence on gene, g, suppressed.

In addition to the quantities presented there, Y will indicate the vector of measurements on a single

gene stacked first by replicate and then by group, and we write R = (n− 1)
∑d
k=1 Sk,k for the total

within group sum of squares.

• Anova F Statistic

AnF =
d(n− 1)

d

nȲ ′Ȳ
R

. (3)

If the vector Y is independent normal with group specific means and common variance, v,

then under the null hypothesis that the group means are zero, the AnF statistic has the F

distribution with d and d(n− 1) degrees of freedom.

• Shared Anova F Statistic

ShAnF =
2s+ d(n− 1)

d

nȲ ′Ȳ
R+ 2r

. (4)

If, conditional upon v, Y is independant normal with group specific means and common

variance, and v is distributed as an inverse gamma with shape and rate parameters 2s and 2r
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(Norm/IG), then under the null hypothesis that the group means are zero, the ShAnF statistic

has the F distribution with d and d(n− 1) + 2s degrees of freedom, [Wright and Simon, 2003].

• Hotelling T-squared

HT2 =
n− d
d

nȲ ′ ((n− 1)S)
−1
Ȳ , (5)

If the sequence of random vectors {Yi : i = 1, . . . , n} is independent multivariate normal

having group specific means and common variance/covariance matrix Σ| , then under the null

hypothesis that the group means are zero, the HT2 statistic has the F distribution with d and

n− d degrees of freedom, [Muirhead, 1982].

6 Benchmarking simulation study

In our simulation study, we compared performance of our proposed ShHT2 statistic with that of the

ShAnF, HT2, and AnF statistics. The simulation study was designed around the concept that the

generated datasets would share basic characteristics with the oligonuceotide array data encountered

in our substantive work at the stage of analysis. Each simulated dataset was a matrix of dimen-

sion 12625 by 6, with rows representing genes and columns representing logged relative expressions

between each of two treatments and a control replicated three times. These measurements were

formed as the sum of a group specific mean plus mean zero error. The group specific means were

identically zero in all cases but the first 100 of the 12625 rows (true positives). These groups were

given nonzero means large enough to be detected by the AnF statistic with fairly high probability.

Specifically, a value of θ was chosen so that

0.55 = F6,4,6θ2(F−1
6,4 (1− 0.001))

i.e., so that the AnF statistic would have power 55% at a type I error of 0.1% to reject the null

hypothesis of zero group means. This value of θ = 4.33 was then multiplied by the average per

group standard deviation calculated from the simulation distribution. We conducted five separate

simulation studies, each using a different simulation distribution for the mean zero error in order to

compare the robustness to lack of model assumptions of our ShHT2 statistic with that of the ShAnF.

The first was taken from the Norm/IG family, under which the ShAnF has the null distribution

presented below formula 4, the second and third were taken from the MVN/IW family, under which
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the ShHT2 has the null distribution presented in formula 1 in theorem 1. The fourth and fifth were

taken from a third family consisting of conditionally multivariate normal with random covariance

drawn from a mixed inverse Wishart distribution (MVN/mxIW). This latter mixture was a two

component mixture over the shape parameter of two inverse Wisharts having identical rate matrix.

For sake of consistency, parameters were chosen so that the expected value of within group variances

were roughly the same from family to family. Particular values of the parameters used in all five

cases are displayed in table 1. Note in particular that the pairs of simulations, (2,3) and (4,5) from

the MVN/IW and MVN/mxIW families, respectively, consist of one member with equal expected

group variances with roughly 0.67 expected correlation and a second member with unequal expected

group variances and nearly zero expected correlation. We refer to these as -a and -b respectively.

We assessed the performance of the four statistics, ShHT2, HT2, ShAnF and AnF, under

each of the five simulation distributions, Norm/IG, MVN/IW-a, MVN/IW-b, MVN/mxIW-a, and

MVN/mxIW-b, in two different ways. The first method of assessment used the nominal distribution

corresponding to each statistic to select important genes, within each simulation replicate, using the

Benjamini-Hochberg (B-H) false discovery rate (FDR) procedure, [Benjamini and Hochberg, 1995].

This algorithm selects important genes from a list sorted on p-values and marks all genes having

p-value not greater than the largest not exceeding its rank times the FDR divided by the number

of tests. Their theorem guarantees that if the nominal null distribution used is correct then the

expected proportion of false discoveries is less than FDR. B-H FDR thresholding was done at each

of the nominal false discovery rates (FDR’s): 1%, 5%, 10%, 15%, 20%, and 25%. At each of these

FDR’s, the empirical true discovery and false discovery rates (eTDR and eFDR, respectively) were

computed by counting within each simulation replicate, the number of genes selected that were and

were not among the 100 true positive genes, respectively, and then dividing the first of these by 100

and the second of these by the number of genes selected. These per simulation replicate values were

then averaged over 500 simulations. These are displayed in tables 2 (Norm/IG noise), 3 (MVN/IW-a

noise), 4 (MVN/IW-b noise), 5 (MVN/mxIW-a noise), and 6 (MVN/mxIW-b noise). First, observe

that the eFDR’s for the ShHT2 when the simulation distribution comes from the MVN/IW family

(column 3 in tables 3 and 4) are within simulation error of the nominal FDR values. This is not

surprising as it is exactly what the main theorem of [Benjamini and Hochberg, 1995], guarantees.

The same general tendency is the true in the case of the eFDR’s for the ShAnF when the simulation

distribution comes from the Norm/IG family (column 7 in table 2), although not to the same degree
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of precision. The reason for this is not entirely clear. In both cases however, when model assump-

tions are met one can feel confident that the FDR is being controlled at the nominal rate. Next

we observe what hapens to this level of control over the observed FDR when model assumptons are

not true. Note that for the proposed ShHT2 statistic, the eFDR’s in tables 2 (Norm/IG noise), 5

(MVN/mxIW-a noise), and 6 (MVN/mxIW-b noise) is inflated relative to the nominal FDR by a

factor ranging from 2 to 3 in all cases except the first line of table 2. This is in contrast to the ShAnF

statistic. Although the eFDR is inflated by roughly the same amount when the data are distributed

according to the SimMVN/IW-a family, which has correlated groups with equal variance on average,

this 2 fold factor is exacerbted to roughly 4 fold under the SimMVN/IW-b data, which has nearly

uncorrelated groups but unequal group variances. When the data comes from the SimMVN/mxIW

(both -a and -b) the observed eFDR’s are inflated by a factor between 4 and 5 in most all cases.

On one hand it could be argued that this is not a fair comparison since our proposed statistic is

judged under one restricted model departure and one relaxed model departure, while the ShAnF is

judged under two levels of relaxed model departures. However, a counter-argument is our practical

experience, which indicates that reality lies somewhere closer to the less restricted families of models.

Next, there is not that much to be said regarding comparison of the eTDR’s as all simulation studies

were conducted under essentially a single alternative. It is the case that when one compares lines

for which the eFDR’s for the proposed ShHT2 and the ShAnF are nearly equal, the ShAnF enjoys

a slightly higher eTDR. This gain, due to the single per gene variance parameter in the ShAnF as

opposed to three in the ShHT2, is however fairly small. All things considered, in terms of having a

reasonable level of control over eFDR with an acceptibly strong eTDR under all cases considered,

the proposed ShHT2 seems to be preferable. Notice, incidentally, that at the alternative considered

the HT2 and AnF are underpowered.

Next, if one is willing to part with control over type I errors and leave issues of validity up to

the confirmation to bench science or cross-referencing via pathways, then we don’t require the use of

null distributions at all and consider instead, only the statistics validity in ranking genes. In order to

address this issue, the second method of assessment selected important genes within each simulation

replicate and for each of the four statistics, by thresh-holding on the ranks of the statistic. At each

resulting thresh-hold criterion, the eTDR’s and eFDR’s were computed as described above and then

averaged over the 500 simulations. For each of the four statistics considered we display plots of the

resulting values of the eTDR versus values of the eFDR in figures 1 (Norm/IG noise), 2 (MVN/IW-a
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noise), 3 (MVN/IW-b noise), 4 (MVN/mxIW-a noise), and 5 (MVN/mxIW-b noise). In terms of

validity in ranking, the ShHT2 outperforms the ShAnF by a modest amount when the expected

group variances are unequal, regardless of whether the data obeys the model assumptions as in

figure 3 (MVN/IW-b noise) or does not as in figure 5 (MVN/mxIW noise). The situation is reversed

when the data obeys the model assumptions corresponding to the ShAnF as seen in figure 1. When

the data exhibit correlated groups with equal expected group variances as in figures 2 (MVN/IW-

a noise) and 4 (MVN/mxIW-b noise) it appears to be too close to call. Finally, note that the

textbook statistics, AnF and HT2 lag behind quite substantially, although with at least moderately

respectable showing from the AnF. This is due to its noted robustness properties. The reason why

the HT2 performs so poorly is due to the small number of replicates which causes instability in

the estimated per gene variance/covariance matrices. This is precisely what the shrinkage variance

estimate is able to circumvent.

7 Application: Two Case Studies

We now turn to the analysis of the two motivating case studies mentioned in the introduction.

The first of these was a spotted cDNA array experiment seeking to determine the presence of

differential gene expression, relative to control, of varying concentrations of genestein, and if so,

whether or not this effect exhibited a dose response phenomenon at the concentrations studied. In

this case there were three experimental groups (1µM, 5µM and 25µM genestein) each with a matched

control. After preprocessing as discussed in the introduction, logged base 2 of the expression ratios of

treatment to control yielded three replicates in each of three groups. Since the number of replicates

is equal to the number of groups, the ShHT2 tests of zero group means were infeasible. Instead,

we conducted ShHT2 tests of equal group means and the ShHT2 tests of zero trend. In addition,

ShAnF tests of zero group means, equal group means and zero trend were calculated. Unfortunately

there were no significant results to report at FDR less than the high 90’s at which all genes were

marked. However, since as we have shown, the ranks of the shrinkage variance statistics (both

the ShHT2 and the ShAnF) can be considered more reliable than the naive textbook variants, the

following observations are worth highlighting. The result of the intersection of the top 100 genelists

corresponding to each of the abovementioned feasible tests produced twelve genes listed in table

7. Of course since the selected inferential procedure turned up nothing not much weight can be

assigned to the findings. Secondly, the agreement of several differing analyses does not constitute
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validity in these findings, ([Baggerly et al., 2005], [Ransohoff, 2005]). However, it is interesting to

note that of the top five listed genes in table 7 are a gene associated with sperm maturation and

apoptosis, [Wong, 2004], a gene encoding a RAS-like nuclear G protein, [Hayashi et al., 1995], a gene

differentially expressed in human gastric cancer, [Nishigaki, 2005], and a growth hormone signaling

androgen receptor gene, [Weiss-Messer, 2004]. This confirms the findings of our simulation study

that orderings based upon either the ShHT2 or ShAnF are more reliable than an ordering based

upon the text-book variants. A second study using affymetrix oligonucleotide arrays to investigate

the effects of genestein on LnCAP gene expression used the Wilcoxon rank sum test at p ¡ 0.01 to

perform the initial screening for potentially important genes [Takahashi et al., 2004], followed by the

text-book AnF statistic. While it is reasonable to expect that a non-parametric test will produce

more reliable results than the AnF and HT2, one can only speculate on the reliability of such a

screen based upon an unstabilized non-parametric statistic being used in the setting of such a small

sample. Recall that the efficiency of the Wilcoxon test relative to the AnF is 0.87.

The second study used Affymetrix oligonucleotide micro-arrays to study the effects of two hor-

mones, dehydroepiandrosterone (DHEA) and dihyrotestosterone (DHT), on gene expression in the

LnCAP cell line. After preprocessing as discussed in the introduction, logged base 2 of the expres-

sion ratios of treatment to control yielded three replicates in each of two groups. ShHT2 tests for

zero group means at a FDR of 10% identified four significatly differentially expressed genes. Two

of these four results were due to significant differential expression between the two treatments, as

nested ShHT2 tests of equal group means revealed at p=0.01. Next, for purposes of identifying

potentially important pathways, HT2 tests of zero means at a FDR of 50% produced a list of 83

genes. Several important pathways were identified by cross-referencing this list with the simple gene

ontology gene lists, marking a pathway if it contained four or more genes from the above-mentioned

list of 83. The specific details of these findings will appear in a forthcoming paper.

8 Discussion

We have seen from the simulation study that the ShAnF performs slightly better only under its more

restrictive set model assumptions. In all other cases the ShHT2 performs as well when expected

group variances are the same and better when the expected group variances differ. The main

message is that both variance stablized statistics perform substantially better than their text-book

counterparts, the AnF and the HT2 statistics. This gain in performance has been demonstrated

12



both from the standpoint of statistical inference based upon the B-H FDR procedure, as well as from

the standpoint of reliability in the ordering itself. As we learned from simulations generated from

the MVN/mxIW distributions, the shrinkage estimation procedure and statistic are fairly robust

to lack of model assumptions. For these reasons and due to the broad scope of applicability of

shrinkage estimation [Xu and Izmirlian., 2005], and the robustness of ANOVA type tests, it can be

argued that variance stabilization should always be performed in small sample micro-array studies.

Moreover in the interest of reliability of findings, we advocate the use of the ShHT2 test within the

B-H FDR procedure for gene selection starting with otherwise unfiltered genelist.
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Appendix Proofs of theorems

Proof of theorem 1: All square root matrices used in the following are considered to be the

symetric square root. That is, if A is a symetric matrix with spectral decomposition A = QDQ′,

then the symetric square root of A is A
1
2 = QD

1
2Q′, and A−

1
2 is the symetric square root of A−1.

With clarity in syntax in mind, here we suppress the dependence upon gene, g. First, we rewrite T 2

as follows:

T 2 = nZ̄ ′V −1Z̄

where Z̄ = Σ|−
1
2 Ȳ and

V = VI + VII = (n− 1)Σ|−
1
2SΣ|−

1
2 + Σ|−

1
2 ΛΣ|−

1
2 .

We make the following observations.

• Because, the distribution of (n− 1)S given Σ| is Wishartd(n− 1,Σ| ) it follows that VI has the

Wishartd(n− 1, Id) distribution and is independent of Σ| .
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• Next, since Σ|−1
has the Wishartd(ν−d−1,Λ−1) distribution, it follows that ṼII = Λ

1
2 Σ|−1

Λ
1
2

has the Wishartd(ν − d− 1, Id) distribution.

• Now, because both VII and ṼII are symetric and positive definite, it follows from theorem

A9.9 of [Muirhead, 1982] that they are orthogonal similarity transformations of oneanonther.

• Since ṼII is Wishart with identity rate parameter matrix, it is spherically symetric and there-

fore, invariant to orthogonal transformations. Hence, VII
D
= ṼII .

Therefore the sum V = VI + VII has the Wishartd(ν + n− d− 2, Id) distribution. Next, we rewrite

T 2 as

T 2 = nZ̄ ′V −1Z̄ =
nZ̄ ′Z̄
Z̄′Z̄

Z̄′V −1Z̄

.

Notice that since Z̄ has been rescaled, it is independant of Σ| . Next, because Z̄ is the sample mean, it

is independant of the sample covariance matrix, S. Thus Z̄ and V are independant. Next, it follows

from theorem 3.2.12 of [Muirhead, 1982], the denominator is distributed χ2
ν+n−2d−1 and independent

of the Z̄. Because the numerator is χ2
d, it follows that T 2 ν+n−2d−1

d has the Fd,ν+n−2d−1 distribution.

Proof of theorem 2: As stated above, the conditional distribution of A = (n − 1)S given Σ| is

Wishartd(n− 1,Σ| ) which has density:

f(A) = Γd

(
n− 1

2

)−1 |A|(n−d−2)/2

2d(n−1)/2
∣∣Σ|
∣∣(n−1)/2

etr

(
−1

2
Σ|−1

A

)

while Σ| has the InvWishartd(ν,Λ) distribution, which has density:

g(Σ| ) = Γd

(
ν − d− 1

2

)−1 |Λ|(ν−d−1)/2

2d(ν−d−1)/2
∣∣Σ|
∣∣ν/2 etr

(
−1

2
Σ|−1

Λ

)

Taking the product of the two above densities and reorganizing factors yeilds:

f(A)g(Σ| ) =
|Λ +A|(ν+n−d−2)/2

etr
(
− 1

2Σ|−1
(Λ +A)

)

Γd
(
ν+n−d−2

2

)
2d(ν+n−d−2)/2

∣∣Σ|
∣∣(ν+n−1)/2

Γd
(
ν+n−d−2

2

)

Γd
(
n−1

2

)
Γd
(
ν−d−1

2

) |Λ|
(ν−d−1)/2 |A|(n−d−2)/2

|Λ +A|(ν+n−d−2)/2
.

Thus, the posterior distribution of Σ| given A = (n− 1)S is

InvWishartd(ν + n − 1,Λ + (n − 1)S), and so the distribution of A = (n − 1)S is the one given in

expression 2.
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Norm/IG MVN/IW MVN/mxIW
a b a b

shape1 1.9360 9.1020 8.75800 18.407 17.0330
shape2 6.7750 6.68900
rate1,1 0.0402 0.1280 0.15700 0.1280 0.15700
rate1,2 0.0846 -0.00845 0.0846 -0.00845
rate2,2 0.1240 0.05150 0.1240 0.05150
mixing 0.2000 0.20000

avg. var. 0.0430 0.0405 0.03790 0.0405 0.03790

Table 1: Parameters used in Simulation Study
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Figure 1: Performance of four statistics using data simulated from the normal/Inverse gamma
distribution. The plot shows the empirical true positive rate versus the empirical false positive rate
for each of the four benchmarked statistics as cutoff ranges through all possible values of the statistic.
ShHT2=black, ShAnF=green, AnF=red, HT2=blue
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Figure 2: Performance of four statistics using data simulated from the multivariate normal/Inverse
Wishart distribution having equal group variances but with correlated group errors. The plot shows
the empirical true positive rate versus the empirical false positive rate for each of the four bench-
marked statistics. ShHT2=black, ShAnF=green, AnF=red, HT2=blue
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Figure 3: Performance of four statistics using data simulated from the multivariate normal/Inverse
Wishart distribution having uncorrelated group errors but with unequal group variances. The plot
shows the empirical true positive rate versus the empirical false positive rate for each of the four
benchmarked statistics. ShHT2=black, ShAnF=green, AnF=red, HT2=blue
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Figure 4: Performance of four statistics using data simulated from the multivariate normal/mixed
Inverse Wishart distribution having equal group variances but with correlated group errors. The
plot shows the empirical true positive rate versus the empirical false positive rate for each of the
four benchmarked statistics. ShHT2=black, ShAnF=green, AnF=red, HT2=blue
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Figure 5: Performance of four statistics using data simulated from the multivariate normal/mixed
Inverse Wishart distribution having uncorrelated group errors but with unequal group variances.
The plot shows the empirical true positive rate versus the empirical false positive rate for each of
the four benchmarked statistics. ShHT2=black, ShAnF=green, AnF=red, HT2=blue
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ShHT2 HT2 ShAnF AnF
FDR eTDR eFDR eTDR eFDR eTDR eFDR eTDR eFDR
0.01 0.921 0.040 0.000 0.000 0.769 0.000 0.000 0.000
0.05 0.979 0.134 0.000 0.000 0.953 0.001 0.000 0.000
0.10 0.988 0.229 0.000 0.000 0.994 0.028 0.000 0.000
0.15 0.992 0.312 0.000 0.000 1.000 0.089 0.000 0.000
0.20 0.994 0.386 0.001 0.000 1.000 0.161 0.000 0.000
0.25 0.995 0.452 0.003 0.000 1.000 0.242 0.000 0.000

Table 2: eTDR’s and eFDR’s for 4 statistics–Norm/IG noise

ShHT2 HT2 ShAnF AnF
FDR eTDR eFDR eTDR eFDR eTDR eFDR eTDR eFDR
0.01 0.546 0.009 0.000 0.000 0.859 0.000 0.000 0.000
0.05 0.928 0.048 0.000 0.000 1.000 0.138 0.000 0.000
0.10 0.964 0.094 0.000 0.000 1.000 0.375 0.000 0.000
0.15 0.977 0.142 0.001 0.000 1.000 0.591 0.000 0.000
0.20 0.984 0.193 0.001 0.000 1.000 0.761 0.000 0.000
0.25 0.987 0.240 0.002 0.000 1.000 0.867 0.000 0.000

Table 3: eTDR’s and eFDR’s for 4 statistics–MVN/IW-a noise

ShHT2 HT2 ShAnF AnF
FDR eTDR eFDR eTDR eFDR eTDR eFDR eTDR eFDR
0.01 0.937 0.008 0.000 0.000 0.918 0.001 0.000 0.000
0.05 0.985 0.042 0.000 0.000 1.000 0.171 0.000 0.000
0.10 0.993 0.090 0.000 0.000 1.000 0.400 0.000 0.000
0.15 0.995 0.139 0.001 0.000 1.000 0.603 0.000 0.000
0.20 0.996 0.189 0.001 0.000 1.000 0.765 0.000 0.000
0.25 0.997 0.241 0.002 0.000 1.000 0.866 0.000 0.000

Table 4: eTDR’s and eFDR’s for 4 statistics–MVN/IW-b noise

ShHT2 HT2 ShAnF AnF
FDR eTDR eFDR eTDR eFDR eTDR eFDR eTDR eFDR
0.01 0.767 0.033 0.000 0.000 1.000 0.162 0.194 0.000
0.05 0.944 0.127 0.000 0.000 1.000 0.497 0.722 0.000
0.10 0.967 0.225 0.000 0.000 1.000 0.701 0.931 0.007
0.15 0.977 0.308 0.001 0.000 1.000 0.815 0.995 0.085
0.20 0.982 0.382 0.002 0.000 1.000 0.878 1.000 0.189
0.25 0.985 0.445 0.003 0.000 1.000 0.914 1.000 0.280

Table 5: eTDR’s and eFDR’s for 4 statistics–MVN/mxIW-a noise
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ShHT2 HT2 ShAnF AnF
FDR eTDR eFDR eTDR eFDR eTDR eFDR eTDR eFDR
0.01 0.940 0.029 0.000 0.000 1.000 0.164 0.153 0.000
0.05 0.981 0.119 0.000 0.000 1.000 0.475 0.709 0.000
0.10 0.989 0.215 0.000 0.000 1.000 0.669 0.902 0.002
0.15 0.993 0.297 0.001 0.000 1.000 0.787 0.983 0.041
0.20 0.994 0.365 0.002 0.000 1.000 0.859 0.999 0.121
0.25 0.995 0.428 0.003 0.000 1.000 0.903 1.000 0.199

Table 6: eTDR’s and eFDR’s for 4 statistics–MVN/mxIW-b noise

CLU–clusterin (complement lysis inhib)
RANBP1–RAN binding protein 1
FN14–type I transmembrane protein Fn1
ECH1–enoyl Coenzyme A hydratase 1, pe
GHR–growth hormone receptor
SELENBP1–selenium binding protein 1
CRYAA–crystallin, alpha A
ESTs.621
ALDOC–aldolase C, fructose-bisphospha
H.sapiens HCG II mRNA
Homo sapiens mRNA; cDNA DKFZp434I0812
FMOD–fibromodulin

Table 7: Genes from Wang Arrays
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