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1 Introduction

The aim of package plm is to provide an easy way to estimate panel models.
Some panel models may be estimated with package nlme (non–linear mixed
effect models), but not in an intuitive way for an econometrician. plm provides
methods to read panel data, to estimate a wide range of models and to make
some tests. This library is loaded using :

> library(plm)

This document illustrates the features of plm, using data available in package
Ecdat.

> library(Ecdat)

These data are used in Baltagi (2001).

2 Model estimation

plm provides four functions for estimation :

� plm : estimation of the basic panel models, i.e. within, between and
random effect models. Models are estimated using the lm function to
transformed data,

� pvcm : estimation of models with variable coefficients,

� pgmm : estimation of general method of moments models,

� pggls : estimation of general feasible generalized least squares models.

All these functions share the same 4 first arguments :

� formula : the symbolic description of the model to be estimated,

� data : a data.frame,

� effect : the kind of effects to include in the model, i.e. individual effects,
time effects or both,

� model : the kind of model to be estimated, most of the time a model with
fixed effects or a model with random effects,
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� indexes : the indexes.

� NULL (the default value), it is then assumed that the first two columns
contain the individual and the time index,

� a character string, which should be the name of the individual index,

� a character vector of length two containing the names of the individual
and the time index,

� an integer which is the number of individuals (only in case of balanced
panel with observations sorted by individual.

The plm.data function is then called, which returns a data.frame with the
two first columns containing the individual and the time indexes.

The results of this four functions are stored in an object which class has the
same name of the function. They all inherit from class panelmodel. A pan-
elmodel object contains : coefficients, residuals, fitted.values, vcov,
df.residual and call.

Functions that extract these elements and to print the object are provided.

2.1 Estimation of the basic models with plm

There are two ways to use plm : the first one is to estimate a list of models (the
default behavior), the second to estimate just one model. In the first case, the
estimated models are :

� the fixed effects model (within),

� the pooling model (pooling),

� the between model (between),

� the error components model (random).

The basic use of plm is to indicate the model formula, the data.frame and
the name of the model to be estimated 1 :

> data("Produc", package = "Ecdat")

> zzwith <- plm(log(gsp) ~ log(pcap) + log(pc) + log(emp) + unemp,

+ data = Produc)

A particular model to be estimated may also be indicated by filling the model
argument of plm.

> zzra <- plm(log(gsp) ~ log(pcap) + log(pc) + log(emp) + unemp,

+ data = Produc, model = "random")

> print(zzra)

1The following example is from Baltagi (2001), pp. 25–28.
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Model Formula: log(gsp) ~ log(pcap) + log(pc) + log(emp) + unemp

Coefficients:
(intercept) log(pcap) log(pc) log(emp) unemp
2.1354110 0.0044386 0.3105484 0.7296705 -0.0061725

summary and print.summary methods are provided.

> summary(zzwith)

Oneway (individual) effect Within Model

Call:
plm(formula = log(gsp) ~ log(pcap) + log(pc) + log(emp) + unemp,

data = Produc)

Balanced Panel: n=48, T=17, N=816

Residuals :
Min. 1st Qu. Median 3rd Qu. Max.

-0.12000 -0.02370 -0.00204 0.01810 0.17500

Coefficients :
Estimate Std. Error t-value Pr(>|t|)

log(pcap) -0.02614965 0.02900158 -0.9017 0.3672
log(pc) 0.29200693 0.02511967 11.6246 < 2.2e-16 ***
log(emp) 0.76815947 0.03009174 25.5273 < 2.2e-16 ***
unemp -0.00529774 0.00098873 -5.3582 8.408e-08 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Total Sum of Squares: 18.941
Residual Sum of Squares: 1.1112
Multiple R-Squared: 0.94134
F-statistic: 3064.81 on 764 and 4 DF, p-value: 2.1339e-07

> summary(zzra)

Oneway (individual) effect Random Effect Model (Swamy-Arora's transformation)

Call:
plm(formula = log(gsp) ~ log(pcap) + log(pc) + log(emp) + unemp,

data = Produc, model = "random")

Balanced Panel: n=48, T=17, N=816

Effects:
var std.dev share

idiosyncratic 0.0014544 0.0381371 0.1754
individual 0.0068377 0.0826905 0.8246
theta: 0.88884
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Residuals :
Min. 1st Qu. Median 3rd Qu. Max.

-0.10700 -0.02460 -0.00237 0.02170 0.20000

Coefficients :
Estimate Std. Error t-value Pr(>|t|)

(intercept) 2.13541100 0.13346149 16.0002 < 2.2e-16 ***
log(pcap) 0.00443859 0.02341732 0.1895 0.8497
log(pc) 0.31054843 0.01980475 15.6805 < 2.2e-16 ***
log(emp) 0.72967053 0.02492022 29.2803 < 2.2e-16 ***
unemp -0.00617247 0.00090728 -6.8033 1.023e-11 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Total Sum of Squares: 29.209
Residual Sum of Squares: 1.1879
Multiple R-Squared: 0.95933
F-statistic: 4782.77 on 811 and 4 DF, p-value: 8.7623e-08

For a random model, the summary method gives information about the vari-
ance of the components of the errors.

plm objects can be updated using the update method :

> zzwithmod <- update(zzwith, . ~ . - unemp - log(emp) + emp)

> summary(zzwithmod)

Oneway (individual) effect Within Model

Call:
plm(formula = log(gsp) ~ log(pcap) + log(pc) + emp, data = Produc)

Balanced Panel: n=48, T=17, N=816

Residuals :
Min. 1st Qu. Median 3rd Qu. Max.

-0.194000 -0.037400 0.000373 0.035700 0.274000

Coefficients :
Estimate Std. Error t-value Pr(>|t|)

log(pcap) 1.7888e-01 4.0690e-02 4.3961 1.102e-05 ***
log(pc) 6.9975e-01 2.9154e-02 24.0019 < 2.2e-16 ***
emp 3.7909e-05 8.7824e-06 4.3165 1.585e-05 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Total Sum of Squares: 18.941
Residual Sum of Squares: 2.7948
Multiple R-Squared: 0.85245
F-statistic: 1473.23 on 765 and 3 DF, p-value: 2.4449e-05
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Fixed effects may be extracted easily from a plm object using fixef :

> fixef(zzwithmod)[1:10]

ALABAMA ARIZONA ARKANSAS CALIFORNIA COLORADO CONNECTICUT
-0.15044698 -0.01596112 -0.13449962 0.29699815 0.13601482 0.38383408

DELAWARE FLORIDA GEORGIA IDAHO
-0.11862549 0.23429687 0.12381708 -0.22199517

The fixef function returns an object of class fixef. A summary method is
provided, which prints the effects (in deviation from the overall intercept), their
standard errors and the test of equality to the overall intercept.

> summary(fixef(zzwithmod))[1:10, ]

Estimate Std. Error t-value Pr(>|t|)
ALABAMA -0.15044698 0.2209036 -0.68105273 0.49583813
ARIZONA -0.01596112 0.2180845 -0.07318777 0.94165670
ARKANSAS -0.13449962 0.2071487 -0.64929021 0.51615081
CALIFORNIA 0.29699815 0.2526566 1.17550143 0.23979417
COLORADO 0.13601482 0.2174556 0.62548324 0.53165395
CONNECTICUT 0.38383408 0.2222083 1.72736143 0.08410277
DELAWARE -0.11862549 0.1950720 -0.60811143 0.54311357
FLORIDA 0.23429687 0.2339542 1.00146486 0.31660212
GEORGIA 0.12381708 0.2261564 0.54748435 0.58404602
IDAHO -0.22199517 0.1910248 -1.16212725 0.24518378

2.2 More advanced use of plm

2.2.1 Options for the random effect model

The random effect model is obtained as a linear estimation on quasi–differentiated
data. The parameter of this transformation is obtained using preliminary es-
timations. Four estimators of this parameter are available, depending on the
value of the argument random.method :

� swar : from Swamy and Arora (1972), the default value,

� walhus : from Wallace and Hussain (1969),

� amemiya : from Amemiyia (1971),

� nerlove : from Nerlove (1971).

For exemple, to use the amemiya estimator :

> zzra <- plm(log(gsp) ~ log(pcap) + log(pc) + log(emp) + unemp,

+ data = Produc, model = "random", random.method = "amemiya")
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2.2.2 Choosing the effects

The default behavior of plm is to introduce individual effects. Using the effect
argument, one may also introduce :

� time effects (effect="time"),

� individual and time effects (effect="twoways").

For example, to estimate a two–ways effect model for the Grunfeld data :

> data("Grunfeld", package = "Ecdat")

> z <- plm(inv ~ value + capital, data = Grunfeld, model = "random",

+ effect = "twoways", random.method = "amemiya")

> summary(z)

Twoways effects Random Effect Model (Amemiya's transformation)

Call:
plm(formula = inv ~ value + capital, data = Grunfeld, effect = "twoways",

model = "random", random.method = "amemiya")

Balanced Panel: n=10, T=20, N=200

Effects:
var std.dev share

idiosyncratic 2644.135 51.421 0.2359
individual 8294.716 91.075 0.7400
time 270.529 16.448 0.0241
theta : 0.87475 (id) 0.29695 (time) 0.29595 (total)

Residuals :
Min. 1st Qu. Median 3rd Qu. Max.

-176.00 -18.00 3.02 18.00 233.00

Coefficients :
Estimate Std. Error t-value Pr(>|t|)

(intercept) -64.351811 31.183651 -2.0636 0.03905 *
value 0.111593 0.011028 10.1192 < 2e-16 ***
capital 0.324625 0.018850 17.2214 < 2e-16 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Total Sum of Squares: 2038000
Residual Sum of Squares: 514120
Multiple R-Squared: 0.74774
F-statistic: 291.965 on 197 and 2 DF, p-value: 0.0034191

In the “effects” section of the result is printed now the variance of the three
elements of the error term and the three parameters used in the transformation.

The two–ways effect model is for the moment only available for balanced
panels.
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2.2.3 Hausman–Taylor’s model

Hausman–Taylor’s model may be estimated with plm by equating the model
argument to "ht" and filling the second argument instruments with a formula
indicating the variables used as instruments.

> data("Wages", package = "Ecdat")

> Wages <- plm.data(Wages, 595)

> form <- lwage ~ wks + south + smsa + married + exp + I(exp^2) +

+ bluecol + ind + union + sex + black + ed | sex + black +

+ bluecol + south + smsa + ind

> ht <- plm(form, data = Wages, model = "ht")

> summary(ht)

Oneway (individual) effect Hausman-Taylor Model

Call:
plm(formula = lwage ~ wks + south + smsa + married + exp + I(exp^2) +

bluecol + ind + union + sex + black + ed, data = Wages, model = "ht",
instruments = ~sex + black + bluecol + south + smsa + ind)

T.V. exo : bluecolyes,southyes,smsayes,ind
T.V. endo : wks,marriedyes,exp,I(exp^2),unionyes
T.I. exo : sexmale,blackyes
T.I. endo : ed

Balanced Panel: n=595, T=7, N=4165

Effects:
var std.dev share

idiosyncratic 0.023044 0.151803 0.0253
individual 0.886993 0.941803 0.9747
theta: 0.93919

Residuals :
Min. 1st Qu. Median 3rd Qu. Max.

-1.92000 -0.07070 0.00657 0.07970 2.03000

Coefficients :
Estimate Std. Error t-value Pr(>|t|)

(intercept) 2.7818e+00 3.0765e-01 9.0422 < 2.2e-16 ***
wks 8.3740e-04 5.9973e-04 1.3963 0.16263
southyes 7.4398e-03 3.1955e-02 0.2328 0.81590
smsayes -4.1833e-02 1.8958e-02 -2.2066 0.02734 *
marriedyes -2.9851e-02 1.8980e-02 -1.5728 0.11578
exp 1.1313e-01 2.4710e-03 45.7851 < 2.2e-16 ***
I(exp^2) -4.1886e-04 5.4598e-05 -7.6718 1.696e-14 ***
bluecolyes -2.0705e-02 1.3781e-02 -1.5024 0.13299
ind 1.3604e-02 1.5237e-02 0.8928 0.37196
unionyes 3.2771e-02 1.4908e-02 2.1982 0.02794 *
sexmale 1.3092e-01 1.2666e-01 1.0337 0.30129
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blackyes -2.8575e-01 1.5570e-01 -1.8352 0.06647 .
ed 1.3794e-01 2.1248e-02 6.4919 8.474e-11 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Total Sum of Squares: 243.04
Residual Sum of Squares: 95.947
Multiple R-Squared: 0.60522
F-statistic: 489.524 on 4151 and 13 DF, p-value: 3.3651e-16

2.2.4 Instrumental variables estimation

One or all of the models may be estimated using instrumental variables. The
instruments are specified whether as a one side formula in the argument instru-
ments, or at the end of the formula after a | sign. The following four commands
are similar :

We illustrate instrumental variables estimation with the Crime data2. The
prbarr and polpc variables are assumed to be endogenous and there are two
external instruments taxpc and mix :

> data("Crime", package = "Ecdat")

> form <- log(crmrte) ~ log(prbarr) + log(polpc) + log(prbconv) +

+ log(prbpris) + log(avgsen) + log(density) + log(wcon) + log(wtuc) +

+ log(wtrd) + log(wfir) + log(wser) + log(wmfg) + log(wfed) +

+ log(wsta) + log(wloc) + log(pctymle) + log(pctmin) + region +

+ smsa + year

> inst <- ~. - log(prbarr) - log(polpc) + log(taxpc) + log(mix)

> cr <- plm(form, data = Crime, model = "random", instruments = inst,

+ pvar = TRUE)

> form2 <- log(crmrte) ~ log(prbarr) + log(polpc) + log(prbconv) +

+ log(prbpris) + log(avgsen) + log(density) + log(wcon) + log(wtuc) +

+ log(wtrd) + log(wfir) + log(wser) + log(wmfg) + log(wfed) +

+ log(wsta) + log(wloc) + log(pctymle) + log(pctmin) + region +

+ smsa + year | . - log(prbarr) - log(polpc) + log(taxpc) +

+ log(mix)

> cr1 <- plm(form, data = Crime, model = "random", instruments = inst,

+ pvar = TRUE)

> cr2 <- plm(form2, data = Crime, model = "random", pvar = TRUE)

> summary(cr2)

Oneway (individual) effect Random Effect Model (Swamy-Arora's transformation)
Instrumental variable estimation (Balestra-Varadharajan-Krishnakumar's transformation)

Call:
plm(formula = log(crmrte) ~ log(prbarr) + log(polpc) + log(prbconv) +

log(prbpris) + log(avgsen) + log(density) + log(wcon) + log(wtuc) +
log(wtrd) + log(wfir) + log(wser) + log(wmfg) + log(wfed) +
log(wsta) + log(wloc) + log(pctymle) + log(pctmin) + region +
smsa + year, data = Crime, model = "random", pvar = TRUE,

2See Baltagi (2001), pp.119–120.
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instruments = ~. - log(prbarr) - log(polpc) + log(taxpc) +
log(mix))

Instrumental Variables:
~log(prbconv) + log(prbpris) + log(avgsen) + log(density) + log(wcon) + log(wtuc) +

log(wtrd) + log(wfir) + log(wser) + log(wmfg) + log(wfed) + log(wsta) + log(wloc) +
log(pctymle) + log(pctmin) + region + smsa + year + log(taxpc) + log(mix)

Balanced Panel: n=90, T=7, N=630

Effects:
var std.dev share

idiosyncratic 0.022269 0.149228 0.326
individual 0.046036 0.214561 0.674
theta: 0.74576

Residuals :
Min. 1st Qu. Median 3rd Qu. Max.

-5.0200 -0.4760 0.0273 0.5260 3.1900

Coefficients :
Estimate Std. Error t-value Pr(>|t|)

(intercept) -0.4538241 1.7029840 -0.2665 0.789864
log(prbarr) -0.4141200 0.2210540 -1.8734 0.061015 .
log(polpc) 0.5049285 0.2277811 2.2167 0.026642 *
log(prbconv) -0.3432383 0.1324679 -2.5911 0.009567 **
log(prbpris) -0.1900437 0.0733420 -2.5912 0.009564 **
log(avgsen) -0.0064374 0.0289406 -0.2224 0.823977
log(density) 0.4343519 0.0711528 6.1045 1.031e-09 ***
log(wcon) -0.0042963 0.0414225 -0.1037 0.917392
log(wtuc) 0.0444572 0.0215449 2.0635 0.039068 *
log(wtrd) -0.0085626 0.0419822 -0.2040 0.838387
log(wfir) -0.0040302 0.0294565 -0.1368 0.891175
log(wser) 0.0105604 0.0215822 0.4893 0.624620
log(wmfg) -0.2017917 0.0839423 -2.4039 0.016220 *
log(wfed) -0.2134634 0.2151074 -0.9924 0.321023
log(wsta) -0.0601083 0.1203146 -0.4996 0.617362
log(wloc) 0.1835137 0.1396721 1.3139 0.188884
log(pctymle) -0.1458448 0.2268137 -0.6430 0.520214
log(pctmin) 0.1948760 0.0459409 4.2419 2.217e-05 ***
regionwest -0.2281780 0.1010317 -2.2585 0.023916 *
regioncentral -0.1987675 0.0607510 -3.2718 0.001068 **
smsayes -0.2595423 0.1499780 -1.7305 0.083535 .
year82 0.0132140 0.0299923 0.4406 0.659518
year83 -0.0847676 0.0320008 -2.6489 0.008075 **
year84 -0.1062004 0.0387893 -2.7379 0.006184 **
year85 -0.0977398 0.0511685 -1.9102 0.056113 .
year86 -0.0719390 0.0605821 -1.1875 0.235045
year87 -0.0396520 0.0758537 -0.5227 0.601153
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
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Total Sum of Squares: 1354.7
Residual Sum of Squares: 557.64
Multiple R-Squared: 0.58836
F-statistic: 33.1494 on 603 and 26 DF, p-value: 7.3608e-16

The instrumental variables estimator used may be indicated with the inst.method
argument:

� bvk, from Balestra and Varadharajan (1987), the default value,

� baltagi, from Baltagi (1981).

2.2.5 Unbalanced panel

plm enables the estimation of unbalanced panel data, with a few restrictions
(twoways effects models are not supported and the only transformation for ran-
dom effects models is swar).

The following example is based on the Hedonic data3:

> data("Hedonic", package = "Ecdat")

> form <- mv ~ crim + zn + indus + chas + nox + rm + age + dis +

+ rad + tax + ptratio + blacks + lstat

> ba <- plm(form, model = "random", data = Hedonic, index = "townid")

> summary(ba)

Oneway (individual) effect Random Effect Model (Swamy-Arora's transformation)

Call:
plm(formula = mv ~ crim + zn + indus + chas + nox + rm + age +

dis + rad + tax + ptratio + blacks + lstat, data = Hedonic,
model = "random", index = "townid")

Unbalanced Panel: n=92, T=1-30, N=506

Effects:
var std.dev share

idiosyncratic 0.016965 0.130249 0.502
individual 0.016832 0.129738 0.498
theta :

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.2915 0.5904 0.6655 0.6499 0.7447 0.8197

Residuals :
Min. 1st Qu. Median Mean 3rd Qu. Max.

-0.641000 -0.066100 -0.000519 -0.001990 0.069800 0.527000

Coefficients :
Estimate Std. Error t-value Pr(>|t|)

(intercept) 9.6778e+00 2.0714e-01 46.7207 < 2.2e-16 ***

3See Baltagi (2001), p. 174.
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crim -7.2338e-03 1.0346e-03 -6.9921 2.707e-12 ***
zn 3.9575e-05 6.8778e-04 0.0575 0.9541153
indus 2.0794e-03 4.3403e-03 0.4791 0.6318706
chasyes -1.0591e-02 2.8960e-02 -0.3657 0.7145720
nox -5.8630e-03 1.2455e-03 -4.7074 2.509e-06 ***
rm 9.1773e-03 1.1792e-03 7.7828 7.095e-15 ***
age -9.2715e-04 4.6468e-04 -1.9952 0.0460159 *
dis -1.3288e-01 4.5683e-02 -2.9088 0.0036279 **
rad 9.6863e-02 2.8350e-02 3.4168 0.0006337 ***
tax -3.7472e-04 1.8902e-04 -1.9824 0.0474298 *
ptratio -2.9723e-02 9.7538e-03 -3.0473 0.0023089 **
blacks 5.7506e-01 1.0103e-01 5.6920 1.256e-08 ***
lstat -2.8514e-01 2.3855e-02 -11.9533 < 2.2e-16 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Total Sum of Squares: 893.08
Residual Sum of Squares: 8.6843
Multiple R-Squared: 0.99028
F-statistic: 3854.18 on 492 and 13 DF, p-value: < 2.22e-16

2.3 Variable coefficients model

The pvcm function enables the estimation of variable coefficients models. Time
or individual effects are introduced if effect is fixed to "time" or "individual"
(the default value).

Coefficients are assumed to be fixed if model="within" and random if model="random".
In the first case, a different model is estimated for each individual (or time
period). In the second case, the Swamy (1970) model is estimated. It is a
generalized least squares model which use the result of the previous model.

With the Grunfeld data, we get :

> znp <- pvcm(inv ~ value + capital, data = Grunfeld, model = "within")

> znp

Model Formula: inv ~ value + capital

Coefficients:
(Intercept) value capital

1 -149.78245 0.1192808 0.3714448
2 -49.19832 0.1748560 0.3896419
3 -9.95631 0.0265512 0.1516939
4 -6.18996 0.0779478 0.3157182
5 22.70712 0.1623777 0.0031017
6 -8.68554 0.1314548 0.0853743
7 -4.49953 0.0875272 0.1237814
8 -0.50939 0.0528941 0.0924065
9 -7.72284 0.0753879 0.0821036
10 0.16152 0.0045734 0.4373692

> summary(znp)
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Oneway (individual) effect No-pooling model

Call:
pvcm(formula = inv ~ value + capital, data = Grunfeld, model = "within")

Balanced Panel: n=10, T=20, N=200

Residuals:
Min. 1st Qu. Median Mean 3rd Qu. Max.

-1.845e+02 -7.118e+00 -3.926e-01 3.438e-16 5.703e+00 1.440e+02

Coefficients:
(Intercept) value capital
Min. :-149.782 Min. :0.004573 Min. :0.003102
1st Qu.: -9.639 1st Qu.:0.058518 1st Qu.:0.087132
Median : -6.956 Median :0.082738 Median :0.137738
Mean : -21.368 Mean :0.091285 Mean :0.205264
3rd Qu.: -1.507 3rd Qu.:0.128411 3rd Qu.:0.357513
Max. : 22.707 Max. :0.174856 Max. :0.437369

Total Sum of Squares: 9359900
Residual Sum of Squares: 324730
Multiple R-Squared: 0.96531

> form <- inv ~ value + capital

> sw <- plm(form, data = Grunfeld, model = "random")

> summary(sw)

Oneway (individual) effect Random Effect Model (Swamy-Arora's transformation)

Call:
plm(formula = inv ~ value + capital, data = Grunfeld, model = "random")

Balanced Panel: n=10, T=20, N=200

Effects:
var std.dev share

idiosyncratic 2784.458 52.768 0.282
individual 7089.800 84.201 0.718
theta: 0.86122

Residuals :
Min. 1st Qu. Median 3rd Qu. Max.

-178.00 -19.70 4.69 19.50 253.00

Coefficients :
Estimate Std. Error t-value Pr(>|t|)

(intercept) -57.834415 28.898935 -2.0013 0.04536 *
value 0.109781 0.010493 10.4627 < 2e-16 ***
capital 0.308113 0.017180 17.9339 < 2e-16 ***
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---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Total Sum of Squares: 2381400
Residual Sum of Squares: 548900
Multiple R-Squared: 0.7695
F-statistic: 328.837 on 197 and 2 DF, p-value: 0.0030364

2.4 General method of moments estimator

The general method of moments is provided by the pgmm function. It’s main
argument is a dynformula which describe the variables of the model and the
lag structure.

The effect argument is either NULL, "individual" (the default), or "twoways".
In the first case, the model is estimated in levels. In the second case, the model
is estimated in first differences to get rid of the individuals effects. In the last
case, the model is estimated in first differences and time dummies are included.

In a gmm estimation, there are “normal” instruments and “gmm” instru-
ments. gmm instruments are indicated with the gmm.inst argument (a one side
formula) and the lags by with the lag.gmm argument. By default, all the vari-
ables of the model that are not used as gmm instruments are used as normal
instruments, with the same lag structure.

The complete list of instruments can also be specified with the argument
instruments which should be a one side formula (or dynformula).

The model argument specifies whether a one–step or a two–steps model is
required ("onestep" or "twosteps").

The following example is from Arellano (2003). Employment in different
firms is explained by past values of employment and wages (two lags). All
available lags are used up to t− 2.

> data("Snmesp", package = "plm")

> z <- pgmm(dynformula(n ~ w, lag = list(c(1, 2), c(1, 2))), effect = "twoways",

+ model = "twosteps", Snmesp, gmm.inst = ~n + w, lag.gmm = c(2,

+ 99), transformation = c("d"))

> summary(z)

Twoways effects Two steps model

Call:
pgmm(formula = n ~ lag(n, 1) + lag(n, 2) + lag(w, 1) + lag(w,

2), data = Snmesp, effect = "twoways", model = "twosteps",
gmm.inst = ~n + w, lag.gmm = c(2, 99), transformation = c("d"))

Balanced Panel: n=738, T=8, N=5904

Number of Observations Used: 3690

Residuals
Min. 1st Qu. Median Mean 3rd Qu. Max.

-1.5390000 -0.0511100 0.0010240 0.0001746 0.0549800 1.2780000
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Coefficients
Estimate Std. Error z-value Pr(>|z|)

lag(n, 1) 0.8415278 0.0883895 9.5207 < 2e-16 ***
lag(n, 2) -0.0031454 0.0290445 -0.1083 0.91376
lag(w, 1) 0.0779827 0.0836384 0.9324 0.35114
lag(w, 2) -0.0525764 0.0249418 -2.1080 0.03503 *
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Sargan Test: chisq(36) = 36.91417 (p.value=0.42648)
Autocorrelation test (1): normal = -6.709587 (p.value=9.7588e-12)
Autocorrelation test (2): normal = 0.1986467 (p.value=0.42127)
Wald test for coefficients: chisq(4) = 234.7444 (p.value=< 2.22e-16)
Wald test for time dummies: chisq(5) = 44.47645 (p.value=1.8536e-08)

In the following example, a pure auto–regressive model is estimated.

> z <- pgmm(dynformula(n ~ 1, lag = list(c(1, 2))), effect = "twoways",

+ model = "twosteps", Snmesp, gmm.inst = ~n, lag.gmm = c(2,

+ 99), transformation = c("d"))

> summary(z)

Twoways effects Two steps model

Call:
pgmm(formula = n ~ lag(n, 1) + lag(n, 2), data = Snmesp, effect = "twoways",

model = "twosteps", gmm.inst = ~n, lag.gmm = c(2, 99), transformation = c("d"))

Balanced Panel: n=738, T=8, N=5904

Number of Observations Used: 3690

Residuals
Min. 1st Qu. Median Mean 3rd Qu. Max.

-1.4530000 -0.0499300 -0.0002421 0.0000663 0.0520800 1.2020000

Coefficients
Estimate Std. Error z-value Pr(>|z|)

lag(n, 1) 0.747547 0.088270 8.4688 < 2e-16 ***
lag(n, 2) 0.037680 0.021952 1.7165 0.08607 .
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Sargan Test: chisq(18) = 14.40912 (p.value=0.70206)
Autocorrelation test (1): normal = -5.947032 (p.value=1.3652e-09)
Autocorrelation test (2): normal = 0.2629247 (p.value=0.39630)
Wald test for coefficients: chisq(2) = 105.3612 (p.value=< 2.22e-16)
Wald test for time dummies: chisq(5) = 59.15637 (p.value=1.8156e-11)
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2.5 General FGLS models

General FGLS estimators are based on a two-step estimation process: first an
OLS model is estimated, then its residuals are used to estimate an error covari-
ance matrix for use in a feasible-GLS analysis. Formally, the structure of the
error covariance matrix is V = IN ⊗Ω, with symmetry being the only requisite
for Ω: Ω(ij) = Ω(ji) (see Wooldridge (2002), 10.4.3 and 10.5.5).

This framework allows the error covariance structure inside every group (if
effect="individual") of observations to be fully unrestricted and is therefore
robust against any type of intragroup heteroskedasticity and serial correlation.
This structure, by converse, is assumed identical across groups and thus ggls
is inefficient under groupwise heteroskedasticity. Cross-sectional correlation is
excluded a priory.

Moreover, the number of variance parameters to be estimated with NT
data points is T (T + 1)/2, which makes these estimators particularly suited for
situations where N >> T , as e.g. in labour or household income surveys, while
problematic for ”long” panels.

In a pooled time series context (effect="time"), symmetrically, this esti-
mator is able to account for arbitrary cross-sectional correlation, provided that
the latter is time-invariant (see Greene (2003) 13.9.1-2, p.321-2). In this case
serial correlation has to be assumed away and the estimator is consistent with
respect to the time dimension, keeping N fixed.

The function pggls estimates general FGLS models, with either fixed of
”random” effects4.

The ”random effect” general FGLS is estimated by

> zz <- pggls(log(gsp) ~ log(pcap) + log(pc) + log(emp) + unemp,

+ data = Produc, model = "random")

> summary(zz)

Oneway (individual) effect Random effects model

Call:
pggls(formula = log(gsp) ~ log(pcap) + log(pc) + log(emp) + unemp,

data = Produc, model = "random")

Balanced Panel: n=48, T=17, N=816

Residuals
Min. 1st Qu. Median Mean 3rd Qu. Max.

-0.255700 -0.070200 -0.014120 -0.008909 0.039120 0.455500

Coefficients
Estimate Std. Error z-value Pr(>|z|)

(intercept) 2.26388494 0.10077679 22.4643 < 2.2e-16 ***
log(pcap) 0.10566584 0.02004106 5.2725 1.346e-07 ***
log(pc) 0.21643137 0.01539471 14.0588 < 2.2e-16 ***
log(emp) 0.71293894 0.01863632 38.2553 < 2.2e-16 ***

4The ”random effect” is better termed ”general FGLS” model, as in fact it does not have a
proper random effects structure, but we keep this terminology for consistency with plm.
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unemp -0.00447265 0.00045214 -9.8921 < 2.2e-16 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Total Sum of Squares: 849.81
Residual Sum of Squares: 7.5587
Multiple R-squared: 0.99111

The fixed effects pggls (see Wooldridge (2002, p.276)) is based on estima-
tion of a within model in the first step; the rest follows as above. It is estimated
by

The pggls function is similar to plm in many respects (e.g., Hausman tests
may be carried out on pggls objects much the same way they are done on plm
ones). An exception is that the estimate of the group covariance matrix of errors
(zz$sigma, 17x17 matrix, not shown) is reported in the model objects instead
of the usual estimated variances of the two error components.

3 Tests

3.1 Tests of poolability

pooltest tests the hypothesis that the same coefficients apply to each individ-
ual. It is a standard F test, based on the comparison of a model obtained for
the full sample and a model based on the estimation of an equation for each
individual. The main argument of pooltest is a plms or a plm object. The
second argument is a pvcm object obtained with model=within . If the first
argument is a plms object, a third argument effect should be fixed to FALSE
if the intercepts are assumed to be identical (the default value) or TRUE if not5.

> form <- inv ~ value + capital

> znp <- pvcm(form, data = Grunfeld, model = "within")

> zplm <- plm(form, data = Grunfeld, model = "within")

> pooltest(zplm, znp)

F statistic

data: inv ~ value + capital
F = 5.7805, df1 = 18, df2 = 170, p-value = 1.219e-10
alternative hypothesis: unstability

> z <- plm(form, data = Grunfeld, effect = "time")

> znpt <- pvcm(form, data = Grunfeld, effect = "time", model = "within")

> pooltest(z, znpt)

F statistic

data: inv ~ value + capital
F = 1.5495, df1 = 38, df2 = 140, p-value = 0.03553
alternative hypothesis: unstability

5The following examples are from Baltagi (2001), pp. 57–58.
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3.2 Tests for individual and time effects

3.2.1 Lagrange multiplier tests

plmtest implements tests of individual or/and time effects based on the results
of the pooling model. It’s main argument is a plm object (the result of a pooling
model) or a plms object.

Two additional arguments can be added to indicate the kind of test to be
computed. The argument type is whether :

� bp : Breusch–Pagan (1980), the default value,

� honda : Honda (1985),

� kw : King and Wu (1997).

The effects tested are indicated with the effect argument :

� individual for individual effects (the default value),

� time for time effects,

� twoways for individuals and time effects.

Some examples of the use of plmtest are shown below6:

> library(Ecdat)

> g <- plm(inv ~ value + capital, data = Grunfeld, model = "pooling")

> plmtest(g)

Lagrange Multiplier Test - (Honda)

data: inv ~ value + capital
normal = 28.2518, p-value < 2.2e-16
alternative hypothesis: significant effects

> plmtest(g, effect = "time")

Lagrange Multiplier Test - time effects (Honda)

data: inv ~ value + capital
normal = -2.5404, p-value = 0.002768
alternative hypothesis: significant effects

> plmtest(g, type = "honda")

Lagrange Multiplier Test - (Honda)

data: inv ~ value + capital
normal = 28.2518, p-value < 2.2e-16
alternative hypothesis: significant effects

> plmtest(g, type = "ghm", effect = "twoways")

6See Baltagi (2001), p. 65.
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Lagrange Multiplier Test - two-ways effects (Gourieroux, Holly and
Monfort)

data: inv ~ value + capital
chisq = 798.1615, df = 2, p-value < 2.2e-16
alternative hypothesis: significant effects

> plmtest(g, type = "kw", effect = "twoways")

Lagrange Multiplier Test - two-ways effects (King and Wu)

data: inv ~ value + capital
normal = 21.8322, df = 2, p-value < 2.2e-16
alternative hypothesis: significant effects

3.2.2 F tests

pFtest computes F tests of effects based on the comparison of the within and
the pooling models. Its arguments are whether a plms object or two plm objects
(the results of a pooling and a within model). Some examples of the use of
pFtest are shown below7:

> library(Ecdat)

> gp <- plm(inv ~ value + capital, data = Grunfeld, model = "pooling")

> gw <- plm(inv ~ value + capital, data = Grunfeld, model = "within")

> gt <- plm(inv ~ value + capital, data = Grunfeld, model = "within",

+ effect = "time")

> gd <- plm(inv ~ value + capital, data = Grunfeld, model = "within",

+ effect = "twoways")

> pFtest(gw, gp)

F test for effects

data: inv ~ value + capital
F = 49.1766, df1 = 9, df2 = 188, p-value < 2.2e-16
alternative hypothesis: significant effects

> pFtest(gt, gp)

F test for effects

data: inv ~ value + capital
F = 0.2345, df1 = 19, df2 = 178, p-value = 0.9997
alternative hypothesis: significant effects

> pFtest(gd, gw)

F test for effects

data: inv ~ value + capital
F = 1.4032, df1 = 19, df2 = 169, p-value = 0.1309
alternative hypothesis: significant effects

7See Baltagi (2001), p. 65.
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3.3 Hausman’s test

phtest computes the Hausman’s test which is based on the comparison of two
models. It’s main argument may be :

� a plms object. In this case, the two models used in the test are the within
and the random models (the most usual case with panel data),

� two plm objects.

Some examples of the use of phtest are shown below 8:

> gw <- plm(inv ~ value + capital, data = Grunfeld, model = "within")

> gr <- plm(inv ~ value + capital, data = Grunfeld, model = "random")

> phtest(gw, gr)

Hausman Test

data: inv ~ value + capital
chisq = 2.3304, df = 2, p-value = 0.3119
alternative hypothesis: one model is inconsistent

3.4 Robust covariance matrix estimation

Robust estimators of the covariance matrix of coefficients are provided, mostly
for use in Wald-type tests. pvcovHC estimates three ”flavours” of White (1980,
1984)’s heteroskedasticity-consistent covariance matrix (known as the sandwich
estimator). Interestingly, in the context of panel data the most general version
also proves consistent vs. serial correlation.

All types assume no correlation between errors of different groups while al-
lowing for heteroskedasticity across groups, so that the full covariance matrix of
errors is V = In ⊗ Ωi; i = 1, .., n. As for the intragroup error covariance matrix
of every single group of observations, "white1" allows for general heteroskedas-
ticity but no serial correlation, i.e

Ωi =


σ2

i1 . . . . . . 0

0 σ2
i2

...
...

. . . 0
0 σ2

iT

 (1)

while "white2" is "white1" restricted to a common variance inside every
group, estimated as σ2

i =
∑T

t=1 e
2
it/T , so that Ωi = IT ⊗ σ2

i (see Greene (2003),
13.7.1-2 and Wooldridge (2003), 10.7.2); "arellano" (see ibid. and the original
ref. Arellano (1987)) allows a fully general structure w.r.t. heteroskedasticity
and serial correlation:

8See Baltagi (2001), p. 71.
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Ωi =



σ2
i1 σi1,i2 . . . . . . σi1,iT

σi2,i1 σ2
i2

...
...

. . .
...

... σ2
iT−1 σiT−1,iT

σiT,i1 . . . . . . σiT,iT−1 σ2
iT


(2)

The latter is, as already observed, consistent w.r.t. timewise correlation of
the errors, but on the converse, unlike the White 1 and 2 methods, it relies on
large N asymptotics with small T.

The errors may be weighted according to the schemes proposed by MacK-
innon and White (1985) and Cribari-Neto (2004) to improve small-sample per-
formance.

Main use of pvcovHC is together with testing functions from lmtest and
car packages. These typically allow passing the vcov parameter to be either a
matrix or a function (see Zeileis 2004). If one is happy with the defaults, it is
easiest to pass the function itself:

> library(lmtest)

> data("Airline", package = "Ecdat")

> form <- log(cost) ~ log(output) + log(pf) + lf

> z <- plm(form, data = Airline, model = "within")

> coeftest(z, pvcovHC)

t test of coefficients:

Estimate Std. Error t value Pr(>|t|)
log(output) 0.919285 0.029498 31.1640 < 2.2e-16 ***
log(pf) 0.417492 0.017362 24.0457 < 2.2e-16 ***
lf -1.070396 0.384669 -2.7826 0.006707 **
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

else one may do the covariance computation inside the call to coeftest,
thus passing on a matrix:

> coeftest(z, pvcovHC(z, method = "white2", type = "HC3"))

t test of coefficients:

Estimate Std. Error t value Pr(>|t|)
log(output) 0.919285 0.029021 31.6769 < 2.2e-16 ***
log(pf) 0.417492 0.014301 29.1928 < 2.2e-16 ***
lf -1.070396 0.211686 -5.0565 2.605e-06 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

For some tests, e.g. for multiple model comparisons by waldtest, one should
always provide a function9. In this case, optional parameters are provided as
shown below (see also Zeileis, 2004, p.12):

9Joint zero-restriction testing still allows providing the vcov of the unrestricted model as
a matrix, see the documentation of package lmtest
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> waldtest(z, update(z, . ~ . - log(pf) - lf), vcov = function(x) pvcovHC(x,

+ method = "white2", type = "HC3"))

Wald test

Model 1: log(cost) ~ log(output) + log(pf) + lf
Model 2: log(cost) ~ log(output)
Res.Df Df Chisq Pr(>Chisq)

1 81
2 83 -2 858.92 < 2.2e-16 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

linear.hypothesis from package car may be used to test for linear restric-
tions:

> library(car)

> linear.hypothesis(zz, "2*log(pc)=log(emp)", vcov = pvcovHC)

Linear hypothesis test

Hypothesis:
2 log(pc) - log(emp) = 0

Model 1: log(gsp) ~ log(pcap) + log(pc) + log(emp) + unemp
Model 2: restricted model

Note: Coefficient covariance matrix supplied.

Res.Df Df Chisq Pr(>Chisq)
1 811
2 812 -1 2.2928 0.1300
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