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1 Introduction

1.1 What is the evd package?

The evd (extreme value distributions) package is an add-on package for the R (IThaka and Gen-
tleman, 1996) statistical computing system. The package contains the following (user-level)
functions. It also contains the demo soe9, giving examples from Chapter Nine of Beirlant et al.
(2004).

Univariate Distributions. Density, distribution, simulation and quantile (inverse distribution)
functions for univariate parametric distributions.

dgev dgpd dgumbel drweibull dfrechet dextreme dorder

pgev pgpd pgumbel prweibull pfrechet pextreme porder

rgev rgpd rgumbel rrweibull rfrechet rextreme rorder

ggev qgpd qgumbel qgrweibull qfrechet qgextreme

Multivariate Distributions. Density, distribution, simulation and dependence functions for mul-
tivariate parametric extreme value models.
dbvevd dmvevd pbvevd pmvevd rbvevd rmvevd abvevd amvevd

Non-parametric Estimation. Calculate and plot non-parametric estimates of dependence func-
tions and quantile curves.
abvnonpar amvnonpar qcbvnonpar

Stochastic Processes. Generate stochastic processes associated with extreme value theory, iden-
tify extreme clusters and estimate the extremal index.
evmc marma mar mma clusters exi

Fitting Models. Obtain maximum likelihood estimates and standard errors for univariate and
bivariate models used in extreme value theory.
fbvevd fgev fpot forder fextreme

Pre-model Diagnostics. Threshold identification and dependence summaries.
mrlplot tcplot chiplot

Model Diagnostics. Model diagnostics for fitted models; diagnostic plots and analysis of deviance.
plot.uvevd plot.bvevd anova.evd

Profile likelihoods. Obtain profile traces, plot profile log-likelihoods and obtain profile confidence
intervals from fitted models.
profile.evd plot.profile.evd profile2d.evd plot.profile2d.evd

The following datasets are also included in the package.
failure fox 1lisbon ocmulgee oldage oxford Ilossalae
portpirie sask sealevel wuccle venice sealevel2



1.2 Obtaining the package/guide

The evd package can be downloaded from CRAN (The Comprehensive R Archive Network) at
http://cran.r-project.org/. This guide (in pdf) will be in the directory evd/doc/ underneath
wherever the package is installed.

1.3 Contents

This guide contains examples® on the use of the evd package. The examples do not include any
theoretical justification. See Coles (2001) for an introduction to the statistics of extreme values,
and Beirlant et al. (2004) for a more detailed treatment.

Section 2 covers the standard (non-fitting) functions for univariate distributions. Sections 3 and
4 do the same for bivariate and multivariate extreme value models. Dependence functions of
extreme value distributions are discussed in Section 5. Stochastic processes are discussed in
Section 6. Maximum likelihood fitting of univariate models, peaks over threshold models and
bivariate extreme value models is discussed in Sections 7, 8 and 9 respectively. Three practical
examples using the data sets oxford, rain and sealevel are given in Sections 10, 11 and 12
respectively.

This guide should not be viewed as an alternative to the documentation files included within the
package. These remain the definitive source of information. A reference manual containing all
the documentation files can be downloaded from CRAN.

1.4 Citing the package

Volume 2/2 of R-News (the newsletter of the R-project) contains an article that describes
an earlier version of the evd package. To cite the package in publications please cite
the R-News article. The article and the corresponding citation can be downloaded from
http://www.cran.r-project.org/doc/Rnews/.

1.5 Caveat

I have checked these functions as best I can but, as ever, they may contain bugs. If you
find a bug or suspected bug in the code or the documentation please report it to me at
alec_stephenson@hotmail.com. Please include an appropriate subject line.

1.6 Legalese

This program is free software; you can redistribute it and/or modify it under the terms of the
GNU General Public License as published by the Free Software Foundation; either version 2 of
the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but without any warranty; without
even the implied warranty of merchantability or fitness for a particular purpose. See the GNU
General Public License for more details.

A  copy of the GNU General Public License can be obtained from
http://www.gnu.org/copyleft/gpl.html. You can also obtain it by writing to the Free
Software Foundation, Inc., 59 Temple Place — Suite 330, Boston, MA 02111-1307, USA.

*All of the examples presented in this guide are called with options(digits = 4), and with the option
show.signif.stars set to FALSE.



2 Univariate Distributions

The Gumbel, Fréchet and (reversed) Weibull distribution functions are respectively given by
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where a is a location parameter, b > 0 is a scale parameter and « > 0 is a shape parameter. The
distribution (3) is often referred to as the Weibull distribution. To avoid confusion I will call
this the reversed Weibull, since it is related by a change of sign to the three parameter Weibull
distribution used in survival analysis.

The Generalised Extreme Value (GEV) distribution function is given by

G(2) = exp {~ [1+& (2 — ) /o] "/}, (4)

where (u,0,&) are the location, scale and shape parameters respectively, ¢ > 0 and hy =
max(h,0). When ¢ > 0 the GEV distribution has a finite lower end point, given by p—o /. When
¢ < 0 the GEV distribution has a finite upper end point, also given by u — o /€. The parametric
form of the GEV encompasses that of the Gumbel, Fréchet and reversed Weibull distributions.
The Gumbel distribution is obtained in the limit as £ — 0. The Fréchet and Weibull distributions
are obtained when & > 0 and & < 0 respectively. To recover the parameterisation of the Fréchet
distribution (2) set £ = 1/a > 0, 0 = b/a > 0 and p = a + b. To recover the parameterisation
of the reversed Weibull distribution (3) set { = —1/a < 0,0 =b/a >0 and y=a —b.

The generalised Pareto distribution (GPD) function is given by

Glz) =1—[1+& (2 —p) Jo]7"%,

for z > p, where (u,0,€) are the location, scale and shape parameters respectively, o > 0 and
hy = max(h,0). The GPD has a finite lower end point, given by p. When £ < 0 the GPD also
has a finite upper end point, given by p — o /€. A shifted exponential distribution is obtained in
the limit as & — 0.

It is standard practice within R to concatenate the letters r, p, q and d with an abbreviated
distribution name to yield the names of the corresponding simulation, distribution, quantile
(inverse distribution) and density functions respectively. The evd package follows this convention.
Each of the five distributions defined above has an associated set of functions, as given in Section
1.1. Some examples are given below. They should be familiar to those who have had previous
experience with R.

> rgev(6, loc = c(20,1), scale = .5, shape = 1)

[1] 23.7290 1.2492 19.6680 0.8662 19.7939 2.6512
> rgpd(3, loc = 2)

[1] 2.483681 3.666805 2.837809

> qrweibull(seq(0.1, 0.4, 0.1), 2, 0.5, 1, lower.tail = FALSE)
> qrweibull(seq(0.9, 0.6, -0.1), loc = 2, scale = 0.5, shape = 1)



# Both give
[1] 1.947 1.888 1.822 1.745

> pfrechet(2:6, 2, 0.5, 1)

[1] 0.0000 0.6065 0.7788 0.8465 0.8825
> pfrechet(2:6, 2, 0.5, 1, low = FALSE)
[1] 1.0000 0.3935 0.2212 0.1535 0.1175

> drweibull(-1:3, 2, 0.5, log = TRUE)

[1] -5.307 -3.307 -1.307 -Inf -Inf

> dgumbel(-1:3, 0, 1)

[1] 0.17937 0.36788 0.25465 0.11820 0.04737

Let F be an arbitrary distribution function, and let Xi,...,X,, be a random sample from F'.
Define U,;, = max{Xy,..., X} and L,, = min{Xy,...,X,,}. The distributions of U,, and L,
are given by
Pr(Un
Pr(L,,

z) = [F(z)]" (5)
z)=1-[1 - F(z)]™. (6)
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Simulation, distribution, quantile and density functions for the distribution of U,,, given an inte-
ger m and an arbitrary distribution function F', are provided by rextreme, pextreme, qextreme
and dextreme respectively. The integer m should be given to the argument mlen. The distri-
bution F' is most easily specified by passing an abbreviated distribution name to the argument
distn. If largest is FALSE the distribution of L,, is used. Some examples are given below.

> rextreme(l, distn = "norm", sd = 2, mlen = 20, largest = FALSE)
> min(rnorm(20, mean = 0, sd = 2))
# Both simulate from the same distribution

[1] -2.612
> rextreme(4, distn = "exp", rate = 1, mlen = 5)
> rextreme(4, distn = "exp", mlen = 5)

# Both simulate from the same distribution
[1] 2.2001 0.8584 4.5595 3.9397

> pextreme(c(.4, .5), distn = "norm", mean = 0.5, sd = c(1, 2), mlen = 4)
[1] 0.04484 0.06250
> dextreme(c(l, 4), distn = "gamma", shape = 1, scale = 0.3, mlen = 100)

[1] 0.3261328 0.0005398

Let X(1) > X9y 2 --+ > X(4) be the order statistics of the random sample X1,..., Xp,. The
distribution of the jth largest order statistic, for j =1,...,m, is

Pi(X) <2) = 3} ) F@I 0 - F, ")

The distribution of the jth smallest order statistic is obtained by setting j = m~+1—j. Simulation,
distribution and density functions for the distribution of X(;), for given integers m and j €
{1,...,m}, and for an arbitrary distribution function F', are provided by rorder, porder and
dorder respectively. The integer m should again be given to the argument mlen. If largest is
FALSE the distribution of the jth smallest order statistic X(;,;; 1) is used. Some examples are
given below.



> rorder(1l, distn = "norm", mlen = 20, j 2)

[1] 2.284

> porder(c(l, 2), distn = "gamma", shape = c(.5, .7), mlen = 10, j = 2)
[1] 0.5177 0.8259
> dorder(c(1, 2), distn = "gamma", shape = c(.5, .7), mlen = 10, j = 2)

[1] 0.7473 0.3081

3 Bivariate Extreme Value Distributions

The evd package contains functions associated with nine parametric bivariate extreme value
distributions. The univariate marginal distributions in each case are GEV, with marginal pa-

rameters (u1,01,&1) and (9, 09,&2).

There are three symmetric models, with distribution functions
_ l/a l/aya
Gla1,20) = exp {~(i/* +15/")°}, 0<a <1, (8)

Gl ) =exp {~yn — o+ (" +957) "}, r>0, (9)
Gz, 72) = exp (—y1 (A" + SAllog(ys /12)]} — y2®{A " + Allog(/w)]}) , A >0,

known as the logistic (Gumbel, 1960), negative logistic (Galambos, 1975) and Hiisler-Reiss
(Hiisler and Reiss, 1989) models respectively, where

yi = yi(z) = {1+ &(z; — pj) o} (10)

for j = 1,2. Independence* is obtained when o =1, 7 | 0 or A | 0. Complete dependence! is
obtained when « | 0, 7 = 00 or A — oc.

The distributions functions (8) and (9) have asymmetric extensions, given by

G(Zl,ZQ) = exp {—(1 — 91):(}1 — (1 - 92):1;2 — [(01y1)1/a + (02y2)1/°‘]°‘} s 0 <o S 1,
G(z1,22) = exp {—y1 —yo+ [(61y1)" + (922/2)_7]_1/?} , 1 >0,

known as the asymmetric logistic (Tawn, 1988) and asymmetric negative logistic (Joe, 1990)
models respectively, where the asymmetry parameters 0 < 67,0 < 1. For the asymmetric logistic
model independence is obtained when either « = 1, 8 = 0 or # = 0. Different limits occur
when 6 and 6» are fixed and « | 0. For the asymmetric negative logistic model independence is
obtained when either r | 0, 61 | 0 or 62 | 0. Different limits occur when #; and 6- are fixed and
r — 00.

The remaining four bivariate models are defined in Appendix A. Density, distribution and sim-
ulation functions for each of the nine models are provided by dbvevd, pbvevd and rbvevd re-
spectively. The argument model denotes the specified model, which must be either "log" (the
default), "alog", "hr", "neglog", "aneglog", "bilog", "negbilog", "ct" or "amix" (or any
unique partial match). The first argument in pbvevd and dbvevd should be a vector of length
two or a matrix with two columns, so that each row specifies a value for (z1, z2).

The parameters of the specified model can be passed using one or more of the arguments dep,
asy, alpha and beta. The marginal parameters (u1,01,&1) and (u9, 02, &2) can be passed using
the arguments mar1 and mar2 respectively. Gumbel marginal distributions are used by default.

*Independence occurs when G(z1, 22) = exp{—(y1 + ¥2)}.
fComplete dependence occurs when G(z1, z2) = exp{—max(y1,y2)}.



The arguments marl and mar2 can also be matrices with three columns, in which case each
column represents a vector of values to be passed to the corresponding marginal parameter.
Some examples are given below.

> rbvevd(3, dep = .8, asy = c(.4, 1), model = "alog")
[,1] [,2]

[1,] 0.07876 -0.7971

[2,] 0.01091 -0.8113

[3,] -0.10491 -0.8831

> rbvevd(3, alpha = .5, beta = 1.2, model = "negb", marl = rep(1, 3))
[,11 [,2]

[1,] 0.7417 1.085

[2,] 0.8391 1.825

[3,] 2.0142 2.280

> pbvevd(c(l, 1.2), dep = .4, asy = c(.4, .6), model = "an", marl = rep(1, 3))
[1] 0.173

> tmp.quant <- matrix(c(1,1.2,1,2), ncol = 2, byrow = TRUE)

> tmp.mar <- matrix(c(1,1,1,1.2,1.2,1.2), ncol = 3, byrow = TRUE)

> pbvevd(tmp.quant, dep = .4, asy = c(.4, .6), model = "an", marl = tmp.mar)

[1] 0.173 0.175

> dbvevd(c(1, 1.2), alpha = .2, beta = .6, model = "ct", marl = rep(1, 3))
[1] 0.1213

> dbvevd (tmp.quant, alpha
[1] 0.1213 0.0586

0.2, beta = 0.6, model = "ct", marl = tmp.mar)

4 Multivariate Extreme Value Distributions

Let z = (#1,...,24). The d-dimensional logistic model (Gumbel, 1960) has distribution function

o= {-(51,5))

where a € (0,1] and (y1,-..,yq) is defined by the transformations (10).

This distribution can be extended to an asymmetric form. Let B be the set of all non-empty
subsets of {1,...,d}, let By = {b € B : |b| = 1}, where |b| denotes the number of elements in the
set b, and let B(;) = {b € B : 4 € b}. The multivariate asymmetric logistic model (Tawn, 1990)

is given by @
G(z) = exp {_ ZbeB [Zieb(gi’byi)l/ab] b}

where the dependence parameters oy € (0,1] for all b € B\ By, and the asymmetry parameters
0;p € [0,1] for all b € B and ¢ € b. The constraints ZbeB(i) 0;p =1fori=1,...,d ensure that
the marginal distributions are GEV. There exists further constraints which arise from the possible
redundancy of asymmetry parameters in the expansion of the distributional form. Specifically,
if ap =1 for some b € B\ By then 0;, =0 for all i € b. Let b_;, = {¢ € b: i # ip}. If, for some
be B \ By, Oi,b =0 forall e b_io, then 91'0,1, =0.

Density, distribution and simulation functions for these models are provided by dmvevd, pmvevd
and rmvevd respectively. The argument model denotes the specified model, which must be



either "log" (the default) or "alog" (or any unique partial match). The argument d denotes
the dimension of the model. By default, d = 2. The first argument in pbvevd and dbvevd
should be a vector of length d or a matrix with d columns, so that each row specifies a value
for (z1,...,24). The marginal parameters (u;,04,&;), for ¢ = 1,...,d, can be passed using the
argument mar. Gumbel marginal distributions are used by default. For the symmetric logistic
model, the argument dep represents the parameter a. Some examples are given below.

> rmvevd(3, dep = .6, model = "log", d = 5)

[,1] [,2] [,3] [,4] [,5]
[1,] 0.1335 0.2878 1.07886 1.55515 1.310
[2,] 1.7100 0.9453 1.02070 -0.02553 1.527
[3,] -0.3376 -0.5814 0.07426 0.10906 2.827

> tmp.mar <- matrix(c(1,1,1,1,1,1.5,1,1,2), ncol = 3, byrow = TRUE)
> rmvevd(3, dep = .6, d = 5, mar = tmp.mar)
[,1] [,2] [,3] [,4] [,5]
[1,] 2.803 4.6415 1.8531 3.5569 8.854
[2,] 0.751 0.9704 2.3328 2.6537 1.233
[3,]1 4.641 1.4321 0.5825 0.6041 2.021

> tmp.quant <- matrix(rep(c(1,1.5,2), 5), ncol = 5)

> pmvevd(tmp.quant, dep = .6, d = 5, mar = tmp.mar)

[1] 0.07233 0.16387 0.21949

> dmvevd(tmp.quant, dep = .6, d = 5, mar = tmp.mar, log = TRUE)
[1] -3.564 -6.610 -9.460

For the asymmetric logistic model dep should be a vector of length 2d _g-1 containing the
dependence parameters. For example, when d =4

dep = C(0412, 13, 14, 0023, (X24, (34, (X123, X124, (X134, (X234, 041234)-

The asymmetry parameters should be passed to asy in a list with 2d 1 elements, where each
element is a vector (including vectors of length one) corresponding to a set b € B, containing
{0;p : i € b}. For example, when d =4

asy = list(61,1,62,2,633,014,c(61,12,602,12),c(61,13,63,13), c(01,14,04,14), c(02,23, 03 23),
0(92,24, 94,24), C(93,34, 94,34), 0(91,123, 92,123, 93,123), 0(91,124, 92,124, 94,124),

(01,134, 03,134, 04,134), c(62,234, 03 234, 04,234), (01,1234, 02,1234, 03,1234, 04,1234) ) -

All the constraints, including Y ,.p 65 = 1 for i = 1,...,d, must be satisfied or an error will
@@ -
occur. Some examples are given below.

The dependence parameters used in the following trivariate asymmetric logistic model are
(12, 013, 03, 123) = (.6,.5,.8,.3). The asymmetry parameters are 611 = .4, 622 = 0,
93,3 = .6, (91,12,92712) = (.3,.2), (91’13,93,13) = (.1,.1), (92,23,93,23) = (4,1) and ﬁnally
(01,123, 02,123, 03,123) = (.2, .4,.2).

> asy <- list(.4, 0, .6, c(.3,.2), c(.1,.1), c(.4,.1), c(.2,.4,.2))

> rmvevd(3, dep = c(.6,.5,.8,.3), asy = asy, model = "alog", d = 3)
[,1] [,2] [,3]

[1,] 0.52375 -0.8844 1.4898

[2,] 1.16174 -0.4368 -0.7404



[3,] -0.03737 1.5139 -0.5996

> dmvevd(c(2, 2, 2), dep = c(.6,.5,.8,.3), asy = asy, model = "a", d = 3)
[1] 0.006636

> tmp.quant <- matrix(rep(c(1,1.5,2), 3), ncol = 3)
> pmvevd(tmp.quant, dep = c(.6,.5,.8,.3), asy = asy, model = "a", d = 3)
[1] 0.4131 0.5849 0.7223

The dependence parameters used in the following four dimensional asymmetric logistic model
are ap — 1 for |b| = 2* and (04123,a124,a134,a234,a1234) = (7,3,8,7,5) The asymime-
try parameters are 6, = 0 for all ¢ € b when |b] < 2, (61,123,02,123,03,123) = (.2,.1,.2),
(01,124, 02124,04124) = (.1,.1,.2), (61,134,03,134,04134) = (.3,.4,.1), (02,234,63.234,04234) =
(.2, .2, 2) and ﬁnally (01,1234,92,1234,0371234,04,1234) = (4, .6, .2, 5)

> asy <- 1list(0, 0, 0, 0, c(0,0), c(0,0), c(0,0), c(0,0), c(0,0), c(0,0),
c(.2,.1,.2), c(.1,.1,.2), c(.3,.4,.1), c(.2,.2,.2), c(.4,.6,.2,.5))
> rmvevd(3, dep = c(rep(1,6),.7,.3,.8,.7,.5), asy = asy, model = "alog", d = 4)
[,1] [,2] [,3] [,4]
[1,]1 -0.5930 -0.1916 1.0211 0.6113
[2,] 4.3522 -1.0050 2.3618 -0.1875
[3,] 0.5805 0.4443 -0.5958 0.9717

5 Dependence Functions

Let z = (21,...,24) and w = (w1,...,wq). Any d-dimensional extreme value distribution function
can be represented in the form

o s ({52 (gt )

where (y1,...,yq4) is defined by the transformations (10). It follows that A(w) =
—log{G(y; " (w1),---,y; " (wa))}, defined on the simplex Sy = {w € R : E?:l wj = 1} A(:)
is known as the dependence function. The dependence function characterises the dependence
structure of G. It can be shown that A(w) = 1 when w is one of the d vertices of Sy (i.e. when
one component of w is equal to one, and all remaining components are equal to zero), and that
A is a convex function with max(wy,...,wq) < A(w) <1 for all w € S4. The lower and upper
bounds are obtained at complete dependence and mutual independence respectively. In partic-

ular, A(1/d,...,1/d) is equal to 1/d at complete dependence, and 1 at mutual independence.

The dependence function of a bivariate extreme value distribution is a special case (because the
sets So and [0,1] are equivalent), and is typically defined as follows. Any bivariate extreme value
distribution function can be represented in the form

Y1
G(z1,22) = expq —(y1 + A( )}, 11
(or20) = exp {0+ o) (2 )
so that A(w) = —log{G(y; ' (w),y5 ' (1 — w))}, defined on 0 < w < 1.* Tt follows that A(0) =
A(1) =1, and that A(-) is a convex function with max(w,1 —w) < A(w) <1forall 0 <w < 1.
At independence A(1/2) = 1. At complete dependence A(1/2) = 0.5.

*The values taken by a;, when |b| = 2 are irrelevant here because 6;;, = 0 for all 4 € b when |b| = 2.
*Some authors (e.g. Pickands, 1981) use A(w) = —log{G(y; *(1 —w),y5 *(w))}.
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Figure 1: Left: Parametric (solid lines) and non-parametric (dashed line) dependence functions
for bivariate distributions. The triangular border represents the constraint max(w,1 — w) <
A(w) <1 for all w € [0, 1]. Right: non-parametric dependence function for a trivariate distribu-
tion. Darker colours depict smaller values, and hence stronger dependence.

Dependence functions for parametric bivariate and trivariate extreme value models can be cal-
culated and plotted, at given parameter values, using the functions abvevd and amvevd. Non-
parametric estimators of dependence functions can also be calculated and plotted, using the
functions abvnonpar and amvnonpar. Some examples are given below. The last lines of code
produce Figure 1.

> bvlsm <- rmvevd (100, dep
> tvlsm <- rmvevd (100, dep

0.6, model
0.6, model

"log", d = 2)
"log", d 3)

> abvevd(seq(0,1,0.25), dep = 0.3, asy = c(.7,.9), model = "alog")
[1] 1.0000 0.8272 0.7013 0.7842 1.0000

> abvnonpar(seq(0,1,0.25), data = bvlsm)

[1] 1.0000 0.8634 0.8158 0.8392 1.0000

abvnonpar(data = bvlsm, plot = TRUE, blty = 1, 1ty = 2)
abvevd(dep = .3, asy = c(.5, .9), model = "al", add = TRUE)
abvevd(dep = 1.05, model = "hr", add = TRUE)
amvnonpar(data = tvlsm, plot = TRUE, lower = 0.6)

vV V V V

6 Stochastic Processes

The evd package contains four functions that simulate from stochastic processes associated with
extreme value theory. The functions marma, mar and mma generate max autoregressive moving
average processes, and the function evmc generates Markov chains with extreme value dependence
structures. The function clusters identifies extreme clusters of a stochastic process, and exi
estimates a quantity known as the Extremal Index.

A max autoregressive moving average process { Xy}, denoted by MARMA(p, q), satisfies

Xy = max{$1 Xg_1,- -, 0pXk—p, €k, 01651, -, Og€k_q}



where (¢1,...,¢p) and (01,...,6,) are vectors of non-negative parameters, and {e} is a series
of #id random variables with a common distribution defined by the argument rand.gen. The
standard Fréchet distribution is used by default. A max autoregressive process { X}, denoted
by MAR(p), is equivalent to a MARMA (p, 0) process, so that

Xy = max{¢1 Xg 1,---, $pXg p, €k}

A max moving average process { Xy}, denoted by MMA(q), is equivalent to a MARMA(O, q)
process, so that
Xk = max{ek, 916k_1, “ee ,quk_q}.

The functions mar, mma and marma generate MAR(p), MMA(q) and MARMA(p, ¢q) processes
respectively. Examples of calls to these functions are given below. The n.start argument denotes
the burn-in period, which can be specified so that the output series is not unduly influenced by
the p starting values, which are all zero by default.

> marma(100, p =1, q =1, psi = 0.75, theta = 0.65)
> mar (100, psi = 0.85, n.start = 20)
> mma (100, q = 2, theta = c(0.75, 0.8))

The function evmc generates first order Markov chains. Informally, a first order Markov chain
X1,...,X, is a stochastic process such that at any given time ¢ the probability distribution
of Xi41 is independent the past Xi,...,X;—1, given the current state X;. The evmc function
generates a first order Markov chain such that each pair of consecutive values has the depen-
dence structure of a parametric bivariate extreme value model. The main arguments of evmc
are the same as those of rbvevd. The function evmc also has the argument margin, which de-
notes the marginal distribution of each value. This must be either "uniform" (the default),
"rweibull", "frechet" or "gumbel" (or any unique partial match), for the uniform, standard
reversed Weibull, standard Gumbel and standard Fréchet distributions respectively. Examples
of calls to evmc are given below.

> evmc (100, alpha = 0.1, beta = 0.1, model = "bilog")
> evmc (100, dep = 10, model = "hr", margins = "gum")

The function clusters identifies extreme clusters within (stationary) stochastic processes. A
simple way of determining clusters is to specify a threshold u and define consecutive exceedances
of u to belong to the same cluster. It is more common though to consider a cluster to be active
until 7 consecutive values fall below (or are equal to) u, for some given clustering interval length
r. The following code uses clusters to generate the plots depicted in Figure 2. These plots
identify clusters graphically. If the argument plot is FALSE (the default), then clusters returns
a list of extreme clusters.

> set.seed(150)

> x <- evmc(50, dep = 0.55, model ="log")
> clusters(x, 0.8, plot = TRUE)

> clusters(x, 0.8, 4, plot = TRUE)

The function exi returns estimates of the Extremal Index of a (stationary) stochastic process.
The Extremal Index is defined in Chapter 3 of Leadbetter et al. (1983). A more informal
treatment is given in Chapter 5 of Coles (2001). The extremal index can be estimated using the
inverse of the average size of extreme clusters, where the cluster size is defined as the number of
exceedances that it contains.
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Figure 2: The identification of extreme clusters in a stochastic process. The clustering interval
lengths are r = 1 (left) and r = 4 (right). The threshold in each case is u = 0.8.

7 Fitting Univariate Distributions

This section presents functions that produce maximum likelihood estimates for some of the
distributions introduced in Section 2. Peaks over threshold models are discussed in Section 8.
Maximum likelihood estimates for bivariate extreme value distributions are discussed in Section
9. For illustrative purposes Sections 7, 8 and 9 use only simulated data. Three practical examples
using the data sets oxford, rain and sealevel are given in Sections 10, 11 and 12 respectively.

The function fgev produces maximum likelihood estimates for the GEV distribution (4). The
first argument should be a numeric vector containing data to be fitted. Missing values are
allowed. If the argument start is given it should be a named list containing starting values, the
names of which should be the parameters over which the likelihood is to be maximised. If start
is omitted the routine attempts to find good starting values for the optimisation using moment
estimators.

If any of the parameters are to be set to fixed values, they can be given as separate arguments.
For example, the Gumbel distribution (1) can be fitted using shape = 0. Arguments of the
optimisation function optim can also be specified. This includes the optimisation method, which
can be passed using the argument method. Two examples of the fgev function are given below.

> datal <- rgev(1000, loc = 0.13, scale = 1.1, shape = 0.2)

> ml <- fgev(datal)
> ml

Call: fgev(x = datal)
Deviance: 3650

Estimates
loc scale shape
0.127 1.125 0.224

Standard Errors

loc scale shape
0.0400 0.0321 0.0248

11



Optimization Information
Convergence: successful
Function Evaluations: 51
Gradient Evaluations: 12

> m2 <- fgev(datal, loc = 0, scale = 1)
> fitted(m2)

shape

0.236

In the first example the likelihood is maximised over (loc, scale, shape). In the second example
the likelihood is maximised over shape, with the location and scale parameters fixed at zero and
one respectively.

The maximum likelihood estimators do not necessarily have the usual asymptotic properties,
since the end points of the GEV distribution depend on the model parameters. Smith (1985)
shows that the usual asymptotic properties hold when & > —0.5. When —1 < £ < —0.5 the
maximum likelihood estimators do not have the standard asymptotic properties, but generally
exist. When ¢ < —1 maximum likelihood estimators do not often exist. This occurs because of
the large mass near the upper end point. The likelihood increases without bound as the upper
end point is estimated to be closer and closer to the largest observed value. In terms of the
reversed Weibull shape parameter «, the usual asymptotic properties hold when o« > 2, the
asymptotic properties are not standard for 1 < a < 2, and maximum likelihood estimators do
not often exist for a < 1.

When the usual asymptotic properties hold (as here) the standard errors of the maximum like-
lihood estimates, approximated using the inverse of the observed information matrix, can be
extracted from the fitted object using

> std.errors(ml)
loc scale shape
0.03999 0.03214 0.02479

Likelihood ratio tests can be performed using the function anova. We can compare the two
models m1 and m2 to test the null hypothesis that the location parameter is zero and the scale
parameter is one.

> anova(ml, m2)
Analysis of Deviance Table

M.Df Deviance Df Chisq Pr(>chisq)
ml 3 3650
m2 1 3669 2 18.8 8.2e-05

The deviance difference, deviance (m2) minus deviance(ml), is about 18.8, which yields a p-
value of 8.2 x 107° when compared with a chi-squared distribution on two degrees of freedom.
Diagnostic plots and profile traces for fitted models can be constructed using the functions plot,
profile and profile2d (see Section 10).

By default the maximum likelihood estimates are calculated under the assumption that the
data to be fitted are the observed values of independent random variables Zi,..., Z,, where
Z; ~ GEV(p,0,€) for each i = 1,...,n. The nsloc argument allows non-stationary models of
the form Z; ~ GEV(ui, 0,£), where

i = Po + Bi1xit + -+ + Brxik-

12



The parameters (8y,-..,0) are to be estimated. In matrix notation g = B¢ + X3, where

w=(p1, ., p10)", Bo= Bo,---,60)", B=(Bi,...,0:)" and X is the n x k covariate matrix
(excluding the intercept) with ijth element z;;.

The nsloc argument must be a data frame containing the matrix X, or a numeric vector which is
converted into a single column data frame with column name “trend”. The column names of the
data frame are used to derive names for the estimated parameters. This allows any of the k + 3
parameters (fy, .-, Bk, 0,&) to be set to fixed values within the optimisation. The covariates
must be (at least approximately) centred and scaled, not only for numerical reasons, but also
because the starting value (if start is not given) for each corresponding coefficient is taken to
be zero. When a linear trend is present in the data, the location parameter is often modelled as

wi = Po + Bits,

where t; is some centred and scaled version of the time of the ith observation. More complex
changes in y may also be appropriate. For example, a change-point model

0 <9
pi = Po+ Prz;  where =z = { D
1 2>14

or a quadratic trend
pi = Bo + Biti + Bot;.-

See Sections 10 and 12 for examples of non-stationary modelling.

The function fgev also has an argument called prob. If prob = p is passed a value in the
interval [0,1], fgev again produces maximum likelihood estimates for the GEV distribution, but
the model is re-parameterised from (p,0,&) to (zp,0,§), where 2, is the quantile corresponding
to the upper tail probability p. This argument can be used to calculate and plot profile log-
likelihoods of extreme quantiles (see Section 10). If prob is zero/one, then z, is defined as the
upper/lower end point u — o/&, and & is restricted to the negative/positive axis. Under non-
stationarity the model is re-parameterised from (8o, B1,..., Bk, 0,§) to (2p,B1,-.., Bk, 0,§), S0
that 2, is the quantile corresponding to the upper tail probability p for the distribution obtained
when all covariates are zero.

The fextreme function produces maximum likelihood estimates for the distributions (5) and (6)
given an integer m and an arbitrary distribution function F. The first argument should be a
numeric vector containing the data to be fitted, which should represent maxima (if the argument
largest is TRUE, the default) or minima (if largest is FALSE). The argument start (which
cannot be missing) should be a named list containing starting values, the names of which should
be the parameters over which the likelihood is to be maximised. If any of the parameters are to
be set to fixed values, they can be given as separate arguments. Arguments of the optimisation
function optim can also be specified. The example given below produces maximum likelihood
estimates for the distribution (5), where m = 365 and F is the normal distribution.

> d2 <- rextreme(100, distn = "norm", mean = 0.56, mlen = 365)
# Simulate yearly maxima using normal distribution

> sv <- list(mean = 0, sd = 1)

> nm <- fextreme(d2, start = sv, distn = "norm", mlen = 365)
> fitted(nm)

mean sd

0.685 0.959
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The forder function yields maximum likelihood estimates for the distribution (7) given integers
m and j € {1,...,m}, and an arbitrary distribution function F. An example is given below,
where m = 365, j = 2 and F is the normal distribution.

> d3 <- rorder(100, distn = "norm", mean = 0.56, mlen = 365, j = 2)

> sv <- list(mean = 0, sd = 1)

> nm2 <- forder(d3, sv, distn = "norm", mlen = 365, j = 2)

> fitted(nm2)

mean sd

0.483 1.042

8 Fitting Peaks Over Threshold Models

Suppose X1,..., X, is a sequence of independent and identically distributed random variables,

with My, = {X1,...,Xp}. Suppose that n is large, so that (assuming certain regularity condi-
tions) the distribution of M, is approximately GEV. Then for large enough u, the exceedances
of the threshold u are approximately distributed as generalised Pareto, with location parameter
u. The function fpot fits this distribution to the exceedances, and hence produces maximum
likelihood estimates for the shape and scale parameters. The value of the threshold u must be
specified by the user. It is typically chosen to be as small as possible, subject to the limit model
providing a reasonable approximation.

The functions mrlplot and tcplot® produce diagnostic plots that facilitate the specification of
u. The function mrlplot produces the empirical mean residual life plot, which is a plot of the
empirical mean of the excesses of u (i.e. the exceedances of u minus u), plotted against u. If the
exceedances of a threshold ug are generalised Pareto, the empirical mean residual life plot should
be approximately linear for all 4 > wg. The function tcplot calculates maximum likelihood
estimates for the shape and modified scale parameters using a number of different thresholds,
and plots these estimates against u. If the exceedances of a threshold ug are generalised Pareto,
the shape and modified scale parameters should be approximately constant with respect to all
thresholds w > wg. Threshold identification plots produced from the example given below are
depicted in Figure 3. In this case, the threshold u = 1 was chosen.

The following code generates n = 500 independent standard normal random variables and fits
the (generalised Pareto) peaks over threshold model to the exceedances of the threshold u =
1. The function fpot performs the fit. Many of the arguments of fpot are similar to those
of fgev. In particular, either of the scale or shape parameters can be set to fixed values
by giving those parameters as arguments. For example, an exponential distribution for the
excesses (or equivalently, a shifted exponential distribution for the exceedances) can be fitted
using shape = 0.

> tmp <- rnorm(500)
> mrlplot(tmp, tlim = c(-1,1.5))
> tcplot (tmp, tlim = c(-1,1.5))

> potl <- fpot(tmp, 1)
> potl

Call: fpot(x = tmp, threshold = 1)
Deviance: 40.5

*Both of these functions are heavily based on code by Stuart Coles.
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Figure 3: The identification of a threshold for the (generalised Pareto) peaks over threshold
model. From left to right; the empirical mean residual life plot, modified scale parameter esti-
mates and shape parameter estimates.

Threshold: 1
Number Above: 76
Proportion Above: 0.152

Estimates
scale shape
0.593 -0.211

The fitted model pot1 gives the estimates for the scale and shape parameters of the generalised
Pareto distribution fitted to the exceedances. Also given is the proportion of values above the
threshold, or equivalently, the maximum likelihood estimate for the probability of an exceedance.
Diagnostic plots and profile traces for fitted models can be constructed using the functions plot
and profile (see Section 11).

The peaks over thresholds model is typically extended to stationary series via declustering, which
corresponds to a filtering of dependent observations to obtain a set of threshold exceedances which
are approximately independent. An empirical rule is used to identify clusters of exceedances, and
the generalised Pareto model is then fitted to the cluster maxima, assuming those maxima to
be independent. The empirical rule, as given in Section 6, is defined by the function clusters.
A model of this form can be implemented by setting the logical argument cmax to TRUE. The
clusters are identified using the threshold of the peaks over threshold model. An illustration of
this technique is given below. The argument r is the clustering interval length.

> tmp2 <- evmc(500, dep = 0.8, margins = "gum")
> pot2 <- fpot(tmp2, 1.5, cmax = TRUE, r = 3)
> pot2

Call: fpot(x = tmp, threshold = 1, cmax = TRUE, r = 3)
Deviance: 101.1

Threshold: 1.5

Number Above: 92
Proportion Above: 0.184
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Clustering Interval: 3
Number of Clusters: 41
Extremal Index: 0.446

Estimates
scale shape
1.657 -0.272

The Extremal Index is a quantity briefly discussed in Section 6. The estimate of the Extremal
Index is simply the number of clusters divided by the number of exceedances.

The function fpot also has an argument called mper. If mper = m is passed a positive value,
fpot again produces maximum likelihood estimates for the generalised Pareto model, but the
model is re-parameterised from (o, ) to (2p,,&), where z,, is the m-period return level, defined
as follows. Let G be the fitted generalised Pareto distribution function, with location parameter
equal to the specified threshold u, so that 1 — G(z) is the fitted probability of an exceedance over
z > u given an exceedance over u. The fitted probability of an exceedance over z > u is therefore
p(1 — G(z)), where p is the estimated probability of exceeding u, which is given by the empirical
proportion of exceedances. The m-period return level z,, satisfies p(1 — G(zm)) = 1/(mN¥),
where N is the number of observations per period, and 6 is the estimate of the extremal index
if cluster maxima are fitted, with § = 1 otherwise. The value N can be specified using the
argument npp. For example, if observations are recorded weekly and npp = 52, then z,, is the
m-year return level. If mper is Inf, then z,, is defined as the upper end point u — o /¢, and &
is then restricted to be negative. The argument mper can be used to calculate and plot profile
log-likelihoods of return levels (see Section 11).

9 Fitting Bivariate Extreme Value Distributions

The function fbvevd produces maximum likelihood estimates for nine bivariate extreme value
models. The first argument should be a numeric matrix (or a data frame) with two columns
containing the data to be fitted. Missing values are allowed. If the argument start is given it
should be a named list containing starting values, the names of which should be the parameters
over which the likelihood is to be maximised. If start is omitted the routine attempts to
find good starting values for the optimisation using maximum likelihood estimators under the
assumption of independence. If any of the parameters are to be set to fixed values, they can be
given as separate arguments. Common marginal parameters can be fitted using the arguments
cshape, cscale and cloc, and the dependence function can be constrained to symmetry using
the argument sym (see the fbvevd help file for details).

The nslocl and nsloc2 arguments allow non-stationary modelling of the location parameters
on the first and second margins respectively. They should be used in the same manner as the
nsloc argument of fgev. Examples of bivariate models with non-stationary margins are given
in Section 12.

The first example given below produces maximum likelihood estimates for the (symmetric) lo-
gistic model. The second example constrains the model at independence (where dep = 1). The
estimates produced in the second example are the same as those that would be produced if fgev
was separately applied to each margin.

> bvdata <- rbvevd(100, dep = 0.6, marl = ¢(1.2,1.4,0), mar2 = ¢(1,1.6,0.1))
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> ml <- fbvevd(bvdata, model = "log")
> ml

Call: fbvevd(x = bvdata, model = "log")
Deviance: 728.5

AIC: 742.5

Dependence: 0.3526

Estimates
locl scalel  shapel loc2 scale2  shape2 dep
1.2121 1.3831 -0.1813 0.8404 1.4005 0.0834 0.7202

Standard Errors
locl scalel shapel loc2 scale2 shape2 dep
0.1540 0.1091 0.0673 0.1537 0.1144 0.0614 0.0624

Optimization Information
Convergence: successful
Function Evaluations: 47
Gradient Evaluations: 10

> m2 <- fbvevd(bvdata, model = "log", dep = 1)

> fitted(m2)
locl scalel  shapel loc2 scale2  shape2
1.2231 1.3776 -0.1914 0.8367 1.4083 0.0868

> std.errors(m2)
locl scalel shapel loc2 scale2 shape2
0.1543 0.1089 0.0725 0.1565 0.1163 0.0670

> c(loglik(m2), deviance(m2), AIC(m2))
[1] -376 752 764

The discussion in Section 7 regarding the properties of maximum likelihood estimators for the
GEV distribution also applies to all bivariate models. The usual asymptotic properties will not
hold if either of the marginal shape parameters are less than —0.5. The value in the output
labelled Dependence is the fitted estimate of x = 2{1 — A(1/2)} € [0,1] (Coles et al., 1999),
where A(-) denotes the dependence function (11). At independence x = 0, and at complete
dependence x = 1.

Diagnostic plots and profile traces for fitted models can be constructed using the functions plot,
profile and profile2d (see Section 12). The function anova performs likelihood ratio tests. The
null hypothesis of the test performed below specifies that the margins are Gumbel distributions
(shapel = shape2 = 0). The deviance of the constrained model is compared with the deviance
of the unconstrained model, and the p-value is calculated to be 0.78. The hypothesis would not
be rejected at any reasonable significance level.

> m3 <- fbvevd(bvdata, model = "log", shapel = 0, shape2 = 0)
> anova(ml, m3)
Analysis of Deviance Table

17



M.Df Deviance Df Chisq Pr(>chisq)
ml 7 708
m3 5 708 2 0.5 0.78

In the following example I attempt to fit the asymmetric logistic model to the simulated data
set used above, which is known to be distributed as symmetric logistic.

> m4 <- fbvevd(bvdata, model = "alog")
> fitted(m4)

locl scalel shapel 1loc2 scale2 shape2 asyl asy2 dep
1.2097 1.3928 -0.1853 0.8421 1.3831 0.0773 0.8331 0.9996 0.6925

A boundary of the parameter space has been reached; the maximum likelihood estimate for the
second asymmetry parameter is one. This may cause difficulties for the optimiser. There are two
solutions to this problem: the second asymmetry parameter can be fixed at one, or the L-BFGS-B
method can be used. The L-BFGS-B method allows box-constraints using the arguments lower
and upper. The following snippet illustrates both approaches.

> mb <- fbvevd(bvdata, model = "alog", asy2 = 1)
> round(fitted(mb), 3)

locl scalel shapel 1loc2 scale2 shape2 asyl dep
1.212 1.385 -0.176 0.834 1.396 0.086 0.867 0.693

> up <- c(rep(Inf, 6), 1, 1, 1)
> mb <- fbvevd(bvdata, model = "alog", method = "L-BFGS-B", upper = up)
> round (fitted(mb), 3)
locl scalel shapel loc2 scale2 shape2 asyl asy2 dep
1.212 1.385 -0.176 0.834 1.396 0.086 0.867 1.000 0.693

10 Example: Oxford Temperature Data

The numeric vector oxford contains annual maximum temperatures (in degrees Fahrenheit)
at Oxford, England, from 1901 to 1980. It is included in the evd package, and can be made
available using data(oxford). The data has previously been analysed by Tabony (1983). I
begin by plotting the data. The assumptions of stationarity and independence seem sensible,
given the plot (not shown) generated using the code below.

> data(oxford) ; ox <- oxford
> plot(1901:1980, ox, xlab = "year", ylab = "temperature")

The following code fits two models based on the GEV distribution. The first model assumes
stationarity. The second model allows for a trend term in the location parameter (even though
the plot appears to show that this is unnecessary). The nsloc argument is centred and scaled
so that the intercept loc represents the location parameter in 1950 and the trend loctrend
represents the increase in the location parameter (or decrease, if negative) over a period of 100
years.
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Figure 4: Diagnostic plots for the model ox.fit.

> ox.fit <- fgev(ox)

> tt <- (1901:1980 - 1950)/100
> ox.fit.trend <- fgev(ox, nsloc = tt)

> fitted(ox.fit.trend)
loc loctrend scale shape
83.6617 -1.8812 4.2233 -0.2841

> std.errors(ox.fit.trend)
loc loctrend scale shape
0.5557 1.9675 0.3650 0.0707

The trend term not statistically significant (at any reasonable level). The stationary model
ox.fit is retained for further analysis.

> ox.fit

Call: fgev(x = oxford)
Deviance: 457.8

Estimates
loc scale shape
83.839 4.260 -0.287

Standard Errors
loc scale shape
0.5231 0.3658 0.0683

The fitted shape is negative, so the fitted distribution is Weibull. It is often of interest to test
the hypothesis that the shape is zero (the Gumbel distribution). The code confint (ox.fit)
returns the 95% Wald confidence intervals for the model parameters, roughly equal to the fitted
estimates plus or minus twice their standard errors. The interval for the shape parameter is given
by (—0.42,—0.15). The corresponding Wald test for £ = 0 would be rejected at significance level
0.05 since the 95% confidence interval does not contain zero. A likelihood ratio test for £ = 0
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Figure 5: Profile log-likelihoods for the model ox.fit.

is performed in the following snippet. The hypothesis is rejected at any significance level above
0.00053.

> ox.fit.gum <- fgev(ox, shape = 0)
> anova(ox.fit, ox.fit.gum)
Analysis of Deviance Table

M.Df Deviance Df Chisq Pr(>chisq)
ox.fit 3 458
ox.fit.gum 2 470 1 12 0.00053

Diagnostic plots can be produced using plot (ox.fit). The plots produced compare parametric
distributions, densities and quantiles to their empirical counterparts (see the plot.uvevd help
file for details). Selected diagnostics are depicted in Figure 4.

The small bars on the P-P, Q-Q and return level plots represent simulated (pointwise) 95%
confidence intervals. The model ox.prof is seen to be a good fit. The fitted density is close
to the non-parametric estimator, and most points lie within the confidence intervals. Profile
log-likelihoods of the parameters can be plotted using

> ox.prof <- profile(ox.fit)
> plot (ox.prof)

The profile log-likelihoods for the scale and shape parameters are the first two plots of Figure
5. A horizontal line is (optionally) drawn on each plot so that the intersection of the line with
the profile log-likelihood yields a profile confidence interval, with (default) confidence coefficient
0.95. The end points of the intervals can be derived using confint (ox.prof). The profile con-
fidence intervals for the location and shape parameters are approximately the same as the Wald
confidence intervals, since the profile log-likelihoods are approximately symmetric. The profile
log-likelihood for the scale parameter is asymmetric; both end points of the profile confidence
interval (3.64,5.12) are larger than the corresponding end points of the Wald interval (3.54,4.98).
The joint profile log-likelihood of the scale and shape parameters can be plotted using

> ox.prof2d <- profile2d(ox.fit, ox.prof, which = c("scale", "shape"))
> plot (ox.prof2d)
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Figure 6: Profile log-likelihoods for 2.1, 20.01 and 2g.go1-

This produces the image plot in the right panel of Figure 5. The colours of the image plot
represent confidence sets with different confidence coefficients. By default, the lightest colour
(ignoring the background colour) represents a confidence set with coefficient 0.995; the darkest
colour represents a confidence set with coefficient 0.5.

Let G be the GEV distribution function, and let G(z,) = 1 — p, so that

) :{u—gu—{—logu—p)}—ﬁ] £#0
" \n-olog{-log1-p)}  £=0,

is the quantile corresponding to the upper tail probability p. The profile log-likelihood for 2.1 can
be plotted using the following. The argument prob = p re-parameterises the GEV distribution
so that fgev produces maximum likelihood estimates for (zp, o, ).

> ox.qfit <- fgev(ox, prob = 0.1)
> ox.gprof <- profile(ox.qfit, which = "quantile")
> plot (ox.qgprof)

Figure 6 shows profile log-likelihoods for zg.1, 29.01 and zg.g01- The extent of the asymmetry in
the profile log-likelihood increases for decreasing (small) p. This is to be expected, since the data
provide increasingly weaker information in the upper tail of the fitted distribution. If prob =p
is zero, then z, is the upper end point of the GEV distribution, given by u — o/¢ when £ < 0.
The profile log-likelihood for zy can be plotted using the following code.

ox.qfit <- fgev(ox, prob = 0)
ox.qprof <- profile(ox.qfit, which = "quantile", conf = 0.99)
plot (ox.qgprof)
confint (ox.qprof)
lower upper
quantile 95.78 113.0

vV V V V

The argument conf of the function profile controls the range of the profile trace. The profile
trace is constructed so that profile confidence intervals with confidence coefficients conf or less
can be derived from it. By default, conf = 0.999, though a smaller value is often appropriate
when the profile log-likelihood exhibits strong asymmetry. The 95% profile confidence interval
for the upper end point 2 is derived as (95.8,113.0).
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Figure 7: Diagnostic plots for the peaks over threshold model for daily rain data.
11 Example: Rainfall Data

The numeric vector rain contains 17531 daily rainfall accumulations at a location in south-west
England, recorded over the period 1914 to 1962. The data is not included in the evd package, but
it is available in the ismev package, which can be downloaded from CRAN. As usual, the package
can be loaded using library(ismev), and the data can be made available using data(rain).
The plot of the data given in Figure 1.7 of Coles (2001) shows that an assumption of stationarity
is sensible. The example given here follows Coles (2001), pages 84-86.

mrlplot(rain, tlim = ¢(0,85), nt = 100)

par (mfrow = c(2,1))

tcplot(rain, tlim = c¢(0,50), nt = 20)

potgp <- fpot(rain, 30, npp = 365.25)

potgp2 <- fpot(rain, 30, npp = 365.25, cmax = TRUE, r = 7)
clusters(rain, 30, r = 7, cmax = TRUE)

V V. V V Vv V

The first three lines of code produce the threshold diagnostic plots given in pages 80 and 85 of
Coles (2001), who subsequently decides to work with the threshold u = 30. The model potgp
reports that 152 observations lie above the threshold, giving an exceedance probability estimate
of 0.00867. The estimates and standard errors of the parameters of potgp agree with those
given page 85 of Coles (2001). In potgp2 the peaks over threshold model is applied to cluster
maxima, where clusters are defined using a clustering interval length of seven. As there is little
sign of clustering in the data, this leads to relatively small changes in the parameter estimates,
and relatively small increases in the standard errors. The final line of code calls the function
clusters (see Section 6) in order to produce the cluster maxima that were used for the fitting
of model potgp2.

Diagnostic plots can be produced using plot(potgp). The plots compare parametric distribu-
tions, densities and quantiles to their empirical counterparts (see the plot.uvevd help file for
details). Selected diagnostics are given in Figure 7. The x-axis of the return level plot gives
return periods in units of years, since we specified the number of observations per period as
npp = 365.25. The small bars on the P-P, Q-Q and return level plots represent simulated (point-
wise) 95% confidence intervals. The model potgp is seen to be a good fit. The fitted density tail
is close to the non-parametric estimator, and most points lie within the confidence intervals.

Profile log-likelihoods of the shape parameter and the 100-year return level (not shown) can be
plotted using the following code. The argument mper = m re-parameterises the model so that
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Figure 8: From left to right; Harwich maxima vs Dover maxima, estimated values of x(u) vs u,
estimated values of x(u) vs u.

fpot produces maximum likelihood estimates for (z,,&), where z,, is the m period return level,
as defined in Section 8. Horizontal lines denoting 95% profile confidence intervals are depicted on
each plot. The end points of profile confidence intervals can be derived using confint (prgp3).

potgp3 <- fpot(rain, 30, npp = 365.25, mper = 100)
prgp3 <- profile(potgp3)
plot (prgp3)

12 Example: Sea Level Data

The sealevel data frame (Coles and Tawn, 1990) has two columns containing annual sea level
maxima from 1912 to 1992 at Dover and Harwich, two sites on the coast of Britain. It contains
39 missing maxima in total; nine at Dover and thirty at Harwich. There are three years for
which the annual maximum is not available at either site.

I begin by plotting the data, using the code below. The plot of the Harwich maxima against the
Dover maxima, given in the left panel of Figure 8, depicts a reasonable degree of dependence.
The outlier corresponds to the 1953 flood resulting from a storm passing over the South-East
coast of Britain on 1st February. The marginal plots (not shown) suggest that the Harwich
and Dover maxima both increase with time. The last line of code* plots estimates of x(u) and
x(u) for 0 < u < 1 (Coles et al., 1999), as depicted in Figure 8. For bivariate extreme value
distributions, x(u) = x is constant for all 0 < u < 1, and lim,_,; x(u) = 1. The conditions do
not seem unreasonable given the wide confidence intervals in each plot.

> data(sealevel) ; sl <- sealevel

> plot(sl, xlab = "Dover Annual Maxima", ylab = "Harwich Annual Maxima")
> plot(1912:1992, sl1[,1], xlab = "Year", ylab = "Dover Annual Maxima")

> plot(1912:1992, sl1[,2], xlab = "Year", ylab = "Harwich Annual Maxima")
> chiplot(sl)

The following three expressions fit (symmetric) logistic models. The first model incorporates
linear trend terms on both marginal location parameters. The second model incorporates a

*The function chiplot is heavily based on code by Jan Heffernan.
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linear trend on the Dover margin only. The third model assumes stationarity. The nslocl
and nsloc2 arguments are centred and scaled so that the intercepts locl and loc2 represent the
marginal location parameters in 1950 and the linear trend parameters locltrend and loc2trend
represent the increase in the marginal location parameters (or decrease, if negative) over a period
of 100 years.

> tt <- (1912:1992 - 1950)/100

> ml <- fbvevd(sl, model = "log", nslocl = tt, nsloc2 = tt)
> m2 <- fbvevd(sl, model = "log", nslocl = tt)

> m3 <- fbvevd(sl, model = "log")

The maximum likelihood estimates of the parameters can be compared with their standard
errors to perform Wald tests. Wald confidence intervals can be derived using e.g. confint(ml).
Likelihood ratio tests are performed in the following snippet. The p-values confirm the statistical
significance of the linear trend terms.

> anova(mil, m2, m3)
Analysis of Deviance Table

M.Df Deviance Df Chisq Pr(>chisq)

ml 9 -36.5
m2 8 -29.2 1 7.26 0.007
m3 7 -9.7 1 19.56 9.7e-06

Quadratic trends for the location parameter on either or both margins can be incorporated using
the following code. Further testing, using the models generated below, suggests that a quadratic
trend may be implemented for the location parameter on the Harwich margin. Despite this, I
retain the model m1 for further analysis.

> tdframe <- data.frame(trend = tt, quad = tt~2)

> m4 <- fbvevd(sl, model = "log", nslocl tdframe, nsloc2 = tt)

> mb <- fbvevd(sl, model = "log", nslocl = tt, nsloc2 = tdframe)

> m6 <- fbvevd(sl, model = "log", nslocl = tdframe, nsloc2 = tdframe)

The code given below compares two logistic models that are nested within mi. Model m7 as-
sumes independence. The maximum likelihood estimates are the same as those that would be
produced if fgev was separately applied to each margin. The asymptotic distribution of the
deviance difference between models m7 and m1 is non-regular because the dependence parameter
in the restricted (independence) model is fixed at the edge of the parameter space. Tawn (1988)
discusses non-regular cases, including this case, for which the asymptotic distribution is one-half
of a chi-squared random variable on one degree of freedom. In these cases the argument half
should be set to TRUE. The resulting p-value is less than 107°, and clearly the independence
model is rejected.

Model m8 assumes that both marginal shape parameters are zero (or equivalently, that both
marginal distributions are Gumbel). A likelihood ratio test of this hypothesis provides a p-value
of 0.72. The hypothesis would not be rejected at any reasonable significance level.

> m7 <- fbvevd(sl, model = "log", nslocl = tt, nsloc2 = tt, dep = 1)
> anova(ml, m7, half = TRUE)
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Figure 9: From left to right; dependence function diagnostic plot, quantile curves diagnostic plot,
profile log-likelihood of the dependence parameter.

Analysis of Deviance Table

M.Df Deviance Df Chisq Pr(>chisq)
ml 9 -36.5
m7 8 -22.9 1 27.2 1.9e-07

> m8 <- fbvevd(sl, "log", nslocl = tt, nsloc2 = tt, shapel = 0, shape2 = 0)
> anova(mi, m8)
Analysis of Deviance Table

M.Df Deviance Df Chisq Pr(>chisq)
ml 9 -36.5
m8 7 -356.8 2 0.67 0.72

Diagnostic plots for the fitted (generalised extreme value) marginal distributions can be produced
using plot with mar = 1 or mar = 2. The plots produced are of the same structure as those
given in Section 10. Diagnostic plots for the fitted dependence structure can be produced using
plot. There are six plots available (see the plot.bvevd help file for details). Two diagnostic
plots are depicted within Figure 9.

> plot(ml, mar = 1)
> plot(ml, mar = 2)
> plot(ml, which = 1:5)

The model m1 fits the data reasonably well. There are some minor deviations within the con-
ditional P-P plots (not shown), but they do not represent a serious departure of the empirical
estimates from the fitted model. The profile log-likelihood of the dependence parameter dep,
as given in the right panel of Figure 9, can be plotted using the following. The argument xmax
denotes the upper bound of the parameter.

> ml.prof <- profile(ml, which = "dep", xmax = 1)
> plot(ml.prof)
> confint (ml.prof)
lower upper
dep 0.528 0.887
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A horizontal line is (optionally) drawn so that the intersection of the line with the profile log-
likelihood yields a profile confidence interval, with (default) confidence coefficient 0.95. The
interval is derived as (0.53,0.89).

Further analysis with models other than the (symmetric) logistic yields the following conclusions.
The two models in Section 3 that include three parameters with which to describe the dependence
structure (the asymmetric logistic and asymmetric negative logistic) are inappropriate. In both
cases, the maximum likelihood estimate for the parameter dep is at an artificial boundary, because
the fitted model is close to a distribution (obtained in the limit) which contains a singular
component. This is clearly illustrated in the density plots of the fitted models, which both
depict a ridge of mass extending towards the 1953 outlier. The logistic and the bilogistic models
have the lowest deviance of all one and two parameter models respectively. The dependence
structure of the fitted bilogistic model is almost symmetric. At symmetry, the bilogistic model
reduces to the logistic model, and so the latter would appear to be preferable. A likelihood ratio
test between the two (nested) models gives a p-value of 0.93.

Appendix A: Additional Bivariate Parametric Models

It can be shown, using a representation of de Haan (1984), that

G(z1,22) = GXP{—/O1 max{y: (1 — a)z™ % y2(1 - B)(1 — $)_ﬂ}d$}a o, fB <1

is a bivariate extreme value distribution function. If we further constrain the parameters to be
non-negative we obtain the bivariate bilogistic model proposed by Smith (1990), which can also
be expressed as

G(z1,22) = exp {—ylfyl*a —1y2(1 — 'y)l*ﬁ}, 0<ap<l,

where v = y(y1, y2; @, 8) solves (1 — a)y1 (1 —7)? = (1 — B)y27*. The logistic model is obtained
when a = . Independence is obtained as @« = 8 — 1, and when one of «, 8 is fixed and the
other approaches one. Different limits occur when one of «, 8 is fixed and the other approaches
Z€ero.

Alternatively, if we constrain both parameters to be non-positive and set ap = —a > 0 and
Bo = —B > 0 we obtain the negative bilogistic model (Coles and Tawn, 1994), which has the
representation

G(z1,22) = exp {—y1 — g2 + 17 T + yo(l — V)Hﬂo}, ag, o > 0,

where v = y(y1,y2; —ag, —Bo). The negative logistic model is obtained when «y = Sy (with
r = 1/ap = 1/Bp). Independence is obtained as oy = [y — oo, and when one of g,y is
fixed and the other tends to co. Different limits occur when one of «y, By is fixed and the other
approaches zero.

The distribution function of the Coles-Tawn model! (Coles and Tawn, 1991) is given by
G(z1,22) = exp{—yi1[l — Be(u;a + 1, 6)] —y2Be(u; o, f + 1)}, a,8>0,

where u = ays/(ays + By1) and Be is the incomplete beta function, given by

e = LD [y o,

fColes and Tawn (1991) call this the Dirichelet model.
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Complete dependence is obtained in the limit as @« =  — o00. Independence is obtained as
a = 8 — 0 and when one of «, 3 is fixed and the other approaches zero. Different limits occur
when one of «, 8 is fixed and the other tends to oco.

The asymmetric mixed model (Tawn, 1988) is typically defined using the corresponding depen-
dence function (11), which is modelled as a cubic polynomial. Specifically, for 0 < ¢ < 1 the
dependence function of the asymmetric mixed model is

Alt) =1~ (a+ Bt + at® + B3,

where both a and o + 38 are non-negative, and where both a + 8 and «a + 28 are less than or
equal to one. These constraints imply that 8 € [—0.5,0.5] and « € [0,1.5], though « can only
be greater than one if § is negative. The (symmetric) mixed model is obtained when 8 = 0.
Complete dependence cannot be obtained. Independence is obtained when o= 8 = 0.

The asymmetric mixed model is often referred to in the literature because the dependence func-
tion has a simple form, and because the § = 0 case is historically important. However it cannot
capture strong dependence, and hence it is of limited use as a statistical model. The extension to
an m-degree polynomial can be made, but this is of no statistical interest because the additional
parameters add little additional flexibility.
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