Using prim to estimate highest density difference regions
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1 Introduction

The Patient Rule Induction Method (PRIM) was introduced by Friedman and Fisher
(1999). It is a technique from data mining for finding ‘interesting’ regions in high-
dimensional data. We start with regression-type data (X1,Y1),...,(X,,Y,) where X
is d-dimensional and Y; is a scalar response variable. We are interested in the conditional

expectation function
m(x) =E(Y|x).

In the case where we have 2 samples, we can label the response as

{1 if X; is from sample 1
P =

—1 if X; is from sample 2.

Then PRIM finds the regions where the samples are most different. Here we have a
positive HDR (where sample 1 points dominate) and a negative HDR (where sample 2
points dominate).

We look at a 3-dimensional data set (quasiflow) included in the prim library. It is
a randomly generated data set from two normal mixture distributions whose structure
mimics some light scattering data, taken from a machine known as a flow cytometer.

library (prim)

data(quasiflow)

yflow <- quasiflow[, 4]

xflow <- quasiflow[, 1:3]

xflowp <- quasiflow[yflow == 1, 1:3]
xflown <- quasiflow[yflow == -1, 1:3]
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We can think of xflowp as flow cytometric measurements from an HIV+ patient, and
xflown from an HIV- patient.

> pairs(xflowp[1:100, ])
> pairs(xflown[1:100, ])
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There are two ways of using prim.box to estimate where the two samples are most
different (or equivalently to estimate the HDRs of the difference of the density functions).
In the first way, we assume that we have suitable values for the thresholds. Then we can
use

> qflow.thr <- c¢(0.38, —-0.23)
> gflow.prim <- prim.box(x =
+ threshold.type = 0)

xflow, y = yflow, threshold = qflow.thr,

An alternative is compute PRIM box sequences which cover the entire data range, and
then use prim.hdr to experiment with different threshold values. This two-step process is
more efficient and faster than calling prim.box for each different threshold. We’re happy
with the positive HDR threshold so we can compute the positive HDR directly:

> gflow.hdr.pos <- prim.box(x =
+ threshold.type = 1)

xflow, y = yflow, threshold = 0.38,

On the other hand, we’re not sure about the negative HDR thresholds.

> gflow.neg <- prim.box(x = xflow, y = yflow, threshold.type = -1)

> gflow.hdr.negl <- prim.hdr(qflow.neg, threshold = -0.23, threshold.type
> gflow.hdr.neg2 <- prim.hdr(qflow.neg, threshold -0.43, threshold.type
> gflow.hdr.neg3 <- prim.hdr(qflow.neg, threshold = -0.63, threshold.type

After examining the summaries and plots, we choose qflow.hdr.negl to combine with

qflow.hdr.pos.

> gflow.prim2 <- prim.combine(qflow.hdr.pos, qflow.hdr.negl)
> summary(qflow.prim2)

-1)
-1)
-1)



box-mean  box-mass threshold.type

box1 0.54003407 0.05127533 1
box2 -0.68237347 0.05005241 -1
box3 -0.39072848 0.05276031 -1
box4 -0.29465095 0.09634871 -1
boxb5* 0.11245776 0.74956324 NA
overall 0.02882600 1.00000000 NA

In the plot below, the positive HDR is coloured orange, and the negative HDR is coloured
blue. The following plot is not exactly the output produced by the commands, but has
been thinned for clarity.

> cols <- qflow.prim2$ind

> cols[cols == 1] <- "orange"
> cols[cols == -1] <- "blue"

> plot(qflow.prim2, col = cols)
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