Introduction to R-GLPK

Louis Luangkesorn *

October 12, 2006

1 Introduction

This document introduces the use of the GLPK package' for R. The GNU Lin-
ear Programming Package (GLPK) is intended for solving linear programming
(LP) and mixed integer programming (MIP) and other related problems. In
addition, it includes facilities for converting problem information between the
GNU MathProg language (a subset of the AMPL mathematical programming
language), free and fixed MPS, and the CPLEX LP formats.?> The GLPK pack-
age is an interface into the C Application Programming Interface (API) to the
GLPK solver.

This document will introduce the use of the GLPK package through the use
of the cannery problem from Dantzig® which is used in the GNU MathProg
documentation.* The model file describing the cannery problem can be found
in Appendix A.

2 Entering the model
To use glpk, first load the package.

> library(glpk)

Next read in the model and data.

There are several ways of entering the model. glpk can read the model and
data in a GNU MathProg Language (GMPL) model file®. Alternatively, the
model and data can be entered using the GLPK API.

*lluang@yahoo.com. Thanks to Leo Lopes for his comments and suggestions.

IPackage GLPK maintained by Lopaka Lee

2GNU Linear Programming Kit: Reference Manual, Version 4.9 Draft, January 2006.

3The demand data here is from the GLPK documentation, which differs slightly from
Dantzig, Linear Programming and Extensions, Princeton University Press, Princeton, NJ,
1963. The documentation demand values are used here for consistancy.

4GNU Linear Programming Kit: Modeling Language GNU MathProg, Version 4.9 Draft,
January 2006.

5or MPS or CPLEX LP formats.

2.1 Reading a GNU MathProg Language model

If a GMPL model file has already been produced, it can be read directly. After
setting the current directory, the model can be read using lpx_read_model().
lpx_read_model () takes three parameters:

lpx_read_model(modelfile, datafile, outputfile)

The modelfile is required. However, datafile and outputfile may be
NULL. A NULL datafile would indicate that the data was in modelfile or that
data would be entered via the API. If modelfile included a data section, the
data in datafile would override data in modelfile. If outputfile was NULL,
the data would be sent to the stdout using the routine print.

> 1p <- lpx_read_model ("transport.mod")

Reading model section from transport.mod...
Reading data section from transport.mod...
62 lines were read

Generating cost...

Generating supply...

Generating demand...

Model has been successfully generated

Then examine the problem size within R.
The rows represent the objective function as well as the supply and demand
constraints.

> numrows <- lpx_get_num_rows (1p)
> numrows

(1] 6

> for (i in 1:numrows) {
+ print (1px_get_row_name (1p, i))
+ }

[1] "cost"

[1] "supply[Seattle]"
[1] "supply[San-Diego]"
[1] "demand[New-York]"
[1] "demand[Chicago]"
[1] "demand[Topekal"

The columns represent the decision variables, which are the units sent over
the cannary-market links.

> numcols <- lpx_get_num_cols(1lp)
> numcols

(11 6

> for (j in 1:numcols) {

+

+ }

[1]
[1]
[1]
[1]
[1]
[1]

print (1px_get_col_name(1lp, j))

"x[Seattle,New-York]"
"x[Seattle,Chicago]"
"x[Seattle,Topekal"
"x[San-Diego,New-York]"
"x[San-Diego,Chicago]"
"x[San-Diego,Topekal "

> print (1px_get_num_nz(Ip))

[1]

18

After the model and data are entered, the model can then be solved using
any one of many algorithms and the output would go to the specified output
file. For the Simplex method, the 1px_simplex() takes the problem name and
solves it using the Simplex method.

> lpx_simplex(1p)

*
*

0: objval = 0.000000000e+00
4: objval = 1.561500000e+02
4: objval = 1.561500000e+02
5: objval = 1.536750000e+02
OPTIMAL SOLUTION FOUND
200

[1]

infeas
infeas
infeas
infeas

1.000000000e+00
0.000000000e+00
0.000000000e+00
0.000000000e+00

We can then look at the solution in terms of the objective and constraints

> for (i in 1:numrows) {

+
+

+ }

[1]
[1]
[1]
[1]
(1]
[1]
[1]
[1]
[1]
(1]
[1]
[1]

print (1px_get_row_name(lp, 1i))
print (1px_get_row_prim(lp, i))

"cost"

153.675
"supply[Seattle]"
350

"supply [San-Diego]"
550

"demand [New-York]"
325

"demand [Chicago]"
300

"demand [Topeka] "
275

(0)
0
(0)
(0)

as well as the decision variables.

> for (j in 1:numcols) {

+ print (1px_get_col_name(lp, j))
+ print (1px_get_col_prim(lp, j))
+

[1] "x[Seattle,New-York]"

[1] 50

[1] "x[Seattle,Chicago]"

[1] 300

[1] "x[Seattle,Topekal"

(11 0

[1] "x[San-Diego,New-York]"

[1] 275

[1] "x[San-Diego,Chicago]"

(11 0

[1] "x[San-Diego,Topekal"

[1] 275

2.2 Using the API

If the problem data already in R, such as pulled from a database or the result
of previous analysis, the model and the data can be specified using the API.
First create R data objects to hold the various model parameters.

> print ("USING API")
[1] "USING API"

canneries <- c("Seattle", "San-Diego")
capacity <- c(350, 600)

markets <- c("New-York", "Chicago", "Topeka')
demand <- c(325, 300, 275)

distance <- c(2.5, 2.5, 1.7, 1.8, 1.8, 1.4)
dim(distance) <- c(2, 3)

freight <- 90

V VVVVVYyV

To use the API, define a problem instance and indicate that the objective is
to minimize cost.

> 1pi <- lpx_create_prob()

> 1px_set_prob_name(lpi, "cannery API")
> lpx_set_obj_name(lpi, "Total Cost")
> lpx_set_obj_dir(lpi, LPX_MIN)

There are 6 columns, corresponding to the six potential cannery-market pairs
whose transport the model solving for, each of which has a lower bound of zero.

> numlinks <- length(distance)

> nummarkets <- length(markets)

> numcanneries <- length(canneries)
> 1px_add_cols(1pi, numlinks)

[1] 1

> for (i in 1:numcanneries) {

cannerystartrow <- (i - 1) * nummarkets

for (j in 1:nummarkets) {
colname <- toString(c(canneries[i], markets[j]))
transcost <- distancel[i, j] * freight/1000
lpx_set_col_name(lpi, cannerystartrow + j, colname)
lpx_set_col_bnds(1pi, cannerystartrow + j, LPX_LO, O,

0)

lpx_set_obj_coef (lpi, cannerystartrow + j, transcost)

+ o+ + F o+ o+ o+ o+

}

Next, we will add constraints. There are 5 constraints, two supply constraints
relating to the canneries and three demand constraints relating to the markets.
In addition, we will make the first row correspond to the objective function.
The objective row will be free, and does not have upper or lower bounds.

> numcanneries <- length(canneries)
> nummarkets <- length(markets)
> lpx_add_rows (lpi, numcanneries + nummarkets + 1)

(11 1

> 1px_set_row_name(lpi, 1, lpx_get_obj_name(1pi))
> for (i in 1:numcanneries) {

+ lpx_set_row_name(lpi, i + 1, toString(c("Supply", canneries[i])))
+ lpx_set_row_bnds(lpi, i + 1, LPX_UP, 0, capacity[i])

+}

> for (j in 1:nummarkets) {

+ lpx_set_row_name(lpi, numcanneries + j + 1, toString(c("Demand",
+ markets[j]1)))

+ lpx_set_row_bnds (lpi, numcanneries + j + 1, LPX_LO, demand[j],

+ 0)

+ }

Now, load the constraint matrix which represents the objective function and
the constraints. The non-zero values of the matrix are entered as three vectors,
each with one element for each non-zero value. A vector to indicate the row, a
vector to indicate the column, and a vector which contains the matrix element
value. Last, we call 1px_load_matrix(1lpi) to finish. Note that in R the size
of the vectors does not need to be prespecified, as R will increase the size of the
vectors as necessary.

> ia <- numeric()
> ja <- numeric()
> ar <- numeric()
> for (i in 1:numcols) {

+ ia[i] <- 1

+ jalil <- i

+ ar[i] <- lpx_get_obj_coef(lpi, i)

+}

> for (i in 1:numcanneries) {

+ cannerysupplyrow = numcols + (i - 1) * nummarkets

+ for (j in 1:nummarkets) {

+ ia[cannerysupplyrow + jl <- (i + 1)

+ jalcannerysupplyrow + j] <- (i - 1) + numcanneries *
+ (G -1) +1

+ ar [cannerysupplyrow + j] <- 1

+ }

+ marketdemandrow = numcols + numcanneries * nummarkets
+ for (j in 1:nummarkets) {

+ colnum <- (i - 1) * nummarkets + j

+ ia[marketdemandrow + colnum] <- numcanneries + j + 1
+ jalmarketdemandrow + colnum] <- colnum

+ ar [marketdemandrow + colnum] <- 1

+ }

+}

> lpx_load_matrix(lpi, length(ia), ia, ja, ar)

Then, examine the problem entered in the API.

> numrows <- lpx_get_num_rows (1pi)
> numrows

(1] 6

> numcols <- lpx_get_num_cols(1pi)
> numcols

(11 6

> for (i in 1:numrows) {
+ print (1px_get_row_name(lpi, i))
+ }

[1] "Total Cost"

[1] "Supply, Seattle"
[1] "Supply, San-Diego"
[1] "Demand, New-York"
[1] "Demand, Chicago"
[1] "Demand, Topeka"

> for (j in 1:numcols) {

+

+ }

[1]
[1]
[1]
[1]
[1]
(1]

print (1px_get_col_name(lpi, j))

"Seattle, New-York"
"Seattle, Chicago"
"Seattle, Topeka"
"San-Diego, New-York"
"San-Diego, Chicago"
"San-Diego, Topeka"

> print (1px_get_num_nz(1pi))

[1]

18

Finally solve using the simplex method and look at the solution.

> lpx_simplex (1pi)

*
*

0: objval = 0.000000000e+00
4: objval = 1.545750000e+02
4: objval = 1.545750000e+02
5: objval = 1.536750000e+02

OPTIMAL SOLUTION FOUND

[1]

200

> for (i in 1:numrows) {

+
+

+}

[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
(1]
[1]
[1]

print (1px_get_row_name(lpi, i))
print (1px_get_row_prim(lpi, i))

"Total Cost"
153.675

"Supply, Seattle"
325

"Supply, San-Diego"
575

"Demand, New-York"
325

"Demand, Chicago"
300

"Demand, Topeka"
275

> for (j in 1:numcols) {

+
+

+ }

print (1px_get_col_name(lpi, j))
print (1px_get_col_prim(lpi, j))

infeas
infeas
infeas
infeas

1.000000000e+00 (0)
0.000000000e+00 (0)
0.000000000e+00 (0)
0.000000000e+00 (0)

[1] "Seattle, New-York"

[1] 325

[1] "Seattle, Chicago"
[1] 300

[1] "Seattle, Topeka"
(11 0

[1] "San-Diego, New-York"
(11 0

[1] "San-Diego, Chicago"
(11 0

[1] "San-Diego, Topeka"
[1] 275

Note that the solution using the API has the same objective value as the
solution from when the problem was read using the GNU MathProg Language,
even if the actual solution may be different. A more readable summary of the
solution can be found by the command 1px_print_sol(lpi, filename). The
output of this is found in Appendix B.

2.3 Using API to Modify Model

Now, we will solve the version of the problem that is found in Dantzig. The
demand at New York and Topeka are both 300 instead of 325 and 275. This next
section will use the API to modify the problem as read through the MathProg
file.

In order to examine an individual row, we need to index the rows and
columns. This is done through the use of 1px_create_index(1lp). Then we can
use the 1px_find_row(lpi, rowname) and lpx_find_col(lpi, colname)

> cindex <- lpx_create_index(1p)

> new_york_row = lpx_find_row(lp, "demand[New-York]")
> topeka_row = lpx_find_row(lp, "demand[Topekal")

> new_york_row

(1] 4
> topeka_row
[1] 6

> 1px_set_row_bnds(lp, new_york_row, LPX_LO, 300, 0)
> 1px_set_row_bnds(lp, topeka_row, LPX_LO, 300, 0)

We can solve this modified problem.

> lpx_simplex(lp)

! 5: objval = 1.512000000e+02
OPTIMAL SOLUTION FOUND

[1] 200

> for (i in 1:numrows) {

+ print (1px_get_row_name(lp, 1i))
+ print (1px_get_row_prim(1lp, i))
+ print (1px_get_row_dual (1p, i))
+ }

[1] "cost"

[1] 151.2

(11 0

[1] "supply[Seattle]"

[1] 350

(11 0

[1] "supply[San-Diego]"

[1] 550

[11 0

[1] "demand[New-York]"

[1] 300

[1] 0.225

[1] "demand[Chicago]"

[1]1 300

[1] 0.153

[1] "demand[Topekal"

[1] 300

[1] 0.126

> for (j in 1:numcols) {

+ print (1px_get_col_name(1lp, j))
+ print (1px_get_col_prim(lp, j))
+ print (1px_get_obj_coef (1p, j))
+ }

[1] "x[Seattle,New-York]"

[1] 50

[1] 0.225

[1] "x[Seattle,Chicago]"

[1] 300

[1] 0.153

[1] "x[Seattle,Topekal"

(11 0

[1] 0.162

[1] "x[San-Diego,New-York]"

[1] 250

[1] 0.225

infeas

0.000000000e+00

[1] "x[San-Diego,Chicago]"
[1] o

[1] 0.162

[1] "x[San-Diego,Topekal]"
[1]1 300

[1] 0.126

A Model file
TRANSPORT.MOD

A TRANSPORTATION PROBLEM

#

This problem finds a least cost shipping schedule that meets
requirements at markets and supplies at factories.

#

References:

Dantzig, G B., Linear Programming and Extensions

Princeton University Press, Princeton, New Jersey, 1963,
Chapter 3-3.

set I;

/* canning plants */

set J;
/* markets */

param a{i in I};
/* capacity of plant i in cases */

param b{j in J};
/* demand at market j in cases */

param d{i in I, j in J};
/* distance in thousands of miles */

param f;
/* freight in dollars per case per thousand miles */

param c{i in I, j in J} := £ * d[i,j] / 1000;
/* transport cost in thousands of dollars per case */

var x{i in I, j in J} >= 0;
/* shipment quantities in cases */

minimize cost: sum{i in I, j in J} c[i,j] * x[i,j];
/* total transportation costs in thousands of dollars */

s.t. supply{i in I}: sum{j in J} x[i,j] <= alil;
/* observe supply limit at plant i */

10

s.t. demand{j in J}: sum{i in I} x[i,j]l >= b[jl;
/* satisfy demand at market j */

data;
set I := Seattle San-Diego;
set J := New-York Chicago Topeka;

Seattle 350
San-Diego 600;

param

[V
]

param b := New-York 325

Chicago 300
Topeka 275;

param d : New-York Chicago Topeka :=
Seattle 2.5 1.7 1.8
San-Diego 2.5 1.8 1.4

param £ := 90;

end;

B Output

The following is the output of the command: lpx_print_sol(lpi, "tran-
sout.api")

Problem: cannery API
Rows: 6

Columns: 6
Non-zeros: 18

Status: OPTIMAL

Objective: Total Cost = 153.675 (MINimum)

1 Total Cost B 153.675
2 Supply , Seattle

B 325 350
3 Supply , San-Diego
B 575 600
4 Demand , New-York
NL 325 325 0.225

11

5 Demand , Chicago

NL 300 300 0.153
6 Demand , Topeka
NL 275 275 0.126

No. Column name St Activity Lower bound Upper bound Marginal

1 Seattle, New-York

B 325 0
2 Seattle, Chicago

B 300 0
3 Seattle, Topeka

NL 0 0 0.036
4 San-Diego, New-York

NL 0 0 < eps
5 San-Diego, Chicago

NL 0 0 0.009
6 San-Diego, Topeka

B 275 0

Karush-Kuhn-Tucker optimality conditiomns:

KKT.PE: max.abs.err. = 1.24e-014 on row 1
max.rel.err. 8.02e-017 on row 1
High quality

KKT.PB: max.abs.err. = 0.00e+000 on row O
max.rel.err. .00e+000 on row O
High quality

]
o

KKT.DE: max.abs.err.
max.rel.err.
High quality

1]
o

.00e+000 on column O
.00e+000 on column O

]
o

KKT.DB: max.abs.err.
max.rel.err.
High quality

]
o

.00e+000 on row O
.00e+000 on row O

]
o

End of output

12

