

PBS Modelling 2.00: User’s Guide

Jon T. Schnute, Alex Couture-Beil, Rowan Haigh, and Anisa Egeli

Fisheries and Oceans Canada
Science Branch, Pacific Region
Pacific Biological Station
3190 Hammond Bay Road
Nanaimo, British Columbia
V9T 6N7

2008

User’s Guide Revised from
Canadian Technical Report of
Fisheries and Aquatic Sciences 2674 (2006)

© Her Majesty the Queen in Right of Canada, 2008

Revised from Cat. No. Fs97-6/2674E ISSN 0706-6457

Last update: October 23, 2008

Correct citation for this publication:

Schnute, J.T., Couture-Beil, A., Haigh, R., and Egeli, A. 2008. PBS Modelling 2.00: user’s guide

revised from Canadian Technical Report of Fisheries and Aquatic Science 2674: v +
146 p. Last updated October 23, 2008

 – i –

TABLE OF CONTENTS

Abstract .. iii
Preface.. iv
1. Introduction... 1
2. GUI tools for model exploration... 3

2.1. Example: Lissajous curves.. 4
2.2. Window description file.. 6
2.3. Window support functions.. 8
2.4. Internal data .. 11

3. Functions for data exchange ... 13
4. Support functions for graphics and analysis ... 14

4.1. Graphics utilities ... 14
4.2. Data management.. 15
4.3. Function minimization and maximum likelihood... 15
4.4. Handy utilities... 17

5. Functions for project management.. 17
5.1. Project options .. 17
5.2. Project management utilities... 18

6. Support for lectures and workshops.. 19
7. Examples... 22

7.1. Random variables.. 23
7.1.1. RanVars – Random variables... 23
7.1.2. RanProp – Random proportions... 24
7.1.3. SineNorm – Sine normal.. 25
7.1.4. CalcVor – Calculate Voronoi tessellations.. 26

7.2. Statistical analyses .. 27
7.2.1. LinReg – Linear regression .. 27
7.2.2. MarkRec – Mark-recovery.. 28
7.2.3. CCA – Catch-curve analysis.. 29

7.3. Other applications ... 30
7.3.1. FishRes – Fishery reserve ... 30
7.3.2. FishTows – Fishery tows... 31

References... 32
Appendix A. Widget descriptions... 34

Window... 34
Button.. 35
Check .. 35
Data ... 36
Entry.. 38
Grid ... 39
History... 40
Label ... 41
Matrix.. 41
Menu ... 43
MenuItem.. 43

 – ii –

Null ... 44
Object.. 44
Radio ... 46
Slide .. 47
SlidePlus ... 48
Text ... 49
Vector.. 50

Appendix B. Talk description files ... 52
<talk> .. 52
<section>... 53
<text> .. 53
<file>... 54
<code> .. 55

Appendix C. Building PBSmodelling and other packages.. 56
C.1. Installing required software... 56

Appendix D. PBS Modelling functions and data .. 67
D.1. Objects in PBS Modelling ... 67
D.2. Function dependencies.. 73
D.3. PBS Modelling manual.. 77

LIST OF TABLES

Table 1. Lissajous project files ... 4
Table 2. R source code with GUI definition strings ... 9
Table 3. Data file in PBS format... 12
Table 4. Talk description file SwissTalk.txt.. 20
Table C1. C representations of R data types.. 63
Table C2. .C() example in PBStry ... 64
Table C3. .Call() example adapted from PBStry.. 65

LIST OF FIGURES
Figure 1. Tangled relationships among computer model components ... 2
Figure 2. GUI organization of computer model components ... 2
Figure 3. Lissajous GUI.. 5
Figure 4. Lissajous graph.. 5
Figure 5. GUI generated by presentTalk from swissTalk.txt 21
Figure 6. RanVars GUI and density plot.. 23
Figure 7. RanProp GUI and pairs plot for Dirichlet .. 24
Figure 8. SineNorm GUI and plot.. 25
Figure 9. CalcVor GUI and tessellation plot ... 26
Figure 10. LinReg GUI and regression plot ... 27
Figure 11. MarkRec GUI and density plots .. 28
Figure 12. CCA GUI and parameter pairs plot .. 29
Figure 13. FishRes GUI and population time series ... 30
Figure 14. FishTows GUI and simulated tow tracks... 31

 – iii –

ABSTRACT

Schnute, J.T., Couture-Beil, A., Haigh, R., and Egeli, A. 2008. PBS Modelling 2.00: user’s guide

revised from Can. Tech. Rep. Fish. Aquat. 2674: v + 146 p. Last updated October 23,
2008.

This report describes the R package PBS Modelling, which contains software to facilitate the
design, testing, and operation of computer models. The initials PBS refer to the Pacific
Biological Station, a major fisheries laboratory on Canada’s Pacific coast in Nanaimo, British
Columbia. Initially designed for fisheries scientists, this package has broad potential application
in many scientific fields. PBS Modelling focuses particularly on tools that make it easy to
construct and edit a customized graphical user interface (GUI) appropriate for a particular
problem. Although our package depends heavily on the R interface to Tcl/Tk, a user does not
need to know Tcl/Tk. In addition to GUI design tools, PBS Modelling provides utilities to
manage projects with multiple files, write lectures that use R interactively, support data exchange
among model components, conduct specialized statistical analyses, and produce graphs useful in
fisheries modelling and data analysis. Examples implement classical ideas from fishery
literature, as well as our own published papers. The examples also provide templates for
designing customized analyses using other R packages, such as PBS Mapping, PBSddesolve,
odesolve, and BRugs. Users interested in building new packages can use PBS Modelling and a
simpler enclosed package PBS Try as prototypes. An appendix describes this process completely,
including the use of C code for efficient calculation.

 – iv –

Preface

 After working with fishery models for more than 30 years, I’ve used a great variety of
computer software and hardware. Currently, the free distribution of R (R Development Core
Team 2006a) provides an excellent platform for software development in an environment
designed to support multiple computers and operating systems. Furthermore, an associated
network of contributed packages on the Comprehensive R Archive Network (CRAN:
http://cran.r-project.org/) gives access to a wealth of algorithms from many users in various
fields. This disciplined system allows users, like the authors of this package, to distribute
software that extends the utility of R in new directions.

 Previously I’ve used software in Basic (Schnute 1982), Fortran (Mittertreiner and
Schnute 1985), Pascal, C, and C++ to implement ideas in published papers. Usually this software
goes stale in time, due to minimal documentation, changing operating systems, the lack of
portable libraries, and many other factors. Because R includes a rich library of statistical
software that operates on multiple platforms, my colleagues and I can now distribute software
that actually works when other people try it. The user community includes us, because we often
find that we can’t remember how to operate our own software after a few weeks or months, let
alone years. Although writing a good R package requires considerable effort, the result often
pays off in portability, communication, and long term usage.

 PBS Modelling tries to accomplish several goals. First, it anticipates the need for model
exploration with a graphical user interface, a so-called GUI (pronounced gooey). We make this
easy by encapsulating key features of Tcl/Tk into convenient tools fully documented here. A user
need not learn Tcl/Tk to use this package. Everything required appears in Appendix A. You
might want to start by running the function testWidgets(). Co-author Rowan Haigh likes
the subtitle: “modelling the world with gooey substances.”

 Second, we want to demonstrate interesting analyses related to our work in fishery
management and other fields. The function runExamples() illustrates some of these, as
described further in Section 7. The code for all of them appears in the R library directory
PBSmodelling\Examples. We demonstrate the power of other R packages, such as BRugs
(to perform Bayesian posterior sample with the application WinBUGS), odesolve (to solve
differential equations numerically), ddesolve (to solve delay differential equations), and
PBSmapping (to draw maps and perform spatial analyses).

 Third, PBS Modelling serves as a prototype for building a new R package, as summarized
in Appendix B. We illustrate two methods of calling C code (.C and .Call), and discuss many
other technical issues encountered while building this package. The functions compileC and
loadC (added in 2008) give direct support for dynamically adding C functions to the working R
environment.

 Finally, to use R effectively, we’ve found it convenient to devise a number of “helper”
functions that facilitate data exchange, graphics, function minimization, and other analyses. We
include these here for the benefit of our users, who may choose to ignore them. We hope that

 – v –

PBS Modelling inspires interest in interactive models that demonstrate applications in many
fields.

 As with our earlier package PBS Mapping, Rowan and I employed a bright student who
could learn quickly and implement creative ideas. Dr. Jim Uhl (Computing Science) and Dr. Lev
Idels (Mathematics), both from Malaspina University-College (MUC) here in Nanaimo, drew my
attention to the student Alex Couture-Beil, who has strong credentials in both fields. Rowan and
I gave him a few initial specifications, and he quickly got ahead of us by extending our ideas in
new and useful directions. This process continued in 2008, when we employed Anisa Egeli,
another bright student from MUC. The current version of PBS Modelling represents the result of
an evolutionary process, as we experimented with design concepts that would support our
modelling goals. Users familiar with the earlier versions (starting with 0.60, posted on CRAN in
August, 2006) may need to revise their code slightly to make it work with this version.

 Since 1998, I have maintained a formal relationship with the Computing Science
Department at MUC (now named Vancouver Island University – VIU), where I find kindred
spirits in developing projects like this one. I particularly want to thank Dr. Jim Uhl for his
suggestions and support on this project. Conversations with Dr. Peter Walsh have also stimulated
my interest in the theory and application of computing science.

Fishery management depends on models with a great range of complexity, starting from
some fairly simple ideas. Unfortunately from a coding perspective, “industrial strength” models
can’t run exclusively in R. Algorithms with high computational requirements don’t run fast
enough in R for practical application, due to interpretive code and other technical limitations.
Examples in PBS Modelling often illustrate ideas at the simple end of the spectrum, although the
package can certainly be used to manage external software designed to deal with greater
complexity. The current version assists users in writing C code that can dramatically speed
model performance.

Scientifically, I like to work from both ends of the spectrum. The behaviour of a complex
model sometimes mimics a much simpler model, and it helps to become well versed in some of
the simpler cases. I appreciate the motto of Canadian storyteller and humorist Stuart McLean,
who hosts a CBC radio broadcast The Vinyl Cafe (http://www.cbc.ca/vinylcafe/), “We may not
be big, but we’re small.”

Jon Schnute, December 2006; revised October 2008.

 – vi –

Page left blank for printing purposes

 – 1 –

1. Introduction

 This report describes software to facilitate the design, testing, and operation of computer
models. The package PBS Modelling is distributed as a freely available package for the popular
statistical program R (R Development Core Team 2006a). The initials PBS refer to the Pacific
Biological Station, a major fisheries laboratory on Canada’s Pacific coast in Nanaimo, British
Columbia. Previously, we produced the R package PBS Mapping (Schnute et al. 2004), which
draws maps and performs various spatial operations. Although both packages (which can run
separately or together) include examples relevant to fishery models and data analysis, they have
broad potential application in many scientific fields.

 Computer models allow us to speculate about reality, based on mathematical assumptions
and available data. The full implications of a model usually require numerous runs with varying
parameter values, data sets, and hypotheses. A customized graphical user interface (or GUI,
pronounced “gooey”) facilitates this exploratory process. PBS Modelling focuses particularly on
tools that make it easy to construct and edit a GUI appropriate for a particular problem. Some
users may wish to use this package only for that purpose. Other users may want to explore the
examples included, which demonstrate applications of likelihood inference, Bayesian analysis,
differential equations, computational geometry, and other modern technologies. In constructing
these examples, we take advantage of the diversity of algorithms available in other R packages.

 In addition to GUI design tools, PBS Modelling provides utilities to support data
exchange among model components, conduct specialized statistical analyses, and produce graphs
useful in fisheries modelling and data analysis. Examples implement classical ideas from fishery
literature, as well as our own published papers. The examples also provide templates for
designing customized analyses using the R packages discussed here. In part, PBS Modelling
provides a (very incomplete) guide to the variety of analyses possible with the R framework. We
anticipate many revisions, as we find time to include more examples.

 PBS Modelling depends heavily on Peter Dalgaard’s (2001, 2002) R interface to the
Tcl/Tk package (Ousterhout 1994). This combines a scripting language (Tcl) with an associated
GUI toolkit (Tk). We simplify GUI design with the aid of a “window description file” that
specifies the layout of all GUI components and their relationship with variables in R. We support
only a subset of the possibilities available in Tcl/Tk, but we customize them in ways intended
specifically for model design and exploration (Appendix A). A user of PBS Modelling does not
need to know Tcl/Tk.

 Computer models typically involve a variety of components, such as code, data,
documentation, and a user interface. Figure 1 illustrates the tangled relationships that sometimes
accompany computer model design. PBS Modelling allows the GUI to become a device for
organizing components, as well as running and testing software (Figure 2). The project might
involve other applications, as well as R itself. In addition to its interactive role, the GUI becomes
an archival tool that reminds the developer how components, functions, and data tie together.
Consequently, it facilitates the process of restarting a project at a future date, when details of the
design may have been forgotten.

 – 2 –

Figure 1. Tangled relationships among computer model components.

Figure 2. Computer model components organized with a graphical user interface (GUI).

 In PBS Modelling, project design normally begins with a text file that describes the GUI.
Additional files may contain code for R and other applications, which sometimes require
languages other than R. For example, the R BRugs package (to perform Bayesian inference using
Gibbs sampling) requires a file with the intended statistical model, written in the language of a
separate program WinBUGS. In other contexts, a user might write C code to get acceptable
performance from model components that require extensive computer calculations. This code
might be compiled as a separate program or linked directly into a customized R package.

 Section 2 of this report describes the process of designing a GUI to operate a computer
model. Components can share data through text files in a specialized “PBS format” presented in

 – 3 –

Section 3. These correspond naturally to list objects within R. Section 4 describes additional
tools for customized graphics and data analysis. Sections 5 and 6 discuss tools developed in 2008
for managing projects (like C code development) and writing lectures that use R interactively. In
Section 7, we highlight briefly some of the examples in our initial release, although we expect
the list to expand in future versions. This guide explains the context and general purpose of all
functions in PBS Modelling. Consult the help files for complete technical details.

 Appendix A gives the complete syntax for all visual components (called widgets)
available for writing a window description file to construct a customized GUI. Appendix B
provides syntax detail for talk description files. Appendix C describes the process of building
PBS Modelling in a Windows environment. A simple enclosed package PBS Try gives a
prototype for building any R package, including the use of C code to speed calculations.
Appendix D shows the help files included with the package.

 To use PBS Modelling, run R and install the package from the R GUI (click “Packages”,
“Install package(s)…, select a mirror, and choose PBSmodelling from the list of packages).
Windows users can also obtain an appropriate compressed file from the authors of this report or
directly from the CRAN web site http://cran.r-project.org/.

 The R GUI normally runs as a Multiple Document Interface (MDI), in which child
windows like the R console and graphics screens all appear within the GUI itself and a menu
item can be used to tile the sub-windows. Unfortunately, in this configuration, windows
generated by Tcl/Tk sometimes disappear mysteriously when an application runs. They can be
recovered by clicking the appropriate “T k ” icon on the taskbar. You can avoid this problem by
using the Single Document Interface (SDI), in which the operating system manages all R
windows (console, graphics, Tcl/Tk, etc.) independently on the desktop. Set this configuration by
running the R GUI, choosing the menu items Edit〈 〉 and GUI Preferences〈 〉 , and then selecting
and saving the SDI option. Alternatively, go to the master configuration file Rconsole in the
\etc subdirectory of the R installation, and use a text editor to select the option MDI = no.

2. GUI tools for model exploration

 The practical task of writing appropriate code for the R Tcl/Tk package can sometimes
become daunting, particularly if the GUI window requires extensive design and change. For a
restricted set of Tk components (called widgets), PBS Modelling makes it much easier to design
and use GUIs for exploring models in R. A user needs to supply two key parts of a GUI-driven
analysis:
• a window description file (an ordinary text file) that completely specifies the desired layout

of widgets and their relationship with functions and variables in R, and
• R code that defines relevant functions, variables, and data.
This section begins with an example to illustrate the main ideas, and then gives complete details
for constructing window description files that can be used to generate GUIs.

 – 4 –

2.1. Example: Lissajous curves

 A Lissajous curve (http://mathworld.wolfram.com/LissajousCurve.html), named after one
of its inventors Jules-Antoine Lissajous, represents the dynamics of the system

sin(2) , sin[2 ()],x mt y ntπ π φ= = + (1)

where time t varies from 0 to 1. During this time interval, the variables x and y go through m and
n sinusoidal oscillations, respectively. The constant φ , which lies between 0 and 1, represents a
cycle fraction of phase shift in y relative to x. We want to design a GUI that allows us to explore
this model by plotting Lissajous curves (y vs. x) for various choices of the parameters (, ,)m n φ .
We also want to vary the number of time steps k and choose a plot that is either lines or points.

Table 1. Two text files associated with the “Lissajous Curve” project. The first gives a
description of the GUI window used to manage the graphics. The second contains R code to
draw a Lissajous curve.
———————————————————————————————————————

File 1: LissajousCurve.txt
window title="Lissajous Curve"
vector length=4 names="m n phi k" \
 labels="'x cycles' 'y cycles' 'y phase' points" \
 values="2 3 0 1000"
radio name=ptype text=lines value="l" mode=character
radio name=ptype text=points value="p" mode=character
button text=Plot function=drawLiss

File 2: LissajousCurve.r
drawLiss <- function() {
 getWinVal(scope="L");
 tt <- 2*pi*(0:k)/k;
 x <- sin(2*pi*m*tt); y <- sin(2*pi*(n*tt+phi));
 plot(x,y,type=ptype);
 invisible(NULL); }

———————————————————————————————————————

 This analysis can be accomplished with the R code and window description file shown in
Table 1. Assume that these two files reside in the current working directory and that
PBS Modelling has been installed in R. Start an R session from this directory, and type the
following three lines of code in the R command window:
> require(PBSmodelling)
> source("LissajousCurve.r")
> createWin("LissajousCurve.txt")

The first line assures that PBS Modelling is loaded, the second defines the function drawLiss
for drawing Lissajous curves, and the third creates a window that can be used to draw curves
corresponding to any choice of parameters. Figure 3 shows the resulting GUI window interface.
When the Plot〈 〉 button is clicked, the curve in Figure 4 appears in the R graphics window. This
corresponds to the default parameter values:

 – 5 –

2, 3, 0, 1000m n kφ= = = = . (2)

The GUI allows different Lissajous figures to be drawn easily. Simply change parameter values
in any of the four entry boxes, and click Plot〈 〉 .

Figure 3. GUI generated by the description file LissajousCurve.txt in Table 1. It
contains five widgets: the window titled “Lissajous Curve”, a vector of four entries, two linked
radio buttons (lines〈 〉 and points〈 〉), and a Plot〈 〉 button.

-1.0 -0.5 0.0 0.5 1.0

-1
.0

-0
.5

0.
0

0.
5

1.
0

x

y

Figure 4. Default graph for the “Lissajous Curve” project, obtained by clicking the Plot〈 〉 button
in Figure 3. The x variable goes through two cycles while the y variable goes through 3 cycles. A
line graph is drawn through 1,000 points generated by the algorithm (1).

 – 6 –

 The window description file (Table 1) specifies a window titled “Lissajous Curve” with
a vector of four entries. These correspond to quantities with the R variable names m, n, phi,
and k. The corresponding window (Figure 3) will contain four entry boxes that allow these
quantities to be changed. A label for each quantity emphasizes its conceptual role: the number of
cycles for x or y, the phase shift for y, and the number of points plotted. Initial values correspond
to those listed in (2). The backslash (\) character indicates that a widget description (in this case,
a vector) continues on the next line. A pair of radio buttons, both corresponding to an R
variable named ptype, allow selection between “lines” and “points” when drawing the plot.
The graph (Figure 4) is actually drawn (i.e., the R function drawLiss is called) when the user
presses a button that contains the text “Plot”. In, we use the symbols 〈 〉… to designate a
button or keystroke, such as the Plot〈 〉 button or the radio buttons lines〈 〉 and points〈 〉 . These
symbols are not to be confused with talk description file tags (<>) used later (Section 6).

 The file of R code (Table 1) implements the algorithm (1) for computing k points on a
Lissajous curve. The function drawLiss has no arguments, but gets values of the R variables
m, n, phi, k, and ptype from the GUI window via a call to the PBS Modelling function
getWinVal. The argument scope="L" implies that these variables have local scope within
this function only. (Another choice scope="G" would give the variables global scope by
writing them to the user’s global environment .GlobalEnv.)

2.2. Window description file

A window description file currently supports the following 18 widgets:

1. window – an entire new window;
2. menu – a menu grouping;
3. menuitem – an item in a menu;
4. grid – a rectangular block for placing widgets;
5. label – a text label;
6. button – a button linked to an R function that runs a particular analysis and generates a

desired output, perhaps including graphics;
7. check – a check box used to turn a variable on or off, with corresponding values TRUE or

FALSE;
8. radio – one of a set of mutually exclusive radio buttons for making a particular choice;
9. null –a blank widget that can occupy an empty space in a grid;

10. entry – a field in which a scalar variable (number or string) can be altered;
11. text – an entry box that supports multiple lines of text;
12. vector – an aligned set of entry fields for all components of a vector;
13. matrix – an aligned set of entry fields for all components of a matrix;
14. data – an aligned set of entry fields for all components of a data frame, where columns can

have different modes;
15. object – an aligned set of entry fields defined by an existing R-object (vector, matrix, or

data frame);
16. slide – a slide bar that sets the value of a variable;

 – 7 –

17. slideplus – an extended slide bar that also displays a minimum, maximum, and current
value;

18. history – a device for archiving parameter values corresponding to different model
choices, so that a “slide show” of interesting choices can be preserved.

 The description file is an ordinary text file that specifies each widget on a separate line.
However, any one widget description can span multiple lines by using a backslash character (\)
to indicate the end of an incomplete line. For example, the single line:
label text="Hello World!"

is equivalent to:
label \
 text="Hello World!"

Meaningful indentation is highly recommended, but not compulsory. The three-line description
of a vector widget in Table 1 illustrates a readable style.

 Each widget has named arguments that control its behaviour, analogous to the named
arguments of a function in R. Some (required) arguments must be specified in the widget
description. Others (not required) can take default values. All widgets have a type argument
equal to one of the 18 names above, although the word type can be omitted in the description
file. Appendix A gives an alphabetic list of all these widgets, along with detailed descriptions of
all arguments. As in calls to R functions, argument names can be omitted as long as they
conform to the order specified in the detailed widget descriptions given below. Nevertheless, we
recommend that all argument names be specified, except possibly the name type, which is
always the first argument for each widget. Unlike R functions, where commas separate
arguments, the arguments in a widget description are separated by white space.

 In a description file, all argument values are treated initially as strings. In addition to
specifying a line break, the backslash can be used to indicate five special characters: single quote
\', double quote \", tab \t, newline \n, and backslash \\. If an argument value does not
include spaces or special characters, then quotes around the string are not required. Otherwise,
double quotes must be used to delineate the value of an argument. Single quotes indicate strings
nested within strings. For example, the vector in Table 1 has four labels specified by the string
argument
labels="'x cycles' 'y cycles' 'y phase' points"

 A hash mark (#) that is not within a string begins a comment, where everything on a line
after the hash mark is ignored. As mentioned above, an isolated backslash (not part of a special
character) indicates continuation onto the next line. A break can even occur in the middle of a
string, such as the long label
label text="This long label with spaces \
 spans two lines in the description file"
In this case, leading spaces in the second line are ignored, to allow meaningful formatting in the
description file. Intentional spaces in a long string should appear prior to the backslash on the
first line.

 – 8 –

 Although the type argument (like vector) for a widget can never be abbreviated,
other arguments follow the convention used with named arguments in R function calls. For a
given widget type, the available arguments can be abbreviated, as long as the abbreviations
uniquely identify each argument. For example, the vector in Table 1 could be specified as:
vector len=4 nam="m n phi k" \
 lab="'x cycles' 'y cycles' 'y phase' points" \
 val="2 3 0 1000"

 Unlike variable names in R, widget names and their arguments are not case sensitive.
Some users may prefer to write all type variables in upper case or with an initial capital letter.
For example, the names WINDOW, VECTOR, RADIO, and BUTTON could be used to
emphasize the widgets in Table 1.

2.3. Window support functions

 PBS Modelling includes functions designed to connect R code with GUI windows. Every
window has a name argument (with default name=window), and windows with different
names can coexist. Window names must use only letters and numbers; they cannot contain a
period (dot) or any other punctuation. When running a program with multiple windows, only one
window will be current (i.e., selected by the user) at any particular time. Normally, a user selects
a window by clicking on it, but the function focusWin allows program control of the window
currently in focus. Thus, activity in one window might be used to shift the focus to another.

The function createWin uses a description file to generate one or more windows,
where each window has a distinct name (perhaps the default) taken from the file. If a window
with the specified name already exists, it will be closed before the new window is opened. When
designing and testing a GUI, this feature ensures that a new version automatically replaces the
previous one. The function closeWin, which takes a vector of window names, closes all
windows named in the vector. With no arguments, closeWin() closes all windows that are
currently open.

 Although createWin normally builds a GUI from a description file, it will also accept
a vector of strings equivalent to such a file. Thus, a file of R source code can define a GUI
directly, without the need for a separate description file. illustrates how this can be done in a
simple case. To see the character vectors equivalent to a given description file (say,
winDesc.txt), type the R command:
 scan("winDesc.txt",what=character(),sep="\n")
In particular, if the description file includes a backslash or double quote character, the
corresponding R string must represent it as \\ or \", respectively. Despite this alternative of
embedding window descriptions in R source files, we recommend writing separate files to define
GUIs, except perhaps for very simple models.

 – 9 –

Table 2. A simple file of R source code with character strings that define a GUI. No separate
window description file is required.

File: Simple.r
window description strings
winStr=c(
 "window",
 "entry name=n value=5",
 "button function=myPlot text=\"Plot sinusoid\"");

function to plot a sinusoid
myPlot <- function() {
 getWinVal(scope="L");
 x <- seq(0,500)*2*n*pi/500;
 plot(x,sin(x),type="l"); };

commands to create the window
require(PBSmodelling); createWin(winStr,astext=TRUE)

 Internally, PBS Modelling converts a description file into a list object that is used to
generate the corresponding GUI. The functions compileDescription and
parseWinFile give lists that correspond to description files. Just as createWin can act
directly on a character vector, it can also act on a suitably defined list, rather than a file. This
feature makes it possible to replace a description file with R code that defines the corresponding
list, although we recommend against this practice in most cases.

 R programs need to share data with a GUI window. PBS Modelling provides six
functions that deal with values of R variables named in a description file:
• getWinVal returns values from the current window;
• setWinVal sets values in the current window;
• getWinAct returns all actions (up to a maximum of 50) invoked in the current window;
• setWinAct adds an action to the action vector for the current window;
• getWinFun returns the names of all R functions referenced in the current window;
• clearWinVal clears global values associated with the current window.

 Some models make use of a single parameter vector. In such cases the function
createVector generates a GUI directly, without the need for a corresponding description
file. We also offer a few “choosing” functions – getChoice and chooseWinVal – that
invoke a prompting GUI offering string choices. The latter writes the choice to a variable in a
GUI specified by the user.

 After using createWin to produce a GUI, the functions getWinVal and
getWinFun provide useful summaries of names declared in the current project. Furthermore,
the function getWinAct provides a record of GUI actions taken by the user, starting with the
most recent and working backwards. By default, the action associated with a widget is its
type; for example a button has default action=button. In general, however, the

 – 10 –

description file could give a unique action name to each potential action, so that the vector would
give an unambiguous record of user actions.

Two functions provide support for selecting a file from a GUI:
• promptOpenFile shows the current directory for choosing a file to open;
• promptSaveFile shows the current directory for naming a file to save.

Files can be opened in programs external from R depending on their file extension:
• openFile opens a file using the default program for the file extension;
• setPBSext overrides the default program associated with an extension;
• getPBSext shows the overridden file extension and associated program.
• clearPBSext clears file extensions added by setPBSext.

 If a widget invokes the function openFile, the associated action should be the file
name. By definition, openFile has the default argument getWinAct()[1].

 On a Windows platform, the native R function shell.exec (called by openFile)
automatically chooses a default from the registry. For this reason, our distribution specifies an
empty list:
 getPBSext() returns list().
The default can, however, be overwritten by specifying explicit list components, such as:
 setPBSext('html',
 '"c:/Program Files/Mozilla Firefox/firefox.exe" file://%f')
where %f denotes the file name in the string passed to the operating system. Unix platforms
typically lack such generic file associations, and thus require a user to specify defaults this way.

 PBS Modelling includes a history widget designed to collect interesting choices of
GUI variables so that they can be redisplayed later, rather like a slide show. This widget has
buttons to add and remove GUI settings from the current collection, to scroll backward and
forward, and to clear all entries from the collection. Other buttons allow entire history files to be
saved or loaded. The history widget defines and uses the list PBS.history in the global
environment to store a saved history.

 Normally, a user would invoke a history widget simply by including a reference to it
in the description file. However, PBS Modelling includes some support functions for customized
applications:
• initHistory initializes data structures for holding a collection of history data;
• addHistory saves the current window settings to the current history record;
• rmHistory removes the current record from the history;
• backHistory and forwHistory move backward and forward between successive

history records;
• firstHistory and lastHistory move to the first and last records in the history;
• jumpHistory moves to a specified record in the history;
• exportHistory and importHistory save and load histories from files;

 – 11 –

• clearHistory removes all records from the current collection.
The help file for initHistory shows an example that uses these functions directly.

2.4. Internal data

 PBS Modelling uses the hidden list variable .PBSmod in the global environment to store
current settings and internal information needed to communicate with the tcl/tk interface.
This variable is intended for exclusive use by PBS Modelling, and users should not alter or delete
it while PBS Modelling is active. We include the material in this section for advanced users and
developers interested in further details about the internal data used to manage GUI windows.

 The list .PBSmod contains a named component for each open window, where the
component name matches the window name. Recall that, if a window is not named explicitly, it
receives the default name=window. In addition to window names, .PBSmod contains two
other named components: $.activeWin and $.options. These names do not conflict with
the window names, because the latter cannot include a dot (.).The $.activeWin component
stores the name of the window that has most recently received user input. The $.options
component saves key values of interest to PBS Modelling, such as a component $openfile
with information that links programs to file extensions for the function openFile. See
Section 2.3 for further information.

 Any named component of .PBSmod that does not start with a dot stores information
related to the corresponding window. Each window uses a list with the following named
components:
• widgetPtrs

A list containing widget pointers. Each component has a name that matches widget name.
Only widgets with a name argument and a corresponding tk widget will appear in this list.

• widgets
A list containing information from the window description file relevant to each widget. This
list includes every widget that has a name or names argument. Widgets without names will
never be referenced again after the window has been created; consequently, information
about them is not stored for later usage.

• tkwindow
A pointer to the window created by tktoplevel().

• functions
A vector of all function names referenced in the window description.

• actions
A vector containing action strings corresponding to the most recent user actions in the
window, up to a maximum of 50. (The internal constant .maxActionSize sets this upper
limit. See the file defs.R in the distribution source code.)

Users can explore the contents of .PBSmod with the R structure command str. For

example, from the R console, type runExamples() and select the example “CalcVor”. Then
type the command str(.PBSmod,2) to shows the list structure to a depth of 2. This reveals

 – 12 –

all the list components discussed above. Further details appear by exploring the structure to
depths 3, 4, or more. Notice also how the contents change as different examples are selected.

 The functions getWinVal, setWinVal, getWinAct, setWinAct,
getWinFun, getPBSext, and setPBSext (discussed in Section 2.3) provide methods for
manipulating and retrieving variables stored in .PBSmod. Use these, rather than direct access, to
alter the internal data. Future design modifications to PBS Modelling might change the
architecture for storing the data components, but the methods functions will continue to have
their current effect.

Table 3. Sample data file for PBS Modelling. The function readList converts this file to a
list object with six components: a scalar $x, a logical vector $y, two matrices ($z, $a), and
two data frames ($b1, $b2). The matrix $a is read by column, and $b1=$b2.
———————————————————————————————————————
$x
0

$y
T F TRUE FALSE

$z
11.1 12.2 13.3 14.4
15.5 16.6 17.7 1.88e+01

$a
$$matrix ncol=2 byrow=FALSE colnames="a b"
5 1 2 3

$b1
$$data ncol=3 modes="numeric logical character" \
 byrow=TRUE colnames="N L C"
5 T aa
3 F bb
8 T cc
10.5 F dd

$b2
$$data ncol=3 modes="numeric logical character" \
 byrow=FALSE colnames="a b c"
5 3 8 10.5
T F T F
aa bb cc dd

———————————————————————————————————————

 – 13 –

3. Functions for data exchange

 Computer models usually require data exchange between model components. For
example, as described above, the functions getWinVal and setWinVal move data between
an R program and the GUI. Other applications, such as those written separately in C, may have
the ability to write data to files that R can read. In cases like this, it would be convenient to have
variable names in the C code correspond to variables with the same names in R. PBS Modelling
can facilitate this process with the functions readList and writeList, which convert a text
file to an R list and vice-versa. Another function unpackList creates local or global
variables with names that match the list components.

 Table 3 illustrates a data file in PBS format, legible by readList. The file contains
lines with an initial dollar sign (like $x in Table 3) that specify a list component name in R,
followed by one or more lines of data. Data items are separated by white space. A single item of
data corresponds to a scalar in R, multiple items on a single line correspond to a vector, and
multiple lines of data correspond to a matrix with the number of columns determined by the first
line of data. Thus, in Table 3, $x is a scalar, $y is a vector of length 4, and $z is a 2×4 matrix.
The format also supports four possible data type definitions on a line preceded by $$:

$$ vector mode=numeric names=""
$$ matrix mode=numeric ncol rownames="" colnames="" byrow=TRUE
$$ data modes=numeric ncol rownames="" colnames byrow=TRUE
$$ array mode=numeric dim fromright=TRUE

Table 3 illustrates their use in specifying $a, $b1, and $b2. Matrices and data frames can be
read by row or column. This choice determines the order of reading the data, and white space
(including line breaks) merely signifies breaks between data items. Array objects with three or
more dimensions can be read in two ways, with indices varying first from the right or from the
left. For example, data for an array indexed by [i,j,k] are read by varying i first with fixed j
and k if fromright=TRUE. Similarly, k varies first if fromright=FALSE.

 As in widget descriptions, arguments may be omitted in favour of their defaults, and the
$$ line may be continued across multiple lines by using a backslash character \. For a matrix,
the argument ncol is required. Similarly, a data object (i.e., a data frame) must specify ncol
and a vector colnames of length ncol. Also, modes must have length 1 (so that all entries in
the data frame have the same mode) or length ncol. An array must have a complete dim
argument, a vector giving the number of dimensions for each index.

 As indicated earlier, PBS Modelling can use this specialized data format as a convenient
means of capturing data from other programs. For example, to export data from an external C
program, write C code that generates a data file in PBS format, where component names in the
file match the C variable names. Then read the resulting file into an R session with the function
readList, and use unpackList to produce local or global R variables. At this point, both R
and C share data with the same variable names. This method works well with programs written
for AD Model Builder (http://otter-rsch.ca/admodel.htm), a package used extensively in fishery
research and other fields. It uses reverse automatic differentiation (AD; Griewank 2000) for
highly efficient calculation of maximum likelihood estimates.

 – 14 –

 To considerable extent, R has native support for reading and writing a variety of text
files, including the functions scan, cat, source, dump, dget, dput, read, write,
read.table, and write.table. External programs sometimes utilize R formats for their
input data. For example, the program WinBUGS (Speigelhalter et al., 2004), which implements
Bayesian inference using Gibbs sampling, uses data files written in a list format closely related to
the R syntax produced by the dput function. If the file myData.txt has dput format, then
either of the two R commands
 myData <- dget("myData.txt");
 myData <- eval(parse("myData.txt"));
produces a corresponding R list object named myData.

 We should, however, add a word of caution here. When R saves array data in dput
format, it converts the array to a vector by varying the indices from left to right. For example, a
matrix with indices [i,j] is saved as a vector in which i varies for each fixed j. In effect, the
data are stored by column. This sometimes gives an unnatural visual appearance. In English, the
eye reads naturally from left to right, then down. Matrices are normally displayed by row, with
column index j varying for each fixed i. WinBUGS, supported by the R package BRugs
(Thomas 2004), requires input data formatted in this visually meaningful way. More generally,
WinBUGS reads arrays by varying the indices from right to left. The BRugs function bugsData
writes data in this format, but users must take special care in reading WinBUGS data with the
dget function.

4. Support functions for graphics and analysis

 As mentioned in the preface, we have devised a number of functions that make it easier
for us to work in R. Some of them, such as plotBubbles, relate to techniques discussed in our
published work (e.g., Richards et al. 1997; Schnute and Haigh 2007). Others just provide
convenient utilities. For example, testCol("red") shows all colours in the palette
colors() that contain the string "red". We also provide support for a few analytical
methods, such as function minimization. This section gives a brief description of PBS Modelling
support functions. See the help files for further information.

4.1. Graphics utilities

resetGraph............Reset various graphics parameters to defaults, with mfrow=c(1,1).
expandGraphSet various graphics parameters to make graphs fill out available space.

drawBarsDraw a linear bar plot on the current graph.
genMatrixGenerate a test matrix for use in plotBubbles.
plotACF...................Plot autocorrelation bars (ACF) from a data frame, matrix, or vector.
plotAsp...................Plot a graph with a prescribed aspect ratio, preserving xlim and ylim.
plotBubblesConstruct a bubble plot for a matrix.
plotCsumPlot cumulative sum of a vector, with value added.
plotDensPlot density curves from a data frame, matrix, or vector.

 – 15 –

plotFriedEggsRender a pairs plot as fried eggs (density contours) and beer (correlations).
....................................(Code courtesy of Dr. Steve Martell, Fisheries Science Centre, UBC.)
plotTracePlot trace lines from a data frame, matrix, or vector.

addArrowsCall the arrows function using relative (0:1) coordinates.
addLegendAdd a legend using relative (0:1) coordinates.
addLabelAdd a panel label using relative (0:1) coordinates.

pickCol...................Pick a colour from a complete palette and get the hexadecimal code.
testCol...................Display named colours available based on a set of strings.
testLty...................Display line types available.
testLwd...................Display line widths.
testPch...................Display plotting symbols and backslash characters.

4.2. Data management

clearAllFunction to clear all data in the global environment.
pad0Pad numbers with leading zeroes (string).
show0........................Show decimal places including zeroes (string).
unpackList............Unpack the objects in a list and make them available locally or globally.
viewView the first n rows of a data frame or matrix.

4.3. Function minimization and maximum likelihood

Three functions in the stat package support function minimization in R: nlm,
nlminb, and optim. These tend to perform slowly compared with other software alternatives,
due partly to R’s interpretive function evaluation. Nevertheless, for small problems they offer a
convenient means of analysis, based entirely on code written in R. Our examples illustrate some
of the possibilities. For large problems coded in other software, we still like to write independent
code for a function in R, based only on the model documentation. If both versions of the
software produce the same function values at selected values of the function arguments, then we
have greater confidence that we have represented our model correctly in code. In that context, R
serves as a valuable debugging tool.

PBS Modelling provides a support function calcMin that can use any method available
in the stat package to find the vector nx x

1̂
ˆ(, ,)… of length n that minimizes the function

ny f x x
1
(, ,)= … . In practice, we usually apply this to the negative log likelihood for a statistical

model, where the variables ix are parameters. We define a new class parVec, which is a data
frame with four columns:
• val – the actual value of parameter ix ;

• min – a minimum allowable value of ix ;

• max – a maximum allowable value of ix ; and

 – 16 –

• active – a logical value that determines whether or not the minimization algorithm should
vary the value of ix . If active=F, then ix remains unchanged at the value val.

Internally, calcMin scales active variables x to surrogate variable s in the range [0,1],

where x and s are related by the inverse formulas (Schnute and Richards 1995, p. 2072):

() ()s sx x x x x x x 2
min max min min max min

1 cos()
sin

2 2
π π⎛ ⎞− ⎟⎜ ⎟= + − = + − ⎜ ⎟⎜ ⎟⎜⎝ ⎠

, (4.3a)

x x x x x

s
x x x x

max min min

max min max min

21 2
acos asin

π π

⎛ ⎞+ − −⎟⎜ ⎟⎜= =⎟⎜ ⎟⎟⎜ − −⎝ ⎠
. (4.3b)

All these formulas represent equivalent forms of a one-to-one relationship x s↔ , where
x x x
min max

≤ ≤ and s0 1≤ ≤ . Readers may find the second versions of (4.3a) and (4.3b) more
intuitive (with a familiar “arc sine square root” transformation in (4.3b)), but the code uses the
first versions for a possible improvement in computational efficiency by avoiding square and
square root functions. The minimization algorithm works entirely with surrogate variables,
which may have dimension smaller than n if some variables ix are not active. The function
scalePar scales an object x of class parVec x to a vector s of surrogates via the formula
(4.3b). Similarly, restorePar recovers x from s via (4.3a).

We also provide a convenient function GT0 that restricts a numeric variable x to a
positive value defined by

GT0
2

,

(,) 1 , 0
2

, 0
2

ε

ε
ε ε

ε

ε

⎧⎪⎪⎪ ≥⎪⎪⎪ ⎡ ⎤⎪ ⎛ ⎞⎪ ⎢ ⎥⎟⎪ ⎜ ⎟= + < <⎜⎨ ⎢ ⎥⎟⎜ ⎟⎪ ⎜⎝ ⎠⎢ ⎥⎪ ⎣ ⎦⎪⎪⎪⎪ ≤⎪⎪⎪⎩

x x

x
x x

x

 . (4.3c)

The notation GT0 denotes “greater than zero”. This function preserves the value of x if x ε≥ ,

and for smaller values x it is always true that GT0(,)
2
ε

ε ≥x . The function (4.3c) also has a

continuous first derivative that makes sense locally on a small scale of size ε . This property
makes it useful for avoiding unrealistic numbers that might be negative or zero, particularly
when the minimization algorithm uses derivatives of the objective function.

In summary, PBS Modelling has four functions that facilitate function minimization.
calcMin................Calculate the minimum of a user-defined function.
scaleParScale parameters to surrogates in the range [0,1].

 – 17 –

restorePar.........Restore actual parameters from surrogate values.
GT0Restrict a numeric variable to a positive value (“Greater Than 0”).

4.4. Handy utilities

calcFib................Calculate Fibonacci numbers (included only to illustrate the use of C code).
calcGMCalculate the geometric mean of a vector of numbers.
findPat................Find all strings that include any string in a vector of patterns.
getYesPrompt the user with a GUI to choose yes or no.
isWhatIdentify an object by its class and attributes
pause.....................Pause, typically between graphics displays.
showAlert Display a message in an alert window.
showArgsShow the arguments for a specified widget in Appendix A.
showHelpDisplay the Help Page for specified packages installed on user’s system.
testWidgetsGUI to test all widgets listed in Appendix A.
viewView the first/last/random n lines of a (potentially large) object.

5. Functions for project management

 A project to design and write software typically involves keeping track of numerous
component files that contain material at various stages of progress. Some contain input, such as
source code, data, or documentation. Others contain various stages of output, such as compiled
code, processed documents, graphs, and other analytic results. Specialized software, such as C
compilers, text processors (like TeX), database utilities, and R itself play a role in converting the
input to the output. Along the way, intermediate files often get created that ultimately need to be
removed to give a clean result. GUI tools in PBS Modelling can assist a user in managing such
projects.

For simplicity, we envisage a project as a collection of files in the current working
directory that typically share a common prefix but also have various possible extensions, such as
.c, .h, .o, .so, .dll, and .exe. We provide a GUI that illustrates a special case of project
management. It allows a user to create and compile a C function, load it into R, run it, and
compare the results with a similar function coded entirely in R. See the companion functions:

loadC.................................Launch a GUI for compiling and loading C code.
compileCCompile a C file into a shared library object.

5.1. Project options

 Projects commonly involve specific paths and filenames associated with applications like
a C compiler. To preserve information about these settings, PBS Modelling allows options
(including the associations with file extensions for openFile mentioned earlier) to be saved in
a local file with the default name PBSoptions.txt. To avoid conflict with R’s options(),

 – 18 –

we use the hidden list .PBSmod$.options (mentioned in Section 2.4), and we provide the
support functions:

writePBSoptions............Write PBS options to an external file.
readPBSoptionsRead PBS options from an external file.
promptWriteOptionsPrompt the user to save changed options.

Options can also be set within a GUI window. This requires declaring which widgets correspond
to options, as well as synchronizing (getting and setting) the current options with values shown
in the window. These tasks can be accomplished with:

declareGUIoptions.......Declare option names that correspond with widget names.
getGUIoptionsGet PBS options for widgets.
setGUIoptionsSet PBS options from widget values.

 Potentially, the options can exist at three levels: within a Window, within internal
memory, or within a file. They become active when they exist in internal memory as part of
.PBSmod. Our support functions allow them to be altered in GUIs and preserved in files.
Different project directories can have files that specify different options. Even within a single
directory, files with different names can hold different possible options.

 Some options correspond to directory paths or particular files. We provide interactive
GUIs that prompt for these choices with a file exploration window:

setPathOptionSet a PBS path option interactively.
setFileOptionSet a PBS file path option interactively.

5.2. Project management utilities

 Sometimes projects have an association with an R package. For this reason, we include
functions that can open files and examples from an R package installed on the user’s computer:

openPackageFile............Open a file from a package subdirectory.
openExamples...................Open files from the examples subdirectory of a package.

 As discussed above, a project typically includes multiple files with the same prefix and a
potential set of suffixes. (A suffix doesn’t necessarily have to be a file extension. For example,
you can use the prefix foo and the suffix -bar.xxx to match the file foo-bar.xxx where
the extension is .xxx.) We provide a utility to open these files, provided that their extensions
have associated applications. We also allow a user to search the current working directory for
potential prefixes, or to browse for a working directory and find such prefixes. Furthermore, a
project can be “cleaned” by removing files with specified suffixes. See the functions:

openProjFilesOpen files with a common prefix.
findPrefix........................Find a prefix based on names of existing files.

 – 19 –

setwdGUIBrowse for working directory and find prefix.
cleanProjLaunch a GUI for file deletion.

6. Support for lectures and workshops

 Speakers giving lectures and workshops about R often want their audience to experience
the consequences of running some R code. Sometimes participants find themselves scrambling to
copy code from the visual presentation, files distributed by speaker, or related web sites. During
this process, the actual intended content can get lost. Focus shifts from R concepts to typing and
other mechanical issues.

PBS Modelling offers a potential solution to this problem that preserves an interactive
spirit while ensuring that participants easily see the results from planned segments of R code. We
encapsulate our approach in the two functions:

showRes...................Display a string of R code and show results on the R console.
presentTalkPresent a talk on the R console, based on a talk description file.

The first provides a minor tool that sometimes comes in handy. The second implements a much
more general idea. Just as a window description file defines a GUI window, a talk description file
defines a talk that runs on the R console. The author of a talk can write a text file that
contemplates a sequence of actions, such as displaying text, running R code, and opening files. If
audience members receive this file in advance, they can readily follow every step during the talk.
The files also give them an opportunity to review the concepts at a convenient later time. We
anticipate R tutorials written as talk description files, and we may eventually add some to
PBS Modelling.

 Table 4 illustrates the format of a talk description file. It uses a mark-up style, in which
tagged lines (delineated with <>) indicate starting points for description segments. Currently,
presentTalk supports the five tags <talk>, <section>, <text>, <file>, and
<code>. A single file can contain one or more talks and each talk can contain one or more
sections. Possibly after initial comments (marked as usual with #), the first significant line in the
file is tagged <talk>, normally followed by the start of a <section>. Lines tagged as
<text> are displayed as ordinary text in the R console. These correspond to lecture notes,
comparable to what might otherwise appear on a slide. A <file> line indicates that one or
more files should be opened at that point. For example, it might be desirable to display a file of R
code or open a PowerPoint file that supplements the examples in the R console. Lines tagged as
<code> are displayed and run in the R console. Appendix B gives complete details of the
options available for talk description files.

 – 20 –

Table 4. A talk description file SwissTalk.txt designed for use with the PBS Modelling
function presentTalk. This talk examines method dispatch for the summary function and
illustrates how it applies to the swiss data set, which has class data.frame.
———————————————————————————————————————

File: SwissTalk.txt
<talk name="Swiss" button=FALSE>

SECTION 1. The "summary" method
<section name="Methods" button=TRUE>

State the talk's purpose in text
<text>
This short talk examines the "summary" method
and applies it to the "swiss" dataset.
The talk itself comes from a talk description file ...

Show the description file
<file name="swissTalk" button=TRUE>
 swissTalk.txt

Discuss "summary"
<text break=F>
"summary" is a function (class function):
<code break=print>
isWhat(summary) # isWhat() from PBSmodelling
<text break=F> "summary" is generic:
<code break=print> summary
<text break=F> "summary" has many methods:
<code break=print> methods(summary)

SECTION 2. The "swiss" data
<section name="Data" button=TRUE>
<text break=F> "swiss" is a data frame (class data.frame):
<code> isWhat(swiss)
<text break=F> You can read about the data here:
<code> help(swiss) # open the help file
<text break=F> Apply "summary" to Swiss:
<code break=print> summary(swiss)
<text break=F> Print the first 3 records:
<code break=print> head(swiss,3)
<text break=F> Display the data with the "plot" method . . .
<code print=F> plot(swiss,gap=0)
<text> THE END .. THANKS FOR WATCHING!
———————————————————————————————————————

 – 21 –

Figure 5. The GUI generated by presentTalk from the talk description file in Table 4.

 The “Swiss Talk” example in PBS Modelling allows a user to view the results from the
short talk description file in Table 4. The first section (named “Methods”) starts by showing the
description file itself (SwissTalk.txt), as an illustration of how presentTalk works.
Then the audience sees aspects of R’s polymorphic function summary. The isWhat function
(from PBS Modelling) shows its properties, and the methods function reveals the diverse ways
in which summary has been overloaded. The second section (named “Data”) shows properties
of the data frame swiss, as well as the consequences of applying summary and plot to this
object. The talk closes with a classic message showing “THE END”.

 The tag lines for presentTalk give the author considerable scope for introducing
breaks and other features into the presentation. Furthermore, each <talk> block in the
description file produces a corresponding GUI, similar to the one shown in Figure 5. This
enables the speaker to move stepwise through the presentation, via the “GO” button. After each
step, the R console remains open for additional code written on the spur of the moment.
Furthermore, the menu items (Talks, Sections, Files) allow for quick movement among
talks and/or sections, as well as spontaneous opening of files. For example, the speaker might
choose to open and close the same file several times during a presentation. This can be
programmed into the talk description or done spontaneously through the Files menu.

 In addition to the automatic menu items, a user can add buttons to the GUI that
accomplish similar purposes. For example, Figure 5 shows buttons that will move to the start of
the sections “Methods” and “Data” or open the “swissTalk” description file. The “Back” button
moves back to the previous tag segment. The blue buttons allow movement among sections –
“Start” to the first section of the talk, “Prev” to the previous section, “Curr” to the start of the
current section, and “Next” to the next section.

 Code executed during a talk presentation potentially changes objects in the current global
environment. Although the GUI allows quick jumps among talks and sections of talks, the
speaker needs to remain aware of objects currently in the global environment. For example, if the
first section of the talk creates objects needed by the second section, it makes no sense to skip to
the second before the first has done its work. Partly for this reason, we emphasize that
presentTalk will allow only one talk to operate at a time. Each talk has its own GUI,
named from the <talk> tag line. If you use the GUI to switch from one talk to another, the

 – 22 –

first will be terminated, the second started from the beginning, and the global environment left
unchanged. In some cases, it may help to start a talk or section with <code> clearAll() to
ensure that previous objects in the environment don’t conflict with those now being created. On
the other hand, depending on the author’s intent, this could be entirely the wrong thing to do.

 In practice, a speaker would present his or her talk from a laptop connected to a digital
projector. In this context, it is almost essential to choose large fonts in the R console. When
writing a talk, it helps to view it with font sizes and R console dimensions chosen with the final
presentation in mind.

7. Examples

 As mentioned in the Preface, PBS Modelling includes a variety of examples that illustrate
applications based on this and other packages. Generally, each example contains documentation,
R code, a window description file, and (if required) other supporting files. All relevant files
appear in the R library directory PBSmodelling\Examples. An example named xxx
typically has corresponding files xxxDoc.txt or xxxDoc.pdf (documentation), xxx.r
(R code), and xxxWin.txt (a window description). In the GUI for each example, buttons
labelled Docs, R Code, and Window open these files provided that suitable programs have
been associated with the file extensions *.txt, *.pdf, and *.r. In particular, a suitable
program (such as the Acrobat Reader) must be installed for reading *.pdf files, and you may
need to associate a text file editor with *.r. On some systems, it may be necessary to use the
function setPBSext to define these associations, as discussed earlier in Section 2.3.

 Use the function runExamples() to view all examples currently available in PBS
Modelling. This procedure copies all relevant files to a temporary directory located on the path
defined by the environment variable Temp. It then opens a window in which radio buttons allow
you to select any particular case. Closing the menu window causes the temporary files and
related data to be cleaned up, and returns to the initial working directory.

Alternatively, you can copy all the files from PBSmodelling\Examples to a
directory of your choice and open R in that working directory. To run example xxx, type
source("xxx.r") on the R command line. For instance, source("LissFig.r") creates
a window (from the description file LissFigWin.txt) that can be used to draw the Lissajous
figures described in Section 2.1. The built-in example also includes a history widget for
collecting settings that the user wishes to retain.

 The examples documented here illustrate only some of those available in version 1 of
PBS Modelling. For instance, we also include a TestFuns GUI that we have used as a tool for
debugging various functions in the package. In future versions, we plan to add more examples
that illustrate important modelling concepts and provide convenient supplementary materials for
university courses in fisheries, biology, ecology, statistics, and mathematics. The function
runExamples() should always represent the complete list currently available, and the Docs
button for each case should link to the appropriate documentation.

 – 23 –

The nine examples presented in this section illustrate some of the possibilities available

in PBS Modelling, although the documentation may be somewhat out of date. For example, the
figures in this report may not correctly represent current versions of the GUIs and their
associated graphical output. Use the Docs button to read the most current information for each
example. If this seems rather primitive, please wait for improvements in future versions.

7.1. Random variables

7.1.1. RanVars – Random variables

-2 0 2 4 6 8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

pd
f

Normal
Lognormal
Gamma

Figure 6. RanVars GUI (left) and density plot (right). Simulations are based on 500 random
draws with mean =1 and SD = 1.

 The RanVars example draws samples from three continuous random distributions
(normal, lognormal, and gamma) with a common mean μ and standard deviation σ . The
documentation (“Docs” button) shows relevant formulas that connect distribution parameters
with the moments μ and σ Estimated parameter values from a simulation (invoked by
“Simulate”) are displayed in the GUI alongside the true values (Figure 6). We use only the
straightforward moment formulas in the documentation, without sample bias correction formulas
like those described by Aitchison and Brown (1969). Three buttons at the bottom of the GUI
portray the data visually as density curves, cumulative proportions, and paired scatter plots.

 – 24 –

7.1.2. RanProp – Random proportions

p1

0.1 0.2 0.3 0.4 0.5 0.6 0.7

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

p2

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.2 0.4 0.6 0.8

0.
2

0.
4

0.
6

0.
8

p3

Figure 7. RanProp GUI (left) and pairs plot (right). Simulations are based on 200 random
draws where n = 10 for the multinomial and Dirichlet distributions and σ = 0.1 for the logistic-
normal distribution. The pairs plot portrays results for the Dirichlet.

 The RanProp example simulates up to five random proportions drawn from one of three
distributions – multinomial, Dirichlet, and logistic-normal. The observed proportion means and
standard deviations are reported in the GUI (Figure 7), and a graphical display renders the points
as a paired scatter plot. After defining options in the GUI, including the vector “pvec” of true
underlying proportions, press “Go”. Schnute and Haigh (2007) provide further technical details
about these three distributions.

 – 25 –

7.1.3. SineNorm – Sine normal

-0.2 0.0 0.2 0.4 0.6 0.8 1.0

-1
.0

-0
.5

0.
0

0.
5

1.
0

x (xm = 0, xs = 0.1)

y

Figure 8. SineNorm GUI (left) and plot (right). Simulations are based on 500 random draws
of sin(2)y xπ= , where x is normal with mean 0μ = and standard deviation 0.1σ = . Blue
points portray jittered values of x, and red points show corresponding values of y.

 The SineNorm example illustrates a somewhat unconventional random variable

sin(2)y xπ= , where x is normal. The GUI allows you to specify the mean μ and standard
deviation σ of x. If 0μ = and σ is small, the transformation is nearly linear, so that y is
approximately normal. If σ is large, the transformation concentrates y near -1 and 1. Figure 8
illustrates the transformation when σ has the moderate value 0.1. Try 10σ = to see how values
y tend to occur near the peaks and troughs of the sine function, where the slope is relatively flat.

 – 26 –

7.1.4. CalcVor – Calculate Voronoi tessellations

-2 -1 0 1 2

2
4

6
8

X

Y

Figure 9. CalcVor GUI (left) and plot (right). Tessellation of random points (red) that are
normally distributed on the x-axis (mean=0, sd=1) and gamma-distributed on the y-axis
(shape=8, rate=2).

 The CalcVor example calls PBS Mapping’s calcVoronoi function, which calculates
the Voronoi (Dirichlet) tessellation for a set of points using the deldir function in the CRAN
package deldir. The GUI accepts two arguments for each random distribution represented on
each axis. The underlying functions and their arguments are:

Distribution Function Argument 1 Argument 2
Uniform runif min max
Normal rnorm mean sd
Gamma rgamma shape rate
Log normal rlnorm meanlog sdlog
Logistic rlogis location scale
Poisson rpois lambda ---

 – 27 –

7.2. Statistical analyses

7.2.1. LinReg – Linear regression

5 10 15 20 25

0
50

10
0

speed

di
st

a = -17.6
b = 3.93

Figure 10. LinReg GUI (left) and regression plot (right). The linear regression uses the cars
dataset (n=50) to predict dist vs. speed. The plot shows observations (green circles), fitted
line (solid blue line), the 95% confidence limits of the fitted model (solid red lines), the 95% CL
of the data (dashed purple lines), and the fits using the Bayes posterior estimates of (a,b) (gold
lines).

 The example LinReg estimates parameters in a linear regression y a bx= + using either
simulated data or data objects that come with the R-package. We compare a classical frequentist
regression with results from Bayesian analysis, using the BRugs package to interface with the
program WinBUGS. After selecting various data options, “Pairs Plot” shows a pairs plot (,)x y
and “Classic Regression” adds confidence limits (at “p-level”) from regression theory. Red and
violet curves show bounds for a prediction or a new observation, respectively, each conditional
on x. If the data came from simulation, a blue line portrays the truth, with specified values a and
b, that must be estimated from the data.

 A corresponding Bayesian analysis uses the WinBUGS model shown by pressing
“Model”. Choose parameters to monitor (normally all of them): the intercept a, the slope b, and
the predictive standard deviation σ . After specifying a number of sample chains for the MCMC
sample, press “Compile” to compile the model with these settings. “Update” generates samples
in “Length” increments. Additional buttons at the bottom of the GUI allow you to explore the
MCMC output. Posterior samples of (,)a b correspond to sample lines. The “Regression” button
illustrates these in relationship to confidence limits from a frequentist analysis (Figure 10).

 – 28 –

7.2.2. MarkRec – Mark-recovery

0 500000 1000000 1500000 2000000 2500000

0.
0

e+
00

1.
5

e-
06

'N'

0.000 0.001 0.002 0.003 0.004

0
20

0
60

0
'p'

Figure 11. MarkRec GUI (left) and density plots (right). A low recovery of marked fish can
lead to fat tails in N due to occasional large spikes in the population estimate.

 The example MarkRec performs a Bayesian analysis of a mark-recovery experiment in
which M fish are marked and allowed to disperse randomly in the population. Later, a sample of
size S is removed from the population and R marks are recovered. Both the total population N
and the marked proportion p are unknown, where

M Rp
N S

= ≅ .

In one version of the theory, R is binomially distributed with probability p in a sample of size S,
and the above approximation suggests the estimate
ˆ S MN M S

R R
= = .

When recoveries are low (0R ≈), the posterior distribution of N exhibits a fat tail (Figure 11).

 As in LinReg, “Model” shows the MarkRec model for WinBUGS, which
(deliberately) includes an illegitimate prior that depends on the data. By increasing an initially
small quantity ε , this fake prior allows the tail of N values to be arbitrarily clipped. Schnute
(2006) gives some historical perspective to this analysis, in the context of work by W.E. Ricker.

 – 29 –

7.2.3. CCA – Catch-curve analysis

Figure 12. CCA GUI (left) and parameter pairs plot (right). Comparison of Bayes posterior
distribution of CCA model parameter estimates from chain 1 (N=100). Symbols indicate means
(blue squares) and modes (red triangles). Diagonal shows parameter estimate distributions.

 The example CCA illustrates a catch-curve model proposed by Schnute and Haigh (2007).
It incorporates effects of survival, selectivity, and recruitment anomalies on age structure data
from a single year. After making various model choices, press “Set”, “NLM” (which may take
several seconds), and “Plot” to view the maximum likelihood estimates and their relationship
with the data. A WinBUGS model (“Model”) allows us to calculate posterior distributions.
(See the last few lines of “Model”.) As in MarkRec, select parameters to monitor, specify a
number of chains, and “Compile” the model. “Update”s may be slow, but eventually they
produce interesting posterior samples (Figure 12). “Docs” gives details of the deterministic
model, and the Dirichlet distribution is used to describe error in the observed proportion.

 We include this example to illustrate a somewhat realistic WinBUGS model that can be
used to estimate parameters for a population dynamics model. Further information can be found
in Schnute and Haigh (2007). PBS Modelling includes the data for this example as the matrix
CCA.qbr.

 – 30 –

7.3. Other applications

7.3.1. FishRes – Fishery reserve

0 20 40 60 80

0

10

20

30

40

50

N

Reserve Fishery Total

0 20 40 60 80

-15

-10

-5

0

dN
/d

t

0 20 40 60 80

0.0

0.1

0.2

0.3

0.4

0.5

0.6

F

0 20 40 60 80

0

5

10

15

20

25

C

time

Figure 13. FishRes – Recovery of a heavily fished population after establishing a reserve.
The GUI (left) shows all input values (parameters and controls). The selected continuous time
model uses input values common to both models (white background) and values specific to the
continuous model (blue background). Corresponding values are computed for the discrete model
(yellow background). Output trajectories (right) trace various results (N = population,
dN/dt = instantaneous change in population, F = instantaneous fishing mortality,
C = instantaneous catch) for the reserve and fishery. Fishing mortality follows a sinusoid
determined by minF , maxF , and the cycle length n .

 The example FishRes (Figure 13) models a fish population associated with a marine
reserve in continuous or discrete time (delay differential or difference equations, respectively).
For details see Schnute et al. (2007), which can be viewed by pressing the Docs button in the
GUI. The R packages akima, PBSddesolve, and odesolve are required.

 – 31 –

7.3.2. FishTows – Fishery tows

0 20 40 60 80 100
0

20

40

60

80

100

0 20 40 60 80 100
0

20

40

60

80

100

Figure 14. FishTows GUI (left) and simulated tow track (right). Tow track plots show 40
random tows in a square with side length 100. Each tow has width 2, and the rectangle
encompasses 10,000 square units. Top: The individual rectangles, with 160 vertices, have areas
that sum to 4,445 square units. Bottom: The union includes a complex polygon (red) and three
isolated rectangles (blue, green, yellow) that cover only 3,455 square units. The complex
polygon (red) has 547 vertices and 91 holes.

 The example FishTows provides a simulator of fishery tow tracks using the
PBSmapping package. The example demonstrates the difference between swept area and area
impacted by trawls that often cover the same ground repeatedly. This application can be regarded
an exotic random number generator, where tows initially join two points picked from a uniform
random distribution within a square of a given side length. Three parameters (the number of
tows, the tow width, the side length) determine several random variables, including the mean tow
length, the areas swept and impacted, the numbers of polygons and holes in the union set of
tows, and the number of vertices in the union. Each of these would also have a variance and an
overall distribution generated by many runs of this example.

 – 32 –

References

Aitchison, J., and Brown, J.A.C. 1969. The lognormal distribution, with special reference to its

uses in economics. Cambridge University Press. Cambridge, UK. xviii+176 p.

Daalgard, P. 2001. A primer on the R Tcl/Tk package. R News 1 (3): 27–31, September 2001.

URL: http://CRAN.R-project.org/doc/Rnews/

Daalgard, P. 2002. Changes to the R Tcl/Tk package. R News 2 (3): 25–27, December 2002.

URL: http://CRAN.R-project.org/doc/Rnews/

Griewank A. (2000) Evaluating derivatives: principles and techniques of algorithmic

differentiation. Frontiers in Applied Mathematics 19. Society for Industrial and Applied
Mathematics

Ligges, U. 2003. R Help Desk: Package Management. R News 3 (3), 37–39. URL:

http://CRAN.R-project.org/doc/Rnews/

Ligges, U, and Murdoch, D. 2005. R Help Desk: Make 'R CMD' work under Windows – an

example. R News 5 (2), 27–28. URL: http://CRAN.R-project.org/doc/Rnews/

Mittertreiner, A., and Schnute, J. 1985. Simplex: a manual and software package for easy

nonlinear parameter estimation and interpretation in fishery research. Canadian Technical
Report of Fisheries Aquatic Sciences 1384: xi+90 p.

Ousterhout, J.K. 1994. Tcl and the Tk toolkit. Addison-Wesley, Boston, MA. 458 p.

RDCT: R Development Core Team (2006a). R: A language and environment for statistical

computing. R Foundation for Statistical Computing, Vienna, Austria.
ISBN 3-900051-07-0. URL http://www.R-project.org. (Available in the current R GUI
from “Help”, “Manuals in PDF”, “R Reference Manual”)

RDCT: R Development Core Team (2006b). Writing R extensions. R Foundation for Statistical

Computing, Vienna, Austria. ISBN 3-900051-11-9. URL http://www.R-project.org.
(Available in the current R GUI from “Help”, “Manuals in PDF”, “Writing R
extensions”)

Richards, L.J., Schnute, J.T., and Olsen, N. 1997. Visualizing catch-age analysis: a case study.

Canadian Journal of Fisheries and Aquatic Sciences 54: 1646–1658.

Schnute, J. 1982. A manual for easy nonlinear parameter estimation in fishery research with

interactive microcomputer programs. . Canadian Technical Report of Fisheries and
Aquatic Sciences 1140. xvi+115 pp.

Schnute, J.T. 2006. Curiosity, recruitment, and chaos: a tribute to Bill Ricker’s inquiring mind.

Environmental Biology of Fishes 75: 95-110.

 – 33 –

Schnute, J.T., Boers, N.M., and Haigh, R. 2003. PBS software: maps, spatial analysis, and other

utilities. Canadian Technical Report of Fisheries and Aquatic Sciences 2496. viii+82 pp.

Schnute, J.T., Boers, N.M., and Haigh, R. 2004. PBS Mapping 2: user’s guide. Canadian

Technical Report of Fisheries and Aquatic Sciences 2549. viii+126 pp.

Schnute, J.T., and Haigh, R. 2007. Compositional analysis of catch curve data with an

application to Sebastes maliger. ICES Journal of Marine Science 64: 218-233.
Available at http://icesjms.oxfordjournals.org/content/vol64/issue2/index.dtl, reference
number doi:10.1093/icesjms/fsl024.

Schnute, J.T., Haigh, R., and Couture-Beil, A. 2007. Mathematical models of fish populations in

marine reserves. Report on a Collaborative Project between Malaspina University-
College and the Pacific Biological Station. February 2007, 24 pp.
(File FishResDoc.pdf available in the package PBSmodelling.)

Schnute, J.T., and Richards, L.J. 1995. The influence of error on population estimates from

catch-age models. Canadian Journal of Fisheries and Aquatic Sciences, 52: 2063–2077.

Spiegelhalter, D., Thomas, A., Best, N., and Lunn, D. 2004. WinBUGS User Manual, version

2.0. Available at http://mathstat.helsinki.fi/openbugs/.

Thomas, N. 2004. BRugs User Manual (the R interface to BUGS), version 1.0. Available at

http://mathstat.helsinki.fi/openbugs/.

 – 34 –

Appendix A. Widget descriptions

 This appendix lists PBS Modelling widgets in alphabetical order, except for “Window”
which needs to exist before the other widgets can be placed. Details for each widget include a
description, usage, arguments, and an illustrated example. In specifying a widget, the user can
arrange named arguments in any order. If arguments are not named, they must appear in the
order specified by the argument list, similar to named arguments in an R function.

Window

Description

Create a new window. Windows are used as a palette upon which widgets are placed. Each
open window has a unique name. The function closeWin closes all windows unless a
specific name (or vector of names) is provided by the user. Also, if createWin opens a
window with a name already in use, the older window is closed before the new window is
opened.

Usage
type=window name="window" title="" vertical=TRUE bg="#D4D0C8"

fg="#000000" onclose=""

Arguments

nameunique name identifying an open window
title..................text to display in the window’s title line
verticalif TRUE, arrange widgets vertically, top to bottom, within the window
bg.........................background colour for window
fg.........................colour for label fonts
onclose.............name of function called when user closes the window by pressing

Example
window title="Widget = window (upon which all other widgets are

placed)"

 – 35 –

Button

Description

A button linked to an R function that runs a particular analysis and generates a desired
output, perhaps including graphics.

Usage
type=button text="Calculate" font="" fg="black" bg="" width=0

function="" action="button" sticky="" padx=0 pady=0

Arguments

texttext to display on the button
fontfont for labels – specify family (Times, Helvetica, or Courier),

size (as point size), and style (bold, italic, underline,
overstrike), in any order

fg.........................colour for label fonts
bg.........................background colour for widget
width..................button width, the default 0 will adjust the width to the minimum required
functionR function to call when the button is pushed (i.e., clicked by the mouse)
actionstring value associated whenever this widget is engaged
stickyoption for placing the widget in available space; valid choices are:

N, NE, E, SE, S, SW, W, NW
padxspace used to pad the widget on the left and right
padyspace used to pad the widget on the top and bottom

Example
window title="Widget = button"
button text="Push Me"

Check

Description

A check box to turn a variable off or on, with corresponding values FALSE or TRUE (0 / 1).

Usage
type=check name mode="logical" checked=FALSE text="" font=""

fg="black" bg="" function="" action="check" sticky="" padx=0
pady=0

 – 36 –

Arguments

namename of R variable altered by this check box (required)
modeR mode for the associated variable, where valid modes are

logical or numeric
checked.............if TRUE, the box is checked initially and the variable is set to TRUE or 1
textidentifying text placed to the right of this check box
fontfont for labels – specify family (Times, Helvetica, or Courier),

size (as point size), and style (bold, italic, underline,
overstrike), in any order

fg.........................colour for label fonts
bg.........................background colour for widget
functionR function to call when the check box is changed
actionstring value associated whenever this widget is engaged
stickyoption for placing the widget in available space; valid choices are:

N, NE, E, SE, S, SW, W, NW
padxspace used to pad the widget on the left and right
padyspace used to pad the widget on the top and bottom

Example
window title="Widget = check"
check name=junk checked=T text="Check Me"

Data

Description

An aligned set of entry fields for all components of a data frame. The data widget can
accept a variety of modes. The user must keep in mind that rowlabels and collabels
should conform to R naming conventions (no spaces, no special characters, etc.). If mode is
logical, fields appear as a set of check boxes that can be turned on or off using mouse clicks.

Usage
type=data nrow ncol names modes="numeric" rowlabels="" collabels=""

rownames="X" colnames="Y" font="" fg="black" bg=""
entryfont="" entryfg="black" entrybg="white" values=""
byrow=TRUE function="" enter=TRUE action="data" width=6
sticky="" padx=0 pady=0

Arguments

nrownumber of rows (required)
ncolnumber of columns(required)

 – 37 –

names..................either one name or a set of nrow*ncol names used to store the data
frame in R (required)

modes..................R modes for the data frame, where valid modes are:
numeric, integer, complex, logical, character

rowlabelseither one label or a vector of nrow labels used to label rows of this data
frame in the display

collabelseither one label or a vector of ncol labels used to label columns of this
data frame in the display

rownamesstring scalar or vector of length nrow to name the rows of the data frame
colnamesstring scalar or vector of length ncol to name the columns of the data

frame
fontfont for labels – specify family (Times, Helvetica, or Courier),

size (as point size), and style (bold, italic, underline,
overstrike), in any order

fg.........................colour for label fonts
bg.........................background colour for widget
entryfontfont of entries appearing in input/output boxes
entryfg.............font colour of entries appearing in input/output boxes
entrybg.............background colour of input/output boxes
valuesdefault values (either one value for all data frame components or a set of

nrow*ncol values)
byrow..................if TRUE and nrow*ncol names are used, interpret the names by row;

otherwise by column. Similarly, interpret nrow*ncol initial values.
functionR function to call when any entry in the data frame is changed
enter..................if TRUE, call the function only after the Enter〈 〉 key is pressed
actionstring value associated whenever this widget is engaged
width..................character width to reserve for the each entry in the data frame
stickyoption for placing the widget in available space; valid choices are:

N, NE, E, SE, S, SW, W, NW
padxspace used to pad the widget on the left and right
padyspace used to pad the widget on the top and bottom

Example
window title="Widget = data"
data nrow=3 ncol=3 names=Census byrow=FALSE \

modes="character logical numeric" width=10 \
rowlabels="Rec1 Rec2 Rec3" collabels="City Smell Popn" \
values="Nanaimo Vancouver Spuzzum T T F 80000 600000 50"

 – 38 –

Entry

Description

A field in which a scalar variable (number or string) can be altered.

Usage
type=entry name value="" width=20 label="" font="" fg="" bg=""

entryfont="" entryfg="black" entrybg="white" function=""
enter=TRUE action="entry" mode="numeric" sticky="" padx=0
pady=0

Arguments

namename of R variable corresponding to this entry (required)
value..................default value to display in the entry
width..................character width to reserve for the entry
label..................text to display above the entry box
fontfont for labels – specify family (Times, Helvetica, or Courier),

size (as point size), and style (bold, italic, underline,
overstrike), in any order

fg.........................colour for label fonts
bg.........................background colour for widget
entryfontfont of entries appearing in input/output boxes
entryfg.............font colour of entries appearing in input/output boxes
entrybg.............background colour of input/output boxes
functionR function to call when the entry is changed
enter..................if TRUE, call the function only after the Enter〈 〉 key is pressed
actionstring value associated whenever this widget is engaged
modeR mode for the value entered, where valid modes are:

numeric, integer, complex, logical, character
stickyoption for placing the widget in available space; valid choices are:

N, NE, E, SE, S, SW, W, NW
padxspace used to pad the widget on the left and right
padyspace used to pad the widget on the top and bottom

Example
window title="Widget = entry"
entry name=junk value="Enter something here" width=20 mode=character

 – 39 –

Grid

Description

Creates space for a rectangular block of widgets. Spaces must be filled. Widgets can be any
combination of available widgets, including grid.

Usage
type= grid nrow=1 ncol=1 toptitle="" sidetitle="" topfont=""

sidefont="" byrow=TRUE borderwidth=1 relief="flat" sticky=""
padx=0 pady=0

Arguments

nrownumber of rows in the grid
ncolnumber of columns in the grid
toptitletitle to place above grid
sidetitletitle to place on the left side of the grid
topfont.............font for top labels – specify family (Times, Helvetica, or Courier),

size (as point size), and style (bold, italic, underline,
overstrike), in any order

sidefontfont for side labels – specify family (Times, Helvetica, or
Courier), size (as point size), and style (bold, italic, underline,
overstrike), in any order

byrow..................if TRUE, create widgets across rows, otherwise down columns
borderwidth ...width of the border around the grid
relieftype of border around the grid, where valid styles are:

raised, sunken, flat, ridge, groove, solid
stickyoption for placing the widget in available space; valid choices are:

N, NE, E, SE, S, SW, W, NW
padxspace used to pad the widget on the left and right
padyspace used to pad the widget on the top and bottom

Example
grid 2 2 relief=groove toptitle=Columns sidetitle=Rows \

topfont="Helvetica 12 bold" sidefont="Helvetica 12 bold"
label text="Cell 1" font="times 8 italic"
label text="Cell 2" font="times 10 italic"
label text="Cell 3" font="times 12 italic"
label text="Cell 4" font="times 14 italic"

 – 40 –

History

Description

Allows the user to manage a temporary archive (history) of widget settings (records) through
a panel of buttons:
<< Go directly to the first record of the history.
< Go to the previous record in the history.
> Go to the next record in the history.
>> Go directly to the last record in the history.
Sort Sort the order of the records in the history.
n Display window (white background) shows the current record.
N Display window (grey background) shows total number of records in the history.
Empty Remove all records from the history.
Insert Add a new record (current widget settings) to the history, either before, after or

overtop the current record.
Delete Remove the current record from the history.
Import Import a previously saved history (text file) to the history, either before or after

the current record.
Export Export the history to a text file.

Usage
type=history name="default" function="" import="" sticky="" padx=0

pady=0

Arguments

namename of history archive
functionR function to call when the history record counter is changed
importfile name of a saved history to load when the widget is called
stickyoption for placing the widget in available space; valid choices are:

N, NE, E, SE, S, SW, W, NW
padxspace used to pad the widget on the left and right
padyspace used to pad the widget on the top and bottom

Example
window title="Widget = history"
vector length=3 names="alpha beta gamma" values="2 5 15"

history padx=20 pady=5

 – 41 –

Label

Description

Creates a text label. If the text argument is left blank, label emulates the null widget.

Usage
type= label text="" font="" fg="black" bg="" sticky="" padx=0 pady=0

Arguments

texttext to display in the label
fontfont for labels – specify family (Times, Helvetica, or Courier),

size (as point size), and style (bold, italic, underline,
overstrike), in any order

fg.........................colour for label fonts
bg.........................background colour for widget
stickyoption for placing the widget in available space; valid choices are:

N, NE, E, SE, S, SW, W, NW
padxspace used to pad the widget on the left and right
padyspace used to pad the widget on the top and bottom

Example
window title="Widget = label"
label text="Information Label"

Matrix

Description

An aligned set of entry fields for all components of a matrix. If the mode is logical, the
matrix appears as a set of check boxes that can be turned on or off using mouse clicks.

Usage
type=matrix nrow ncol names rowlabels="" collabels="" rownames=""

colnames="" font="" fg="black" bg="" entryfont=""
entryfg="black" entrybg="white" values="" byrow=TRUE
function="" enter=TRUE action="matrix" mode="numeric" width=6
sticky="" padx=0 pady=0

Arguments

nrownumber of rows (required)
ncolnumber of columns(required)

 – 42 –

names..................either one name or a set of nrow*ncol names used to store the matrix in
R (required)

rowlabelseither one label or a vector of nrow labels used to label rows of this
matrix in the display

collabelseither one label or a vector of ncol labels used to label columns of this
matrix in the display

rownamesstring scalar or vector of length nrow to name the rows of the matrix
colnamesstring scalar or vector of length ncol to name the columns of the matrix
fontfont for labels – specify family (Times, Helvetica, or Courier),

size (as point size), and style (bold, italic, underline,
overstrike), in any order

fg.........................colour for label fonts
bg.........................background colour for widget
entryfontfont of entries appearing in input/output boxes
entryfg.............font colour of entries appearing in input/output boxes
entrybg.............background colour of input/output boxes
valuesdefault values (either one value for all matrix components or a set of

nrow*ncol values)
byrow..................if TRUE and nrow*ncol names are used, interpret the names by row;

otherwise by column. Similarly, interpret nrow*ncol initial values.
functionR function to call when any entry in the matrix is changed
enter..................if TRUE, call the function only after the Enter〈 〉 key is pressed
actionstring value associated whenever this widget is engaged
modeR mode for the matrix, where valid modes are:

numeric, integer, complex, logical, character
width..................character width to reserve for the each entry in the matrix
stickyoption for placing the widget in available space; valid choices are:

N, NE, E, SE, S, SW, W, NW
padxspace used to pad the widget on the left and right
padyspace used to pad the widget on the top and bottom

Example
window title="Widget = matrix"
matrix nrow=2 ncol=3 rowlabels="'Row A' 'Row B'" \

collabels="'Col 1' 'Col 2' 'Col 3'" names="a b c d e f" \
values="10 20 30 100 200 300" font="times 10 italic"

 – 43 –

Menu

Description

A menu grouping. Submenus can either be menu or menuitem.

Usage
type=menu nitems=1 label font=""

Arguments

nitemsnumber of items or submenus to include in the menu
label..................text to display as the menu label (required)
fontfont for labels – specify family (Times, Helvetica, or Courier),

size (as point size), and style (bold, italic, underline,
overstrike), in any order

Example (assuming that the R functions have been defined)
window title="Widget = menu"
menu nitems=1 label="Widgets"

menuitem label="Show arguments" func=showArgs
menu nitems=4 label="Test functions"

menuitem label="Colours" func=testCol
menuitem label="Line types" func=testLty
menuitem label="Line widths" func=testLwd
menuitem label="Point symbols" func=testPch

MenuItem

Description

One of nitems following a menu command.

Usage
type=menuitem label font="" function action="menuitem"

Arguments

label..................text to display as the menu item label (required)

 – 44 –

fontfont for labels – specify family (Times, Helvetica, or Courier),
size (as point size), and style (bold, italic, underline,
overstrike), in any order

functionR function to call when the menu item is clicked (required)
actionstring value associated whenever this widget is engaged

Null

Description

Creates a null widget, useful for padding a grid with blank cells that appear as empty space.

Usage
type=null padx=0 pady=0

Arguments

padxspace used to pad the label on the left and right
padyspace used to pad the label on the top and bottom

Example
grid 2 2 relief=raised toptitle=Top sidetitle=Side \

topfont="Courier 10 bold" sidefont="courier 10 bold"
label text="Here" font="courier 8"
null
null
label text="There" font="courier 8"

Object

Description

A widget that represents the R-object specified – a vector becomes a vector widget, a
matrix becomes a matrix widget, and a data frame becomes a data widget. transpose

Usage
type=object name font="" fg="black" bg="" entryfont=""

entryfg="black" entrybg="white" vertical=FALSE byrow=TRUE
function="" enter=TRUE action="data" width=6 sticky="" padx=0
pady=0

 – 45 –

Arguments

namename of object (vector, matrix, or data frame) to convert to a widget
(required)

fontfont for labels – specify family (Times, Helvetica, or Courier),
size (as point size), and style (bold, italic, underline,
overstrike), in any order

fg.........................colour for label fonts
bg.........................background colour for widget
entryfontfont of entries appearing in input/output boxes
entryfg.............font colour of entries appearing in input/output boxes
entrybg.............background colour of input/output boxes
verticalif TRUE , display the vector as a vertical column with labels on the left;

otherwise display it as a horizontal row with labels above
functionR function to call when any entry in the vector is changed
enter..................if TRUE, call the function only after the Enter〈 〉 key is pressed
actionstring value associated whenever this widget is engaged
width..................character width to reserve for the each entry in the vector
stickyoption for placing the widget in available space; valid choices are:

N, NE, E, SE, S, SW, W, NW
padxspace used to pad the widget on the left and right
padyspace used to pad the widget on the top and bottom

Example
window bg="#ffd2a6" title="Object: longley"
label text="Longley\'s Economic Regression Data" font="bold 12" \

fg="#400080" pady=0 sticky=S
object name=longley width=7 pady=5

 – 46 –

Radio

Description

One of a set of mutually exclusive radio buttons for making a particular choice. Buttons with
the same value for name act collectively to define a single choice among the alternatives.

Usage
type= radio name value text="" font="" fg="black" bg="" function=""

action="radio" mode="numeric" sticky="" padx=0 pady=0

Arguments

namename of R variable altered by this radio button, where radio buttons with
the same name define a mutually exclusive set (required)

value..................value of the variable when this radio button is selected (required)
textidentifying text placed to the right of this radio button
fontfont for labels – specify family (Times, Helvetica, or Courier),

size (as point size), and style (bold, italic, underline,
overstrike), in any order

fg.........................colour for label fonts
bg.........................background colour for widget
functionR function to call when this radio button is selected
actionstring value associated whenever this widget is engaged
modeR mode for the value associated with this button, where valid modes are:

numeric, integer, complex, logical, character
stickyoption for placing the widget in available space; valid choices are:

N, NE, E, SE, S, SW, W, NW
padxspace used to pad the widget on the left and right
padyspace used to pad the widget on the top and bottom

Example
window title="Widget = radio"
grid 1 4

radio name=junk value=0 text="None"
radio name=junk value=1 text="Option A"
radio name=junk value=2 text="Option B"
radio name=junk value=3 text="Option C"

 – 47 –

Slide

Description

A slide bar that sets the value of a variable. This widget only accepts integer values.

Usage
type= slide name from=0 to=100 value=NA showvalue=FALSE

orientation="horizontal" font="" fg="black" bg="" function=""
action="slide" sticky="" padx=0 pady=0

Arguments

namename of the numeric R variable corresponding to this slide bar (required)
fromminimum value of the variable (must be an integer)
to.........................maximum value of the variable (must be an integer)
value..................initial slide value, where the default is the specified from value
showvalueif TRUE, display the current slide value above the slide bar
orientation ...direction for orienting the slide bar: horizontal or vertical
fontfont for labels – specify family (Times, Helvetica, or Courier),

size (as point size), and style (bold, italic, underline,
overstrike), in any order

fg.........................colour for label fonts
bg.........................background colour for widget
functionR function to call when the slide value is changed
actionstring value associated whenever this widget is engaged
stickyoption for placing the widget in available space; valid choices are:

N, NE, E, SE, S, SW, W, NW
padxspace used to pad the widget on the left and right
padyspace used to pad the widget on the top and bottom

Example
window title="Widget = slide"
slide name=junk from=1 to=1000 value=225 showvalue=T

 – 48 –

SlidePlus

Description

An extended slide bar that also displays a minimum, maximum, and current value. This
widget accepts real numbers.

Usage
type= slideplus name from=0 to=1 by=0.01 value=NA function=""

enter=FALSE action="slideplus" sticky="" padx=0 pady=0

Arguments

namename of the numeric R variable corresponding to this slide bar (required)
fromminimum value of the variable
to.........................maximum value of the variable
by.........................minimum amount for changing the variable’s value
value..................initial slide value, where the default is the specified from value
functionR function to call when the slide value is changed
enter..................if TRUE and the slide value is changed via the entry box, call the function

only after the Enter〈 〉 key is pressed
actionstring value associated whenever this widget is engaged
stickyoption for placing the widget in available space; valid choices are:

N, NE, E, SE, S, SW, W, NW
padxspace used to pad the widget on the left and right
padyspace used to pad the widget on the top and bottom

Note

To facilitate retrieving and setting the minimum and maximum values, two additional
variables are created by suffixing ".max" and ".min" to the given name.

Example
window title="Widget = slideplus"
slideplus name=junk from=0 to=1 by=0.01 value=0.75

 – 49 –

Text

Description

An information text box that can display messages, results, or whatever the user desires. The
displayed information can be either fixed or editable.

Usage
type= text name height=8 width=30 edit=FALSE scrollbar=TRUE

fg="black" bg="white" mode="character" font="" value=""
borderwidth=1 relief="sunken" sticky=”” padx=0 pady=0

Arguments

namename of the R variable containing the text (required)
heighttext box height
width..................text box width
editif TRUE, the user can edit the value stored in name
scrollbarif TRUE, a scroll bar is added to the right of the text box
fg.........................colour for label fonts
bg.........................background colour specified in hexadecimal format; e.g.,

rgb(255,209,143,maxColorValue=255) yields "#FFD18F"
modeR mode for the value associated with this widget, where valid modes are:

numeric, integer, complex, logical, character
fontfont for labels – specify family (Times, Helvetica, or Courier),

size (as point size), and style (bold, italic, underline,
overstrike), in any order

value..................default value to display in the text
borderwidth ...width of the border around the text box
relieftype of border around the text, where valid styles are:

raised, sunken, flat, ridge, groove, solid
stickyoption for placing the widget in available space; valid choices are:

N, NE, E, SE, S, SW, W, NW
padxspace used to pad the widget on the left and right
padyspace used to pad the widget on the top and bottom

Example
window title="Widget = text"
text name=mytext height=2 width=55 bg="#FFD18F" font="times 11"

borderwidth=1 relief="sunken" edit=TRUE \
value="You can edit text here & change value of \"mytext\""

 – 50 –

Vector

Description

An aligned set of entry fields for all components of a vector. If the mode is logical, the vector
appears as a set of check boxes that can be turned on or off using mouse clicks.

Usage
type=vector names length=0 labels="" values="" vecnames="" font=""

fg="black" bg="" entryfont="" entryfg="black" entrybg="white"
vertical=FALSE function="" enter=TRUE action="vector"
mode="numeric" width=6 sticky="" padx=0 pady=0

Arguments

names..................either one name (for a whole vector) or a vector of names for individual
variables used to store the values in R (required)

lengthrequired only if a single name is given for a vector of length greater than 1
labelslabels for the vector display – either one label, a vector of length labels,

or NULL for no labels (default "" labels with names and, if number of
specified names is one, numbered elements)

valuesdefault values (either one value for all vector components or a vector of
length values)

vecnamesstring vector of length length to name the scalars or vector
fontfont for labels – specify family (Times, Helvetica, or Courier),

size (as point size), and style (bold, italic, underline,
overstrike), in any order

fg.........................colour for label fonts
bg.........................background colour for widget
entryfontfont of entries appearing in input/output boxes
entryfg.............font colour of entries appearing in input/output boxes
entrybg.............background colour of input/output boxes
verticalif TRUE , display the vector as a vertical column with labels on the left;

otherwise display it as a horizontal row with labels above
functionR function to call when any entry in the vector is changed
enter..................if TRUE, call the function only after the Enter〈 〉 key is pressed
actionstring value associated whenever this widget is engaged
modeR mode for the vector, where valid modes are:

numeric, integer, complex, logical, character
width..................character width to reserve for the each entry in the vector
stickyoption for placing the widget in available space; valid choices are:

N, NE, E, SE, S, SW, W, NW
padxspace used to pad the widget on the left and right
padyspace used to pad the widget on the top and bottom

 – 51 –

Example
window title="Widget = vector"
vector length=4 names="a b g d" labels="alpha beta gamma delta" \

values="100 0.05 1 5" font="times italic" width=6
vector length=5 mode=logical names=chosen labels=choose \

values="F T F T T"

 – 52 –

Appendix B. Talk description files

 This appendix specifies the structure and syntax for talk description files discussed in
Section 6. Formally, such a file contains tag lines (marked <>) with intervening text. We define a
file segment as a tag line along with all the text down to (but not including) the next tag line. The
last segment ends at the end of the file. Similarly, we define a block in the description file as a
group of contiguous segments. A file contains segments of <text>, R <code>, and <file>
names. These are combined to give <section> blocks, which in turn make up <talk>
blocks. A valid file must have at least one <talk> line, and each <talk> line must be
followed by at least one <section> line.

When presentTalk() calls a description file, it produces a control GUI like the one
shown in Figure 5. Any declared <talk>s, <section>s, or <file>s automatically generate
menu items in the GUI. These links can also appear as buttons within columns of the GUI’s
lower section. By default, <talk> buttons appear in the first column, <section> buttons in
the second column, and <file> buttons in the third column, although an author can overwrite
these defaults. In this way, a talk description file allows an author to design both the talk’s
content and the GUI used to present it. The name s of menu items and buttons must always
consist of alphanumeric characters and underscores. Furthermore, a name must begin with a
letter.

 Some tags allow the presentation to break at specified places. Specifically, a break
produces a message in the R console indicating that the speaker must press the “GO” button in
the GUI to continue on to the next step of the presentation. During a break, the speaker can
spontaneously type code into the R console to illustrate points of immediate interest.

 We end this appendix with a precise description of the purpose and syntax for each tag
line. Instead of alphabetical order, we use the more logical order: <talk>, <section>,
<text>, <code>, and <file>.

<talk>

Description

Starts a description block that constitutes a talk. The block ends at the next <talk> line or
the end of the file.

Usage
<talk name=(required) button=FALSE col=1>

Arguments

nameA string giving the name of the talk (required). It appears as the title of the
control GUI, a menu item (under “Talks”), and possibly also as a button.

 – 53 –

buttonA Boolean variable (TRUE or FALSE) that determines whether or not the
GUI should add a button that selects the talk, in addition to access by the
menu.

colIf a button is used, the column within which to place it in lower section of
the GUI.

Notes

A file must have at least one <talk> line, and each <talk> line must be followed by at
least one <section> line. Each <talk> block in a file must have a unique name.
Different talks have distinct associated control GUIs, and presentTalk allows only
one presentation at a time.

<section>

Description

Starts a description block that constitutes a section of a talk. The block ends at the next
<section> line, <talk> line, or the end of the file.

Usage
<section name=(required) button=FALSE col=2>

Arguments

nameA string giving the name of the section (required). It appears in the control
GUI as a menu item (under “Sections”) and possibly also as a button.

buttonA Boolean variable (TRUE or FALSE) that determines whether or not the
GUI should add a button that selects the section, in addition to access by
the menu.

colIf a button is used, the column within which to place it in lower section of
the GUI.

Notes

Each <talk> must have at least one <section>, and each section within a talk must have
a unique name . Although a <talk> line is commonly followed by a <section> line (the
first section), this may not always be true. See the description of <file> below.

<text>

Description

Starts a description segment that represents text to be printed on the R console.

Usage
<text break=TRUE>

 – 54 –

Arguments

break..................A Boolean value (TRUE or FALSE) that specifies whether or not to break
the presentation after displaying the text specified.

Notes

Line breaks in the description file correspond to line breaks in the displayed text. Keep lines
short enough that they will fit into the R console with the large font size required for
presentation (Section 6).

<file>

Description

Starts a description segment that names files to be opened by the operating system with
openFile().

Usage
<file name=(required) button=FALSE col=3 break=TRUE>

Arguments

nameA string giving the name for this group of files (required). It appears in the
control GUI as a menu item (under “Files”) and possibly also as a button.

buttonA Boolean variable (TRUE or FALSE) that determines whether or not the
GUI should add a button that opens this group of files, in addition to the
available menu item.

colIf a button is used, the column within which to place it in lower section of
the GUI.

break..................A Boolean value (TRUE or FALSE) that specifies whether or not to break
the presentation after opening the group of files.

Notes

File names in the description segment must appear as individual strings (separated by spaces
or line breaks) that are suitable arguments for openFile(). Files without explicit paths are
presumed to lie in the user’s working directory. As usual, the operating system must have an
associated application or the PBS Modelling options must be set to associate extensions and
applications (Sections 2.3 and 5.1 above).
Although a speaker may commonly introduce only one file at a time, it can sometimes be
convenient to open several files in a single step. For example, they may all appear in a single
text editor window, with tabs for selecting individual files.
If a <file> segment appears between <talk> and the talk’s first <section>, the file
group name will be added to the talk’s GUI. However, because the segment doesn’t belong
to any section, it will not cause files to be opened at this point. The feature allows files to
become part of a talk without having to open them at an explicit point.

 – 55 –

<code>

Description

Starts a description segment that represents code to be executed on the R console.

Usage
<code show=TRUE print=TRUE break=print>

Arguments

showA Boolean value (TRUE or FALSE) that specifies whether or not to show
the code snippet in the R console. If shown, each line of the intended code
will be prefixed by the usual R command prompt “> ”.

print..................A Boolean value (TRUE or FALSE) that specifies whether or not to print
the results of running the R code.

break..................A string (show, print, all, or none) describing where to introduce
breaks in the code segment:
show – break only after showing the R code;
print – break only after printing the results;
all – break after showing the R code and again after printing the results;
none – do not break during this code segment.

Notes

The text in this segment normally consists of valid R code, although a speaker may choose to
demonstrate the consequences of invalid code.
Line breaks in the description file correspond to individual lines of R code. Keep lines short
enough that they will fit into the R console with the large font size required for presentation,
as discussed in Section 6.
Implementing a <code> segment involves a two-step process. First, if show=TRUE, the
code is shown on the R console. Second, regardless of argument settings, the code is
executed. If print=TRUE, the results are printed on the R console. Notice particularly that
code execution takes place in the second step.
The break argument acts independently from the show and print arguments. For
example, an author might use both print=FALSE and break=print if the R calculation
takes notable time and produces extensive output that should be suppressed. In this case, the
break would indicate that the calculation is complete. Similarly, the arguments
show=FALSE and break=show allow an author to suppress the display of a large block of
R code, but still to introduce a break before the code is executed.

 – 56 –

Appendix C. Building PBSmodelling and other packages

 The R project defines a standard for creating a package of functions, data, and
documentation. You can obtain a comprehensive guide to “Writing R Extensions”
(R Development Core Team 2006b, R-exts.pdf) from the CRAN web site or the R GUI
(see the References above). Ligges (2003) and Ligges and Murdoch (2005) provide useful
introductions. We have designed PBSmodelling and a very simple enclosed package
PBStry as prototypes for package development. This Appendix summarizes the steps needed
to:

C.1. install the required software;
C.2. build PBS Modelling from source materials;
C.3. write source materials for a new package and compile them;
C.4. include C code in a package.

 Our discussion applies only to package development on a computer running Microsoft
Windows 2000, XP, or (maybe) later. We particularly highlight issues that have proved
troublesome for us. The R library directory PBSmodelling\PBStools contains batch
files that can assist the process. For example, you might locate this directory as
C:\Utils\R\R-2.8.0\library\PBSmodelling\PBStools.

C.1. Installing required software

 Building R packages requires four pieces of free software. Duncan Murdoch currently
maintains their availability and installation instructions at:
http://www.murdoch-sutherland.com/Rtools/
Users should periodically check this website for changes to the various software packages. We
recommend installing each package on a path that does not include spaces. For example, avoid
using C:\Program Files, even if that happens to be part of a package’s default path. In this
appendix, we use C:\Utils as a root directory for all required software. The list below gives a
brief summary of the required software (Murdoch provides links to these products).

1. R itself, currently version 2.7.2 (C:\Utils\R\R-2.8.0). We assume that R is already

installed from the CRAN web site http://cran.r-project.org/ and that it runs correctly on your
computer. (See ‘Upgrading to the latest version of R’ below.) We also assume that the
package PBSmodelling is installed in R.

2. Rtools installer: Command line tools, MinGW compilers, ActivePerl text scripting, etc.
(C:\Utils\Rtools\). Download and run the file Rtools28.exe. The installation
should create the subdirectories \bin for command line programs, \MinGW for the
minimalist GNU C compiler for Windows, and \perl for the ActivePerl scripting language.
These tools are essential. DO NOT plan to use programs with the same name in an
installation of Cygwin or any other UNIX emulator that happens to be installed on your
computer.

 – 57 –

3. The Microsoft HTML Help Workshop (C:\Utils\HHW\). Run the installation file
HtmlHelp.exe. After installation, we think you can safely ignore a message that “This
computer already has a newer version of HTML Help”. (If anyone has different information,
please let us know.)

4. MiKTeX: a LaTeX and pdftex package (C:\Utils\MiKTeX). The link takes the user to
http://www.miktex.org/. This processor for TeX and LaTeX files helps typeset help files
within a package. Download the “basic” installation file, and install these components only.
You can add more LaTeX packages from the Internet later, as required. (MiKTeX often does
this automatically.) Take some time to investigate the MiKTeX package manager (mpm.exe
or go to the “Programs” menu and select “MiKTeX 2.5”, “Browse Packages”).

We recommend enhancing MiKTeX slightly, so that it can independently process the LaTeX
files produced from R documentation files.

a) Create a new subdirectory \R under the MiKTeX’s directory for storing LaTeX styles and
font definitions (e.g., C:\Utils\MiKTeX\tex\latex).

b) Copy into it all files from \texmf in the R installation tree (e.g., C:\WinApps\R\R-
2.8.0\share\texmf). These should include Rd.sty.

c) Go to the “Start” menu, select “Programs” then “MiKTeX 2.5”, and run the program
“Settings”. In the “General” tab, click the button marked “Refresh FNDB”. This refreshes
MiKTeX’s file name database, so that it recognizes files in the new \R subdirectory.

 Every user has a preferred editor; however, if you are still using Notepad.exe, you
may wish to explore the freely available, open-source software called Tinn-R available at
http://sourceforge.net/projects/tinn-r. Tinn-R is described as a “simple but efficient replacement
for the basic code editor provided by Rgui”. Alternatively, the text editor WinEdt (available
from http://www.winedt.com/) provides a convenient GUI for editing LaTeX files and operating
MiKTeX. Combined with the R package RWinEdt, it can also serve as an editor and interface
for R. However, it is available only as shareware that requires a fee for long-term use, unlike any
other software mentioned here.

Upgrading to the latest version of R

1. Download the new R-x.y.z binary from a local CRAN mirror, such as the one at SFU:

http://cran.stat.sfu.ca/bin/windows/base/
2. Uninstall the old version R-a.b.c (Start〈 〉 , Programs〈 〉 , R〈 〉 , Uninstall〈 R-a.b.c 〉). If

you cannot find an uninstall program in the Programs〈 〉 menu, use the Control Panel in the
usual way (slightly different between Windows XP and Windows VISTA).

3. Install the new version R-x.y.z to a new folder. Our default would be:
C:\Utils\R\R-x.y.z\

4. Find the library files for both versions of R in the directories:
C:\Utils\R\R-a.b.c\library\
C:\Utils\R\R-x.y.z\library\
Copy all subdirectories (packages) from version a.b.c to version x.y.x; but press

 – 58 –

Shift No〈 〉 〈 〉 to avoid overwriting packages just installed as part of the new version. You
want to copy the optional packages, but not those that come with the standard installation.

5. Run the new GUI for R-x.y.z. From the menu, click Packages〈 〉 , Update packages ...〈 〉 ,
select a local mirror, and wait for any installed packages to be updated. To stay current,
repeat this update step every week or two.

6. Remove the old R installation directory (C:\Utils\R\R-a.b.c\).

 At the time of writing, the program to uninstall R-a.b.c has a small bug, because it
does not actually remove all of the packages that come with the base distribution.

PBStools for building R packages

 After the above pieces of software are installed, you’re ready to start building R
packages. For this purpose, create a new directory (e.g., D:\Rdevel\) that will contain your
packages. Within the R library directory (C:\Utils\R\R-2.8.0\library\), find the
subdirectory PBSmodelling\PBStools. Copy all the batch files there into your new
packages directory. You should have these 11 files:

• RPaths.bat, RPathCheck.bat related to the installation;
• unpackPBS.bat, checkPBS.bat, buildPBS.bat, packPBS.bat, related to

PBS Modelling;
• Runpack.bat, Rcheck.bat, Rbuild.bat, Rpack.bat, RmakePDF.bat related to

the construction of new packages.

IMPORTANT: You need to change RPaths.bat so that it reflects the paths you chose in the
above six installations. For example, your version of this batch file might contain the lines
set R_PATH=C:\Utils\R\R-2.8.0\bin
set TOOLS_PATH=C:\Utils\Rtools\bin
set PERL_PATH=C:\Utils\Rtools\perl\bin
set MINGW_PATH=C:\Utils\Rtools\MinGW\bin
set TEX_PATH=C:\Utils\MiKTeX\miktex\bin
set HTMLHELP_PATH=C:\Utils\HHW

Notice that each path, except the last, ends in a bin subdirectory.

 Hopefully, your installation is now complete. In your new packages directory, run
RPathCheck.bat from a command line or double-click the icon. This script verifies that a
few essential files lie on the indicated paths. If everything is correct, you should see the message
“All program paths look good”. Otherwise, you’ll see a warning about software that doesn’t
appear on your specified paths.

 If you view all the batch files with a text editor, you will see that they don’t use your
system PATH environment variable. Instead, each one defines a new local path appropriate for
building R packages (via RPathCheck.bat). A SETLOCAL command ensures that this
change doesn’t alter your system’s permanent environment.

 – 59 –

C.2. Building PBSmodelling

 Once all the required software is installed, the batch files discussed above make it fairly
easy to build PBSmodelling. We assume that you have already created the directory
discussed in Appendix C.1, say D:\Rdevel, for building R packages and that it contains the
relevant eight batch files. In particular, RPaths.bat should reflect your installation paths and
RPathCheck.bat should report the message that “All program paths look good”. Then follow
these steps:

1. On the CRAN web site http://cran.r-project.org/, go to “Packages” on the left and find

PBSmodelling. Download the file PBSmodelling_x.xx.tar.gz into D:\Rdevel.
Then rename this file (or copy it and rename the copy) so that the version number is
removed. You should now have the file PBSmodelling.tar.gz in D:\Rdevel.

2. In the development directory D:\Rdevel, double-click the icon for unpackPBS.bat or
type the command unpackPBS in a corresponding command window. This should extract
the contents of PBSmodelling.tar.gz, preserving directory structure, into a
subdirectory \PBSmodelling with five sudirectories: \data, \inst, \man, \R, and
\src.

3. Our batch file uses the command tar -xzvf PBSmodelling.tar.gz, where
tar.exe appears in the \Rtools directory (Section C.1, step 3). The command line
parameters specify a verbose (v) extraction (x) of the given file (f), after filtering with
gzip (z).

If you use other software for this extraction, please ensure that it is configured to handle
UNIX files correctly. For example, “WinZip” has an option to extract a “TAR file with smart
CR/LF conversion”. This must be turned off.

4. In the base directory D:\Rdevel, double-click the icon for checkPBS.bat or type the
command checkPBS in a corresponding command window. If all software is installed
correctly and D:\Rdevel\PBSmodelling correctly represents the contents of the
.tar.gz file, you should see a series of DOS messages reporting “OK” to various tests. A
distinct pause might accompany the message: “checking whether package 'PBSmodelling'
can be installed ...”.

5. You might also encounter a delay as MiKTeX downloads the LaTeX package lmodern,
part of a larger package lm. If this is really slow, you can abort the process and install lm
with the MiKTeX package manager, as discussed in step 5 of Section C.1. Choose a remote
server near you. You only need to do this once. When it’s finished, run checkPBS.bat
again.

6. Examine the new directory D:\Rdevel\PBSmodelling.Rcheck created by the
check process in step 2. The text files 00check.log and 00install.out show
detailed results.

 – 60 –

7. In the base directory D:\Rdevel, double-click the icon for buildPBS.bat or type the
command buildPBS in a corresponding command window. This creates the file
D:\Rdevel\PBSmodelling.zip, which could be used to install PBSmodelling
from a local zip file.

8. Again in the base directory D:\Rdevel, double-click the icon for packPBS.bat or type
the command packPBS in a corresponding command window. This creates a new package
distribution file PBSmodelling_x.xx.tar.gz that replaces the one downloaded from
CRAN in step 1.

9. Finally, type the command RmakePDF PBSmodelling in a command window for
D:\Rdevel. This generates an indexed documentation file PBSmodelling.pdf.
See Appendix D.3 for further details about the use of this file for producing this report.

If these steps all work without problems, you can feel confident that the requisite software is
installed correctly and that you understand the basic steps needed to build R packages.

C.3. Creating a new R package

 R packages require a special directory structure. The R function package.skeleton
automatically creates this structure, but (without further work) it does not produce a package that
can be compiled. Although PBSmodelling has the requisite structure, it is perhaps too
complicated to serve as a convenient prototype. For this reason, we include a small subset
PBStry that illustrates the key details. You can make a new package simply by editing the files
in PBStry. You need a suitable editor (e.g., UltraEdit, WinEdt, or Notepad) to view and change
various text files.

1. Start by locating the file PBStry_x.xx.tar.gz in the R library directory
\PBSmodelling\PBStools. Copy this file into your development directory
(D:\Rdevel), and rename it (or copy and rename the copy) to obtain the file
PBStry.tar.gz.

2. Remove any previous traces of PBStry in your development directory, such as
subdirectories PBStry , PBStry.Rcheck, and .Rd2dvi$, along with the documentation
file PBStry.pdf.

3. Follow steps similar to those in Section C.2 to unpack, check, build, re-package, and
document PBStry. You must now use a DOS command window in D:\Rdevel to issue
the five commands
Runpack PBStry
Rcheck PBStry
Rbuild PBStry
Rpack PBStry
RmakePDF PBStry
which invoke the batch files Runpack.bat, Rcheck.bat, Rbuild.bat, Rpack.bat
and RmakePDF.bat. The first command should give you a new subdirectory \PBStry,
along with its five sudirectories: \data, \inst, \man, \R, and \src.

 – 61 –

4. Use your editor to open the file DESCRIPTION in the root directory \PBStry. This file,
essential in every R package, contains key information in a special format (RDCT 2006b,
Section 1.1.1). The following example illustrates a minimal set of required fields.

5. Package: MyPack
Version: 1.00
Date: 2008-12-31
Title: My R Package
Author: User of PBS Modelling
Maintainer: User of PBS Modelling
Depends: R (>= 2.6.0)
Description: My customized R functions
License: GPL (>= 2)

6. The package name in DESCRIPTION must agree with the directory name in which this file
lies. For example, if you change PBStry to MyPack in DESCRIPTION and rename the
directory from \PBStry to \MyPack, you have effectively changed the package name.
Similarly, if you change the version to 1.01, you have effectively changed the version
number that appears in the file names for distributing your package.

7. The subdirectory \PBStry\R contains all R code used by the package. For example,
PBStry includes seven R functions (calcFib, calcFib2, calcGM, calcSum,
findPat, pause, and view). The seven files could be combined into a single file (such as
PBStry.R), but we use separate files here for clarity. The functions all have relatively
simple code, hopefully comprehensible to users with limited R experience. Five of them
come from PBSmodelling. Three of them (calcFib, calcFib2, calcSum) call
compiled C code, as we discuss more completely in Section C.4 below.

8. By convention, the distinct file zzz.R defines code for initializing the package. In this case
the function .First.lib, calls library.dynam to load a dynamic link library
(PBStry.dll) created from compiled C code during the build process.

9. When a version number changes, the DESCRIPTION file must be changed accordingly. We
also like to make a corresponding change in zzz.R, so that the version number appears on
the R console when the library is loaded. PBStry illustrates this possibility for zzz.R.

10. The subdirectory \PBStry\data contains all data objects that come with the package.
Here, the binary file QBR.rda holds a matrix of quillback rockfish (Sebastes maliger)
sample data used in the CCA example above (Section 7.2.3). The same data matrix is called
CCA.qbr.hl in PBSmodelling.

11. If you want to add data to a new package, first create the object (e.g., myData) in R and then
execute the command:
save(myData,file="myData.rda")
The object name must match the prefix in the file name, and the suffix must be .rda.
Include the resulting file in your package’s \data subdirectory.

12. The subdirectory \PBStry\man contains a documentation file for every object in the
package. PBStry has six functions and one data set, so the \man subdirectory has seven

 – 62 –

corresponding R documentation files (*.Rd). An additional file PBStry.Rd documents the
package as a whole. Rd files use a rather complex scripting language (RDCT 2006b,
Section 2) that can be converted to help files in several formats (PDF, HTML, text). For
many packages, the examples in PBStry may provide adequate prototypes. They represent
three distinct cases: functions (e.g., calcGM.Rd, findPat.Rd), data sets (QBR.Rd), and
complete packages (PBStry.Rd).

13. The subdirectory \PBStry\src contains source code for C code to be compiled into the
dynamic link library PBStry.dll. We include sample files to calculate Fibonacci numbers
iteratively (fib.c, fib2.c) and to add the components of a numeric vector (sum.c). In
Section C.4, we discuss the linkage between R code and compiled C functions.

14. Finally, the subdirectory \PBStry\inst contains files that are to be included directly in
the R library tree for PBStry when the package is installed. The file PBStry-Info.txt
briefly describes the context and purpose of the trial package.

 If you have successfully followed the steps above, you have actually built two R
packages, PBSmodelling and PBStry. Furthermore, you’re reasonably familiar with the
contents of PBStry. You can use the files in that small package as prototypes for writing your
own R package, which might contain R code in the subdirectory \R. data in \data, C source
code in \src, and R documentation in \man.

 The larger package PBSmodelling offers more prototypes and uses a somewhat
different style. The main directory includes the required DESCRIPTION file, plus a second file
NAMESPACE that lists all objects available to a user of the package. Effectively, the namespace
mechanism distinguishes between objects provided by the package and other (hidden) objects
required for the implementation, but not intended for public use. Our NAMESPACE file contains
the rather cryptic instruction: exportPattern("^[^\\.]"). The R string "^[^\\.]"
translates to the regular expression ^[^\.] that designates any pattern not starting with a period
(.). We don’t export “dot” objects, whose names in R start with a period. (For more complete
information on these functions, see Appendix D.2.) The NAMESPACE file must also import
functions required from other packages. Because PBSmodelling relies on tcltk, the file
includes the command: import(tcltk).

 In PBStry, without a namespace, the file zzz.R defines the initializing function
.First.lib, as mentioned in step 8 above. By contrast, the namespace protocol in
PBSmodelling requires a different name for the initializing function: .onLoad in zzz.R.

 In summary, we recommend building a new package by editing, adding, and deleting
prototype files in PBStry. Our batch files can facilitate tests and debugging. For more advanced
work, particularly packages with a namespace protocol, look at PBSmodelling. Have a
current version of RDCT (2006b) available, and consult that manual when necessary. We find it
useful to keep the PDF file open and to use Acrobat’s search feature (Ctrl-F) to find topics of
interest.

 – 63 –

C.4. Embedding C code

 R provides two functions, .C() and.Call(), for invoking compiled C code. PBStry
includes two simple examples that use .C(), probably the method of choice for simple
packages. The .Call() function uses a more complex interface that offers better support for R
objects, and another example illustrate that calling convention.

Table C1. C representations of R data types.

R Object C Type
logical int *
integer int *
double double *
complex Rcomplex * 1
character char **

1 Rcomplex is defined in Complex.h.

Calling C functions from R using .C()

The .C() calling convention uses the following key concepts:
• R must allocate the appropriate length and type of variables before calling a C function.
• R objects are transformed into an equivalent C type (Table C1), and a pointer to the value is

passed into the C function. All values are returned by modifying the original values passed in.
• A C function called by .C() must have return type void, because values are returned only

by accessing the predefined R function arguments.
• C code written for the shared DLL must not contain a main function.
• Within a C function, dynamically allocated memory must be de-allocated by the programmer

before the function returns. Otherwise a memory leak will likely occur.
• .C()returns a list similar to the '...' list of arguments passed in, but reflecting any changes

made by the C code. (See the help file for .C)

 – 64 –

Table C2. Two text files associated with a .C() call in PBStry. R code in the first file calls C
code in the second.
———————————————————————————————————————

File 1: calcFib.R
calcFib <- function(n, len=1) {
 if (n<0) return(NA);
 if (len>n) len <- n;
 retArr <- numeric(len);
 out <- .C("fibonacci", as.integer(n), as.integer(len),
 as.numeric(retArr), PACKAGE="PBStry")
 x <- out[[3]]
 return(x) }

File 2: fib.c
void fibonacci(int *n, int *len, double *retArr) {
 double xa=0, xb=1, xn=-1; int i,j;
 /* iterative loop */
 for(i=0;i<=*n;i++) {
 /* initial conditions: fib(0)=0, fib(1)=1 */
 if (i <= 1) { xn = i; }
 /* fib(n) = fib(n-1) + fib(n-2) */
 else {xn = xa + xb; xa = xb; xb = xn; }
 /* save results if iteration i is within the
 range from n-len to n */
 j = i - *n + *len - 1;
 if (j >= 0) retArr[j] = xn;
 } /* end loop */
} /* end function */

———————————————————————————————————————

 The function calcFib in PBStry illustrates an application of these concepts
(Table C2). The R function uses C code to calculate the first n Fibonacci numbers iteratively,
where a vector holds the last len numbers calculated. After ensuring that n and len satisfy
obvious constraints, the R code creates a return array retArr of the appropriate length. The .C
call passes n, len, and retArr by reference to the C function fibonacci. On exit, the
vector out contains a list corresponding to the input variables n, len, and retArr, so that the
third component out[[3]] holds the modified vector of values calculated by fibonacci.
We encourage you also to examine a second example in PBStry , associated the files
calcSum.R and sum.c.

 – 65 –

Table C3. .Call() example adapted from PBStry, with two associated text files. R code in
the first file calls C code in the second.
———————————————————————————————————————

File 1: calcFib2.R
calcFib2 <- function(n, len=1) {
 out <- .Call("fibonacci2", as.integer(n),
 as.integer(len), PACKAGE="PBSmodelling")
 return(out) }

File 2: fib2.c
#include <R.h>
#include <Rdefines.h>
SEXP fibonacci2(SEXP sexp_n, SEXP sexp_len) {
 /* ptr to output vector that we will create */
 SEXP retVals;
 double *p_retVals, xa=0, xb=1, xn;
 int n, len, i, j;
 /* convert R variables into C 'int's */
 len = INTEGER_VALUE(sexp_len);
 n = INTEGER_VALUE(sexp_n);
 /* Allocate space for the output vector */
 PROTECT(retVals = NEW_NUMERIC(len));
 p_retVals = NUMERIC_POINTER(retVals);
 /* iterative loop */
 for(i=0; i<=n; i++) {
 /* initial conditions: fib(0)=0, fib(1)=1 */
 if (i <= 1) { xn = i; }
 /* fib(n) = fib(n-1) + fib(n-2) */
 else { xn = xa + xb; xa = xb; xb = xn; }
 /* save results if iteration i is within the
 range from n-len to n */
 j = i - n + len - 1;
 if (j >= 0) p_retVals[j] = xn;
 } /* end loop */
 UNPROTECT(1);
 return retVals;
} /* end fibonacci2 */
———————————————————————————————————————

Calling C functions from R using .Call()

The .C() convention requires a fairly simple conversion of R objects into C types
(Table C1). By contrast, .Call() provides extra structure that enables C to handle R objects
directly (RDCT 2006b, Section 4.7). This function uses “S-expression” SEXP types defined in
rinternals.h., a file in the \include directory of the R installation. An SEXP pointer can
reference any type of R object. The .Call() convention uses the following key concepts:

• C functions called by R must accept only SEXP typed arguments. These arguments should be
treated as read only.

 – 66 –

• Similarly, C functions called by R must have SEXP return types.
• The Programmer must protect R objects from the R garbage collector, and must release

protected objects before the function terminates. R provides macros for this task.
• C code written for the shared DLL must not contain a main function.
• Within a C function, dynamically allocated memory must be de-allocated by the programmer

before the function returns. Otherwise a memory leak will likely occur.

 The function calcFib2 in Table C3 illustrates an application of these concepts. As
before, the R function uses C code to calculate the first n Fibonacci numbers iteratively, where a
vector holds the last len numbers calculated. (To save space, we’ve removed R code that checks
constraints on n and len). The simple .Call to fibonacci2 looks very natural. Input values
n and len produce the output vector out, where the C code must somehow determine what
out should be. Not surprisingly, it requires more complicated C code to make this happen.

 The C function fibonacci2 (Table C3) first loads header files that include the
required definitions from R. All input and output variables belong to type SEXP. Other internal
variables have the standard C types double and int. Functions like INTEGER_VALUE()
convert R types into C types. The SEXP vector retVals of return values is created by the R
constructor NEW_NUMERIC() and then protected from garbage collection by PROTECT().
After all required variables are defined and type cast correctly, the iterative loop of calculations
follows the earlier example in Table B2. Finally, the only protected vector retVals is released
by UNPROTECT(1), and the standard closing command return retVals returns the output
vector from fibonacci2.

 Obviously, it takes some time and effort to become familiar with the specialized R types,
constructors, and conversion functions. For this reason, it’s probably easier at first to use .C(),
rather than .Call().

 – 67 –

Appendix D. PBS Modelling functions and data

 This appendix documents the objects currently available in PBS Modelling, along with a
list of function dependencies for exported functions and hidden “dot” functions. The latter are
hidden through R’s NAMESPACE but can be seen through the triple colon convention
(e.g., PBSmodelling:::.addslashes). R also provides a function called
fixInNamespace() for modifying NAMESPACE objects. The final section of this appendix
details how a user can generate a standard R manual for PBS Modelling, that includes a Table of
Contents, help pages for all objects, and an index. The manual itself is also appended.

D.1. Objects in PBS Modelling

addArrowsAdd arrows to a plot using relative (0:1) coordinates
addHistory........................Add current window settings to the current history record
addLabelAdd a label to a plot using relative (0:1) coordinates
addLegendAdd a legend to a plot using relative (0:1) coordinates
backHistoryMove back one step in the saved values for a history widget
calcFib...............................Calculate Fibonacci numbers by several methods
calcGMCalculate the geometric mean, allowing for zeroes
calcMin...............................Calculate the minimum of user-defined function
CCA.qbr...............................Data: sampled counts of quillback rockfish (Sebastes maliger)
chooseWinVal...................Choose and set a string item in a GUI
cleanProjLaunch a GUI for file deletion
clearAllRemove all R objects from the global environment
clearHistory...................Clear saved values for a history widget
clearPBSextClear file extension associations
clearWinValRemove all current widget variables
closeWinClose GUI window(s)
compileCCompile a C file into a shared library object
compileDescriptionConvert and save a window description as a list
createVector...................Create a GUI with a vector widget
createWinCreate a GUI window
declareGUIoptions.......Declare option names that correspond with widget names
drawBarsDraw a linear barplot on the current plot
expandGraphExpand the plot area by adjusting margins
exportHistoryExport a saved history
findPat...............................Search a character vector to find multiple patterns
findPrefix........................Find a prefix based on names of existing files
firstHistory...................Jump to the first history record
focusWinSet the focus on a particular window
forwHistoryMove forward one step in the saved values for a history widget
genMatrixGenerate test matrices for plotBubbles
getChoiceChoose one string item from a list of choices
getGUIoptionsGet PBS options for widgets

 – 68 –

getPBSextGet a command associated with a filename
getPBSoptionsRetrieve a user option
getWinActRetrieve the last window action
getWinFunRetrieve names of functions referenced in a window
getWinValRetrieve widget values for use in R code
getYesPrompt the user to choose “Yes” or “No”
GT0 ..Restrict a numeric variable to a positive value
importHistoryImport a history list from a file
initHistoryCreate structures for a new history widget
isWhatIdentify an object by its class, and attributes
jumpHistoryJump to a particular history record
lastHistoryJump to the last history record
loadC....................................Launch a GUI for compiling and loading C code
openExamples...................Open example files from a package
openFileOpen a file with the associated program
openPackageFile............Open a file from a package subdirectory
openProjFilesOpen files with a common prefix
pad0Pad numbers with leading zeroes
parseWinFile...................Convert a window description file into a list object
pause....................................Pause between graphics displays or other calculations
pickCol...............................Pick a colour from a palette and get the hexadecimal code
plotACF...............................Plot autocorrelation bars from a data frame, matrix, or vector
plotAsp...............................Construct a plot with a specified aspect ratio
plotBubblesConstruct a bubble plot from a matrix
plotCsumPlot cumulative sum of data
plotDensPlot density curves from a data frame, matrix, or vector
plotFriedEggsRender pairs plots as fried eggs and beer
plotTracePlot trace lines from a data frame, matrix, or vector
presentTalkRun a talk in R from a talk description file
promptOpenFileDisplay an “Open File” dialogue
promptWriteOptionsPrompt the user to save changed options
promptSaveFileDisplay a “Save File” dialogue
readListRead a list from a file in PBS Modelling format
readPBSoptionsRead PBS options from an external file
resetGraph........................Reset par values for a plot
restorePar........................Get actual parameters from scaled values
rmHistoryRemove a record from the history
runDemosRun a GUI to access demos from any R package installed
runExamplesRun GUI examples included with PBS Modelling
scaleParScale parameters to [0,1]
setFileOptionSet a PBS file path option interactively
setGUIoptionsSet PBS options from widget values
setPathOptionSet a PBS path option interactively

 – 69 –

setPBSextSet a command associated with a filename extension
setPBSoptionsSet a user option
setwdGUIBrowse for working directory and find prefix
setWinActAdd a window action to the saved action vector
setWinValUpdate widget values
show0....................................Convert numbers into text with specified decimal places
showAlertDisplay a message in an alert window
showArgsDisplay expected widget arguments
showHelpDisplay the Help Page for specified packages installed
showRes...............................Show the results of a command represented by text
showVignettesDisplay vignettes for packages
sortHistorySort history records
testCol...............................Display named colours available based on a set of strings
testLty...............................Display line types available
testLwd...............................Display line widths
testPch...............................Display plotting symbols and backslash characters
testWidgetsDisplay sample GUIs and their source code
unpackList........................Unpack list elements into variables
vbdataData: Length-at-age data for a von Bertalanffy curve
vbparsData: Initial parameters for a von Bertalanffy curve
viewDisplay first n rows of an object
writeListWrite a list to a file in PBS Modelling format
writePBSoptions............Write PBS options to an external file

 – 70 –

Dot functions (and two list objects: .pFormatDefs and .widgetDefs)

.addslashes Escape special characters from a string
.autoConvertMode Convert x into a numeric mode
.buildgrid Attach child widgets to a grid
.catError Display parsing errors
.catError2 Display parsing error (from C code)
.CGUIchooseSection Choose a section from a talk control GUI
.CGUIgo Continue the execution of a talk
.cleanLoadC Launch a GUI for cleaning C junk files
.convertMatrixListToDataFrame

Convert a list into a data frame
.convertMatrixListToMatrix

Convert a list to a matrix (or a higher dimensional array)
.convertMode Convert a variable into a mode without showing any warnings
.convertPararmStrToList

Convert a string representing a widget into a vector
.convertPararmStrToVector

Convert a string representing data into a vector
.convertVecToArray Convert a vector to an array
.createTkFont Creates a usable Tk font from a given string
.createWidget Call the appropriate sub-function (below) to create a given widget

.createWidget.button

.createWidget.check

.createWidget.data

.createWidget.entry

.createWidget.grid

.createWidget.history

.createWidget.label

.createWidget.matrix

.createWidget.null

.createWidget.object

.createWidget.radio

.createWidget.slide

.createWidget.slideplus

.createWidget.text

.createWidget.vector
.dClose Function to execute on closing runDemos()
.doClean Do cleaning for cleanProj
.extractData Receive events from Tk, and extract data for getWinAct
.extractFuns Extract a list of called functions
.extractVar Extract values from the tclvar ptrs of a window
.fibC Call Fibonacci C code via C
.fibCall Call Fibonacci C code via Call
.fibClosedForm Close form equation for Fibonacci numbers

 – 71 –

.fibR Calculate Fibonacci numbers in R using iteration

.getArrayPts Return all possible indices of an array

.getHome Get home drive (Windows) or user home (Unix)

.getMatrixListSize Determine the minimum required size of the required array

.getParamFromStr Convert a string representing a widget into a list including default
values as defined in widgetDefs.r

.getPrefix Get value of widget named “prefix”

.guiCompileC Get parameters from GUI and call compileC

.guiDyn Load or unload lib based on information from GUI

.guiSource Source an R file as indicated in window description file

.inCollection Find a needle in a haystack (may be removed in future)

.initPBSoptions Initialization function when PBSmodelling is loaded

.isReallyNull Test if a key exists in a list

.libName Append .dll for Windows or .so for Unix

.loadCRunComparison Run a comparison between R and C functions from loadC GUI

.makeCleanVec Make descriptions of vectors for cleanProj

.makeTCGUI Create a talk control GUI

.map.add Save a new value for a given key, if no current value is set

.map.get Returns a value associated with a key

.map.getAll Return all values of the map

.map.init Initialize the data structure that holds the map(s); a map is another
name for hash table (implemented using an R list)

.map.set Save a value, even if a current one exists

.mapArrayToVec Determine the index to use for a vector, given the indices for an
element of a higher dimensional array

.matrixHelp Store an element in matrix list (or a higher dimensional array list)

.mergeLists Merge two lists

.mergeVectors Merge two vectors, ensuring values are unique

.openFileFromGUI Open a file from a GUI

.optionsNotUpdated Determine if there are uncommitted options in widget values

.parsegrid Create a branch in the parse tree for children widgets of a grid

.parsemenu Create a branch in the parse tree for children widgets of a menu

.parseTalk Parse a talk description file

.PBSdimnameHelper Add dimnames to an object

.pFormatDefs A list defining accepted parameters (and default values) for "P"
format of readList and writeList

.readList.P Read a list in P format

.readList.P.convertData Convert data into a proper mode

.removeFromList Remove list components

.runChunk Handle code, text, or file in a talk

.runSection Run a section of a talk

.runTalk Run a talk and launch a control GUI

.searchCollection Search a haystack for a needle, or a similar longer needle

 – 72 –

.selectCleanBoxes Select checkboxes for cleanProj

.setMatrixElement Assign values from a list into a matrix (or n dimensional array)

.setWinValHelper Update widget values when setWinVal is called

.setOption Set option for setFileOption or setPathOption

.showLog Shows text in log window and/or creates log file

.sortActHistory Use window action as history name

.sortHelper Helper function to sort history

.sortHelperActive Helper function to sort history

.sortHelperFile Help history with input from and output to an archive file

.stopWidget Display fatal post-parsing errors and halt

.stripComments Remove comments from a string

.stripExt Remove file extension from end of filename

.stripSlashes Removes escape backslashes from a string

.stripSlashesVec Convert a grouping of strings representing an argument into a
vector of strings

.trimWhiteSpace Remove leading and trailing white space

.tryOpen Open file with “editor” option or alternatively, openFile

.updateHistory Update widget values

.updateFile Coordinate file transfers

.validateWindowDescList
Check for a valid PBS Modelling description list and set any
missing default values

.validateWindowDescWidgets Validate a single widget

.viewPkgDemo Display a GUI to display something equivalent to R’s demo()

.widgetDefs A list defining widget parameters and default values

.writeList.P Saves a list to disk using the "P" format

 – 73 –

D.2. Function dependencies

 This appendix documents function dependencies within PBS Modelling. All functions
appear as underlined entries in alphabetic order. If a function depends on others, the list of
dependencies appears below the underlined name. Following a standard in UNIX and R,
functions whose name begins with a period (dot functions) are considered hidden from the user.
PBS Modelling enforces this standard through NAMESPACE discussed in Section C.3.

.addslashes

.autoConvertMode

.buildgrid
.createTkFont
.createWidget

.catError

.CGUIchooseSection
.runSection

.CGUIgo
.presentTalk
.runChunk
.runSection

.cleanLoadC
.getPrefix
.libName
cleanProj

.convertMatrixList
ToDataFrame
.getMatrixListSize
.setMatrixElement

.convertMatrixList
ToMatrix
.getMatrixListSize
.setMatrixElement

.convertMode

.convertPararmStr
ToList
.catError
.trimWhiteSpace

.convertPararmStr
ToVector
.catError
.trimWhiteSpace

.convertVecToArray
.getArrayPts
.mapArrayToVec

.createTkFont
.convertPararmStr
 ToVector

.createWidget
.isReallyNull

.createWidget.button
.createTkFont
.extractData

.createWidget.check
.createTkFont
.extractData
.map.add

.createWidget.data
.createWidget.grid
.stopWidget

.createWidget.entry
.createTkFont
.createWidget.grid
.extractData
 .map.add

.createWidget.grid
.buildgrid
.createTkFont

.createWidget.history
.createWidget.grid
initHistory

.createWidget.label
.createTkFont

.createWidget.matrix
.createWidget.grid
.stopWidget

.createWidget.null

.createWidget.object
.createWidget

.createWidget.radio
.createTkFont
.extractData
.map.add

.createWidget.slide
.createTkFont
.extractData
.map.add

.createWidget.slideplus
.extractData
.map.add
.map.set

.createWidget.text
.createTkFont
.map.add

.createWidget.vector
.createWidget.grid
.stopWidget

.dClose
getWinAct
closeWin

.doClean
.removeFromList
getWinVal
showAlert

.extractData
setWinAct

.extractFuns

.extractVar
.convertMatrixList
 ToDataFrame
.convertMatrixList
 ToMatrix
.convertMode
.isReallyNull
.map.getAll
.matrixHelp
.PBSdimnameHelper

.fibC

.fibCall

.fibClosedForm

.fibR

.getArrayPts

.getHome

.getMatrixListSize
.getMatrixListSize

.getParamFromStr
.catError
.convertPararmStr
 ToList
.isReallyNull
.searchCollection
.stripSlashes
.stripSlashesVec
.trimWhiteSpace

.getPrefix
getWinVal
showAlert

 – 74 –

.inCollection

.initPBSoptions

.isReallyNull

.makeCleanVec

.makeTCGUI
.CGUIchooseSection
.CGUIgo
.openFileFromGUI
.presentTalk
.runSection

.map.add
.isReallyNull
.map.init

.map.get

.map.getAll

.map.init

.map.set
.isReallyNull
.map.init

.mapArrayToVec

.matrixHelp
.matrixHelp

.mergeLists

.mergeVectors

.optionsNotUpdated
.initPBSoptions
getWinVal

.parsegrid
.parsegrid

.parsemenu
.parsemenu

.parseTalk

.PBSdimnameHelper

.readList.P
.catError
.readList.P.convert
 Data
.stripComments
.trimWhiteSpace

.readList.P.convertData
.autoConvertMode
.catError
.convertMode
.convertPararmStr
 ToVector
.convertVecToArray
.getParamFromStr

.removeFromList

.runChunk
.presentTalk
.runChunk
.runTalk

.runSection
.runChunk

.runTalk
.makeTCGUI
.runSection

.searchCollection

.selectCleanBoxes
.removeFromList
getWinAct
setWinVal

.setMatrixElement
.setMatrixElement

.setOption
.getHome
.initPBSoptions
setPBSoptions
setWinVal

.setWinValHelper
.map.get
.setWinValHelper

.showLog
createWin
setWinVal

.sortActHistory
getWinAct
sortHistory

.sortHelper
getWinAct
getWinVal
.sortHelperActive
.sortHelperFile
sortHistory

.sortHelperActive
.updateHistory

.sortHelperFile
readList
writeList

.stopWidget

.stripComments
.stripComments

.stripExt

.stripSlashes
.catError

.stripSlashesVec
.catError

.trimWhiteSpace

.tryOpen
.initPBSoptions
openFile
showAlert

.updateFile
getWinAct
getWinVal
promptOpenFile
promptSaveFile
setWinVal

.updateHistory
setWinVal

.validateWindowDescList
.validateWindow
 DescWidgets

.validateWindow
DescWidgets

.viewPkgDemo
getWinAct
getWinVal
openFile
runDemos

.viewPkgVignette
getWinAct()
getWinVal
openFile
showVignettes

.writeList.P
.addslashes

 – 75 –

addArrows

addLabel

addLegend

addHistory
.updateHistory
getWinAct
getWinVal

backHistory
.updateHistory
getWinAct
setWinVal

calcFib
.fibC
.fibCall
.fibClosedForm
.fibR

calcGM

calcMin
restorePar
scalePar
show0

chooseWinVal
getChoice
setPBSoptions
setWinVal

cleanProj
.makeCleanVec
createWin

clearAll

clearHistory
.updateHistory
getWinAct
rmHistory

clearPBSext
.initPBSoptions
.removeFromList

clearWinVal
getWinVal

closeWin
.isReallyNull

compileDescription
parseWinFile
writeList

createVector
createWin

createWin
.createWidget
.initPBSoptions
.map.init
.validateWindow
 DescList
parseWinFile

declareGUIoptions
.initPBSoptions
.mergeVectors

drawBars

expandGraph

exportHistory
getWinAct
promptSaveFile
writeList

findPat

findPrefix
.stripExt
getWinVal
setWinVal

focusWin

forwHistory
.updateHistory
getWinAct
setWinVal

genMatrix

getChoice
createWin
focusWin
getPBSoptions
setPBSoptions

getGUIoptions
readPBSoptions
setWinVal

getPBSext
.isReallyNull

getPBSoptions

getWinAct

getWinFun

getWinVal
.extractVar
.isReallyNull

getYes

GT0

importHistory
.updateHistory
getWinAct
promptOpenFile
readList

initHistory

isWhat

jumpHistory
.updateHistory
getWinAct
getWinVal
setWinVal

openExamples
.tryOpen
setWinVal

openFile
.initPBSoptions
.isReallyNull
getPBSext
getWinAct
openFile

openPackageFile
openFile

openProjFiles
.getPrefix
.tryOpen
showAlert

pad0

parseWinFile
.getParamFromStr
.parsegrid
.parsemenu
.stripComments
.trimWhiteSpace

pause

pickCol

plotACF

plotAsp

 – 76 –

plotBubbles

plotCsum
addLabel
resetGraph

plotDens

plotFriedEggs
KernSmooth::bkde2D
graphics::contour
grDevices::
contourLines

plotTrace

presentTalk
.parseTalk
.runTalk

promptOpenFile
.trimWhiteSpace

promptWriteOptions
.initPBSoptions
.optionsNotUpdated
getYes
setGUIoptions
writePBSoptions

promptSaveFile
promptOpenFile

readList
.readList.P

readPBSoptions
.mergeLists
readList

resetGraph

restorePar

rmHistory
.updateHistory
getWinAct
setWinVal

runExamples
closeWin
createWin
getWinAct
getWinVal
setWinAct
setWinVal

scalePar

setFileOption
.setOption

setGUIoptions
.initPBSoptions
getWinAct
getWinVal
setPBSoptions

setPathOption
.setOption

setPBSext

setPBSoptions
.initPBSoptions
.removeFromList

setwdGUI
findPrefix
getWinAct

setWinAct

setWinVal
.isReallyNull
.setWinValHelper

show0

showAlert

showArgs

showHelp
findPat
openFile

showRes

showVignettes
closeWin
createWin

testCol

testLty

testLwd
resetGraph

testPch
resetGraph

testWidgets
closeWin
createWin
getWinAct
getWinVal
setWinVal

unpackList

view

writeList
.writeList.P

writePBSoptions
.initPBSoptions
writeList

 – 77 –

D.3. PBS Modelling manual

 The following pages show the standard R manual for PBS Modelling, including help
pages for all objects, a table of contents, and an index. This manual also appears on the CRAN
web site:

http://cran.r-project.org/src/contrib/Descriptions/PBSmodelling.html

(Or from CRANS’s root, locate “Packages” and find “PBSmodelling”.)

 To generate the pages that follow, the user should first ensure that R’s style and font files
have been copied to MiKTeX (see steps 5a-c in Section C.1). This enhancement is essential for
the successful creation of a PDF manual.

 Next we provide a choice of two methods that use the batch files RmakePDF.bat and
RmakePDF2.bat to assist the user in building the manual. The first method alters a temporary
TEX file after R’s Perl script is run, and the PDF is built by calling MiKTeX commands. The
second method modifies R’s Perl script before it builds the TEX and PDF files. The final result
of both methods yields a manual with letter (8.5″ × 11″) rather than A4 paper, and renumbering
beginning on a specified page. This page number should be odd so that the next page becomes
the front of a two-sided copy. Although the first method requires a redundant build of the
document, it is possibly more robust to future changes in R’s Perl script.

Method 1: On a command line, type the command:

 RmakePDF PBSmodelling 79

which automatically generates the PDF manual PBSmodelling.pdf from the package’s
*.Rd files. Page numbering for this PDF begins with the number specified by the second
argument of the above command. If the argument is not supplied, it defaults to 1.

The batch file uses R’s Perl script by issuing the following command:

 R CMD Rd2dvi --pdf --no-clean %1

This method creates a temporary directory called .Rd2dvi$\ containing Rd2.tex with the
initial lines:

 \nonstopmode{}
 \documentclass[letter]{book}
 \usepackage[times,hyper]{Rd}
 \usepackage{makeidx}
 \makeindex{}
 \begin{document}
 \setcounter{page}{79}

 – 78 –

where a boldface red font indicates changes that RmakePDF.bat makes to the file Rd2.tex.
The revised TEX file is then copied to D:\Rdevel\PDFmodelling.tex and the following
MiKTeX commands are issued:

 latex PBSmodelling
 latex PBSmodelling
 makeindex PBSmodelling
 pdflatex PBSmodelling

(The second call to latex might not be needed, but it resolves a number of references. The
makeindex command creates the table of contents.) You should now have the PDF manual
called PBSmodelling.pdf, which can be appended to the first 78 pages of this report.

Method 2: On a command line, type the command:

 RmakePDF2 PBSmodelling 79

which automatically generates the PDF manual PBSmodelling.pdf from the package’s
*.Rd files. Page numbering for this PDF begins with the number specified by the second
argument of the above command. If the argument is not supplied, it defaults to 1.

 Essentially the script in RmakePDF2.bat modifies R’s Rd2dvi.sh Perl script and
saves it to the file Rd2dvi4pbs.sh, which sits in R’s bin\ directory. The batch file then
issues the command:

 R CMD Rd2dvi4pbs.sh --pdf --no-clean %1

which builds and creates the manual PBSmodelling.pdf in the D:\Rdevel\ directory.
The batch file also retains the temporary directory .Rd2dvi$\ and copies the TEX file into the
development directory. The PDF manual can be then be appended to this report
(PBSmodelling-UG.pdf).

 Once the user is satisfied with the results, he/she may wish to remove the temporary
directory:

rm -rf .Rd2dvi$

The techniques presented in this appendix can be applied to any package to produce a manual
based on the *.Rd files. Readers may wish to go further and append their manual to more
detailed instructions to produce a comprehensive User’s Guide such as this one.

Package ‘PBSmodelling’
October 23, 2008

Version 1.92

Date 2008-10-23

Title PBS Modelling 2.00

Author Jon T. Schnute <Jon.Schnute@dfo-mpo.gc.ca>, Alex Couture-Beil <alex@mofo.ca>, Rowan Haigh
<Rowan.Haigh@dfo-mpo.gc.ca>, and Anisa Egeli <Anisa.Egeli@dfo-mpo.gc.ca>

Maintainer Jon Schnute <Jon.Schnute@dfo-mpo.gc.ca>

Depends R (>= 2.6.0)

Suggests PBSmapping, PBSddesolve, odesolve, BRugs, KernSmooth

Description PBS Modelling provides software to facilitate the design, testing, and operation of computer models. It
focuses particularly on tools that make it easy to construct and edit a customized graphical user interface
(GUI). Although it depends heavily on the R interface to the Tcl/Tk package, a user does not need to know
Tcl/Tk. The package contains examples that illustrate models built with other R packages, including
PBSmapping, odesolve, PBSddesolve, and BRugs. It also serves as a convenient prototype for building new R
packages, along with instructions and batch files to facilitate that process. The R directory
’.../library/PBSmodelling/doc’ includes a complete user guide PBSmodelling-UG.pdf. To use this package
effectively, please consult the guide.

License GPL (>= 2)

R topics documented:
CCA.qbr . 81
GT0 . 82
PBSmodelling . 83
addArrows . 84
addLabel . 84
addLegend . 85
calcFib . 86
calcGM . 86
calcMin . 87
chooseWinVal . 89
cleanProj . 90
clearAll . 91
clearPBSext . 92
clearWinVal . 92
closeWin . 93
compileC . 93

79

80 R topics documented:

compileDescription . 94
createVector . 94
createWin . 95
declareGUIoptions . 96
drawBars . 97
expandGraph . 97
exportHistory . 98
findPat . 99
findPrefix . 99
focusWin . 100
genMatrix . 101
getChoice . 101
getGUIoptions . 103
getPBSext . 103
getPBSoptions . 104
getWinAct . 104
getWinFun . 105
getWinVal . 105
getYes . 106
importHistory . 106
initHistory . 107
isWhat . 109
loadC . 109
openExamples . 110
openFile . 111
openPackageFile . 112
openProjFiles . 113
pad0 . 114
parseWinFile . 114
pause . 115
pickCol . 115
plotACF . 116
plotAsp . 116
plotBubbles . 117
plotCsum . 118
plotDens . 119
plotFriedEggs . 119
plotTrace . 120
presentTalk . 121
promptOpenFile . 122
promptSaveFile . 122
promptWriteOptions . 123
readList . 124
readPBSoptions . 125
resetGraph . 125
restorePar . 126
runDemos . 126
runExamples . 127
scalePar . 128
setFileOption . 128
setGUIoptions . 129
setPBSext . 130
setPBSoptions . 130
setPathOption . 131

CCA.qbr 81

setWinAct . 132
setWinVal . 132
setwdGUI . 133
show0 . 134
showAlert . 135
showArgs . 136
showHelp . 136
showRes . 137
showVignettes . 137
sortHistory . 138
testCol . 139
testLty . 139
testLwd . 140
testPch . 140
testWidgets . 141
unpackList . 142
vbdata . 143
vbpars . 144
view . 144
writeList . 145
writePBSoptions . 146

CCA.qbr Data: Sampled Counts of Quillback Rockfish (Sebastes maliger)

Description

Count of sampled fish-at-age for quillback rockfish (Sebastes maliger) in Johnstone Strait, British Columbia, from
1984 to 2004.

Usage

data(CCA.qbr)

Format

A matrix with 70 rows (ages) and 14 columns (years). Attributes “syrs” and “cyrs” specify years of survey and
commercial data, respectively.

[,c(3:5,9,13,14)] Counts-at-age from research survey samples
[,c(1,2,6:8,10:12)] Counts-at-age from commercial fishery samples

All elements represent sampled counts-at-age in year. Zero-value entries indicate no observations.

Details

Handline surveys for rockfish have been conducted in Johnstone Strait (British Columbia) and adjacent waterways
(126◦37’W to 126◦53’W, 50◦32’N to 50◦39’N) since 1986. Yamanaka and Richards (1993) describe surveys
conducted in 1986, 1987, 1988, and 1992. In 2001, the Rockfish Selective Fishery Study (Berry 2001) targeted
quillback rockfish Sebastes maliger for experiments on improving survival after capture by hook and line gear.
The resulting data subsequently have been incorporated into the survey data series. The most recent survey in 2004
essentially repeated the 1992 survey design. Fish samples from surveys have been supplemented by commercial
handline fishery samples taken from a larger region (126◦35’W to 127◦39’W, 50◦32’N to 50◦59’N) in the years
1984-1985, 1989-1991, 1993, 1996, and 2000 (Schnute and Haigh 2007).

82 GT0

Note

Years 1994, 1997-1999, and 2002-2003 do not have data.

Source

Fisheries and Oceans Canada - GFBio database:
http://www-sci.pac.dfo-mpo.gc.ca/sa-mfpd/statsamp/StatSamp_GFBio.htm

References

Berry, M.D. (2001) Area 12 (Inside) Rockfish Selective Fishery Study. Science Council of British Columbia,
Project Number FS00-05.

Schnute, J.T. and Haigh, R. (2007) Compositional analysis of catch curve data with an application to Sebastes
maliger. ICES Journal of Marine Science 64, 218–233.

Yamanaka, K.L. and Richards, L.J. (1993) 1992 Research catch and effort data on nearshore reef-fishes in British
Columbia Statistical Area 12. Canadian Manuscript Report of Fisheries and Aquatic Sciences 2184, 77 pp.

Examples

Plot age proportions (blue bubbles = survey data, red = commercial)
data(CCA.qbr); clrs=c("cornflowerblue","orangered")
z <- CCA.qbr; cyr <- attributes(z)$cyrs;
z <- apply(z,2,function(x){x/sum(x)}); z[,cyr] <- -z[,cyr];
x <- as.numeric(dimnames(z)[[2]]); xlim <- range(x) + c(-.5,.5);
y <- as.numeric(dimnames(z)[[1]]); ylim <- range(y) + c(-1,1);
expandGraph(mgp=c(2,.5,0),las=1)
plotBubbles(z,xval=x,yval=y,powr=.5,size=0.15,clrs=clrs,

xlim=xlim,ylim=ylim,xlab="Year",ylab="Age",cex.lab=1.5)
addLegend(.5,1,bty="n",pch=1,cex=1.2,col=clrs,

legend=c("Survey","Commercial"),horiz=TRUE,xjust=.5)

GT0 Restrict a Numeric Variable to a Positive Value

Description

Restrict a numeric value x to a positive value using a differentiable function. GT0 stands for “greater than zero”.

Usage

GT0(x,eps=1e-4)

Arguments

x vector of values

eps minimum value greater than zero.

Details

if (x >= eps)..........GT0 = x
if (0 < x < eps).......GT0 = (eps/2) * (1 + (x/eps)^2)
if (x <= 0)............GT0 = eps/2

http://www-sci.pac.dfo-mpo.gc.ca/sa-mfpd/statsamp/StatSamp_GFBio.htm

PBSmodelling 83

See Also

scalePar, restorePar, calcMin

Examples

plotGT0 <- function(eps=1,x1=-2,x2=10,n=1000,col="black") {
x <- seq(x1,x2,len=n); y <- GT0(x,eps);
lines(x,y,col=col,lwd=2); invisible(list(x=x,y=y)); }

testGT0 <- function(eps=c(7,5,3,1,.1),x1=-2,x2=10,n=1000) {
x <- seq(x1,x2,len=n); y <- x;
plot(x,y,type="l");
mycol <- c("red","blue","green","brown","violet","orange","pink");
for (i in 1:length(eps))

plotGT0(eps=eps[i],x1=x1,x2=x2,n=n,col=mycol[i]);
invisible(); };

testGT0()

PBSmodelling PBS Modelling

Description

PBS Modelling provides software to facilitate the design, testing, and operation of computer models. It focuses
particularly on tools that make it easy to construct and edit a customized graphical user interface (GUI). Although
it depends heavily on the R interface to the Tcl/Tk package, a user does not need to know Tcl/Tk.

PBSmodelling contains examples that illustrate models built uisng other R packages, including PBSmapping,
odesolve, PBSddesolve, and BRugs. It also serves as a convenient prototype for building new R packages,
along with instructions and batch files to facilitate that process.

The R directory .../library/PBSmodelling/doc includes a complete user guide ‘PBSmodelling-UG.pdf’.
To use this package effectively, please consult the guide.

PBS Modelling comes packaged with interesting examples accessed through the function runExamples().
Additionally, users can view PBS Modelling widgets through the function testWidgets(). More generally, a
user can run any available demos in his/her locally installed packages through the function runDemos().

addArrows Add Arrows to a Plot Using Relative (0:1) Coordinates

Description

Call the arrows function using relative (0:1) coordinates.

Usage

addArrows(x1, y1, x2, y2, ...)

84 addLabel

Arguments

x1 x-coordinate (0:1) at base of arrow.

y1 y-coordinate (0:1) at base of arrow.

x2 x-coordinate (0:1) at tip of arrow.

y2 y-coordinate (0:1) at tip of arrow.

... additional paramaters for the function arrows.

Details

Lines will be drawn from (x1[i],y1[i]) to (x2[i],y2[i])

See Also

addLabel, addLegend

Examples

tt=seq(from=-5,to=5,by=0.01)
plot(sin(tt), cos(tt)*(1-sin(tt)), type="l")
addArrows(0.2,0.5,0.8,0.5)
addArrows(0.8,0.95,0.95,0.55, col="#FF0066")

addLabel Add a Label to a Plot Using Relative (0:1) Coordinates

Description

Place a label in a plot using relative (0:1) coordinates

Usage

addLabel(x, y, txt, ...)

Arguments

x x-axis coordinate in the range (0:1); can step outside.

y y-axis coordinate in the range (0:1); can step outside.

txt desired label at (x,y).

... additional arguments passed to the function text.

See Also

addArrows, addLegend

Examples

resetGraph()
addLabel(0.75,seq(from=0.9,to=0.1,by=-0.10),c('a','b','c'), col="#0033AA")

addLegend 85

addLegend Add a Legend to a Plot Using Relative (0:1) Coordinates

Description

Place a legend in a plot using relative (0:1) coordinates.

Usage

addLegend(x, y, ...)

Arguments

x x-axis coordinate in the range (0:1); can step outside.

y y-axis coordinate in the range (0:1); can step outside.

... arguments used by the function legend, such as lines, text, or rectangle.

See Also

addArrows, addLabel

Examples

resetGraph(); n <- sample(1:length(colors()),15); clrs <- colors()[n]
addLegend(.2,1,fill=clrs,leg=clrs,cex=1.5)

calcFib Calculate Fibonacci Numbers by Several Methods

Description

Compute Fibonacci numbers using four different methods: 1) iteratively using R code, 2) via the closed function
in R code, 3) iteratively in C using the .C function, and 4) iteratively in C using the .Call function.

Usage

calcFib(n, len=1, method="C")

Arguments

n nth fibonacci number to calculate

len a vector of length len showing previous fibonacci numbers

method select method to use: C, Call, R, closed

Value

Vector of the last len Fibonacci numbers calculated.

86 calcMin

calcGM Calculate the Geometric Mean, Allowing for Zeroes

Description

Calculate the geometric mean of a numeric vector, possibly excluding zeroes and/or adding an offset to compen-
sate for zero values.

Usage

calcGM(x, offset = 0, exzero = TRUE)

Arguments

x vector of numbers

offset value to add to all components, including zeroes

exzero if TRUE, exclude zeroes (but still add the offset)

Value

geometric mean of the modified vector x + offset

Note

NA values are automatically removed from x

Examples

calcGM(c(0,1,100))
calcGM(c(0,1,100),offset=0.01,exzero=FALSE)

calcMin Calculate the Minimum of a User-Defined Function

Description

Minimization based on the R-stat functions nlm, nlminb, and optim. Model parameters are scaled and can be
active or not in the minimization.

Usage

calcMin(pvec, func, method="nlm", trace=0, maxit=1000, reltol=1e-8,
steptol=1e-6, temp=10, repN=0, ...)

calcMin 87

Arguments

pvec Initial values of the model parameters to be optimized. pvec is a data frame comprising
four columns ("val","min","max","active") and as many rows as there are model
parameters. The "active" field (logical) determines whether the parameters are estimated
(T) or remain fixed (F).

func The user-defined function to be minimized (or maximized). The function should return a scalar
result.

method The minimization method to use: one of nlm, nlminb, Nelder-Mead, BFGS, CG, L-
BFGS-B, or SANN. Default is nlm.

trace Non-negative integer. If positive, tracing information on the progress of the minimization is
produced. Higher values may produce more tracing information: for method "L-BFGS-B"
there are six levels of tracing. Default is 0.

maxit The maximum number of iterations. Default is 1000.

reltol Relative convergence tolerance. The algorithm stops if it is unable to reduce the value by a
factor of reltol*(abs(val)+reltol) at a step. Default is 1e-8.

steptol A positive scalar providing the minimum allowable relative step length. Default is 1e-6.

temp Temperature controlling the "SANN" method. It is the starting temperature for the cooling
schedule. Default is 10.

repN Reports the parameter and objective function values on the R-console every repN evaluations.
Default is 0 for no reporting.

... Further arguments to be passed to the optimizing function chosen: nlm, nlminb, or optim.
Beware of partial matching to earlier arguments.

Details

See optim for details on the following methods: Nelder-Mead, BFGS, CG, L-BFGS-B, and SANN.

Value

A list with components:

Fout The output list from the optimizer function chosen through method.

iters Number of iterations.

evals Number of evaluations.

cpuTime The user CPU time to execute the minimization.

elapTime The total elapsed time to execute the minimization.

fminS The objective function value calculated at the start of the minimization.

fminE The objective function value calculated at the end of the minimization.

Pstart Starting values for the model parameters.

Pend Final values estimated for the model parameters from the minimization.

AIC Akaike’s Information Criterion

message Convergence message from the minimization routine.

Note

Some arguments to calcMin have no effect depending on the method chosen.

88 chooseWinVal

See Also

scalePar, restorePar, calcMin, GT0
In the stats package: nlm, nlminb, and optim.

Examples

Ufun <- function(P) {
Linf <- P[1]; K <- P[2]; t0 <- P[3]; obs <- afile$len;
pred <- Linf * (1 - exp(-K*(afile$age-t0)));
n <- length(obs); ssq <- sum((obs-pred)^2);
return(n*log(ssq)); };

afile <- data.frame(age=1:16,len=c(7.36,14.3,21.8,27.6,31.5,35.3,39,
41.1,43.8,45.1,47.4,48.9,50.1,51.7,51.7,54.1));

pvec <- data.frame(val=c(70,0.5,0),min=c(40,0.01,-2),max=c(100,2,2),
active=c(TRUE,TRUE,TRUE),row.names=c("Linf","K","t0"),
stringsAsFactors=FALSE);

alist <- calcMin(pvec=pvec,func=Ufun,method="nlm",steptol=1e-4,repN=10);
print(alist[-1]); P <- alist$Pend;
resetGraph(); expandGraph();
xnew <- seq(afile$age[1],afile$age[nrow(afile)],len=100);
ynew <- P[1] * (1 - exp(-P[2]*(xnew-P[3])));
plot(afile); lines(xnew,ynew,col="red",lwd=2);
addLabel(.05,.88,paste(paste(c("Linf","K","t0"),round(P,c(2,4,4)),

sep=" = "),collapse="\n"),adj=0,cex=0.9);

chooseWinVal Choose and Set a String Item in a GUI

Description

Prompts the user to choose one string item from a list of choices displayed in a GUI, then sets a specified variable
in a target GUI.

Usage

chooseWinVal(choice, varname, winname="window")

Arguments

choice vector of strings from which to choose

varname variable name to which choice is assigned in the target GUI

winname window name for the target GUI

Details

chooseWinVal activates a setWinVal command through an onClose function created by the getChoice
command and modified by chooseWinVal.

Value

No value is returned directly. The choice is written to the PBS options workspace, accessible through
getPBSoptions("getChoice"). Also set in PBS options is the window name from which the choice was
activated.

chooseWinVal 89

Note

Microsoft Windows users may experience difficulties switching focus between the R console and GUI windows.
The latter frequently disappear from the screen and need to be reselected (either clicking on the task bar or pressing
<Alt><Tab>. This issue can be resolved by switching from MDI to SDI mode. From the R console menu bar,
select <Edit> and <GUI preferences>, then change the value of “single or multiple windows” to SDI.

See Also

getChoice, getWinVal, setWinVal

Examples

Not run:
dfnam <-

c("airquality","attitude","ChickWeight","faithful","freeny",
"iris","LifeCycleSavings","longley","morley","Orange",
"quakes","randu","rock","stackloss","swiss","trees")

wlist <- c(
"window name=choisir title=\"Test chooseWinVal\"",
"label text=\"Press <ENTER> in the green entry box
\nto choose a file, then press <GO>\" sticky=W pady=5",
"grid 1 3 sticky=W",
"label text=File: sticky=W",
"entry name=fnam mode=character width=23 value=\"\"
func=chFile entrybg=darkolivegreen1 pady=5",
"button text=GO bg=green sticky=W func=test",
"")

chFile <- function(ch=dfnam,fn="fnam")
{chooseWinVal(ch,fn,winname="choisir")};

#-- Example 1 GUI test
test <- function() {

getWinVal(winName="choisir",scope="L")
if (fnam!="" && any(fnam==dfnam)) {

file <- get(fnam);
pairs(file,gap=0); }

else {
resetGraph();
addLabel(.5,.5,"Press <ENTER> in the green entry box
\nto choose a file, then press <GO>", col="red",cex=1.5)}};

#-- Example 2 Non-GUI test
#To try the non-GUI version, type 'test2()' on the command line
test2 <- function(fnames=dfnam) {

frame();resetGraph()
again <- TRUE;
while (again) {
fnam <- sample(fnames,1); file <- get(fnam);
flds <- names(file);
xfld <- getChoice(paste("Pick x-field from",fnam),flds,gui=F);
yfld <- getChoice(paste("Pick y-field from",fnam),flds,gui=F)
plot(file[,xfld],file[,yfld],xlab=xfld,ylab=yfld,

pch=16,cex=1.2,col="red");
again <- getChoice("Plot another pair?",gui=F) }

}
require(PBSmodelling)

90 clearAll

createWin(wlist,astext=T); test();
End(Not run)

cleanProj Launch a GUI for File Deletion

Description

Launches a new window which contains an interface for deleting junk files from the working directory.

Usage

cleanProj(prefix, suffix, files)

Arguments

prefix default prefix for file names.

suffix character vector of suffixes used for clean options.

files character vector of file names used for clean options.

Details

All arguments may contain wildcard characters ("*" to match 0 or more characters, "?" to match any single
character).

The GUI includes the following:

1 An entry box for the prefix.
The default value of this entry box is taken from prefix.

2 Check boxes for each suffix in the suffix argument and
for each file name in the files argument.

3 Buttons marked "Select All" and "Select None" for
selecting and clearing all the check boxes, respectively.

4 A "Clean" button that deletes files in the working directory
matching one of the following criteria:
(i) file name matches both an expansion of a concantenation of a
prefix in the entry box and a suffix chosen with a check box; or
(ii) file name matches an expansion of a file chosen with a check box.

Examples

Not run:
cleanProj(prefix="foo",suffix=c(".a*",".b?",".c","-old.d"),files=c("red","blue"))
End(Not run)

clearAll Remove all R Objects From the Global Environment

Description

Generic function to clear all objects from .RData in R

clearPBSext 91

Usage

clearAll(hidden=TRUE, verbose=TRUE, PBSsave=TRUE)

Arguments

hidden if TRUE, remove variables that start with a dot(.).

verbose if TRUE, report all removed items.

PBSsave if TRUE, do not remove .PBSmod.

clearPBSext Clear File Extension Associations

Description

Disassociate any number of file extensions from commands previously saved with setPBSext.

Usage

clearPBSext(ext)

Arguments

ext optional character vector of file extensions to clear; if unspecified, all associations are removed

See Also

setPBSext, getPBSext, openFile

clearWinVal Remove all Current Widget Variables

Description

Remove all global variables that share a name in common with any widget variable name defined in
names(getWinVal()). Use this function with caution.

Usage

clearWinVal()

See Also

getWinVal

92 compileC

closeWin Close GUI Window(s)

Description

Close (destroy) one or more windows made with createWin.

Usage

closeWin(name)

Arguments

name a vector of window names that indicate which windows to close. These names appear in the
window description file(s) on the line(s) defining WINDOW widgets. If name is ommitted,
all active windows will be closed.

See Also

createWin

compileC Compile a C File into a Shared Library Object

Description

This function provides an alternative to using R’s SHLIB command to compile C code into a shared library object.

Usage

compileC(file, lib="", options="", logWindow=TRUE, logFile=TRUE)

Arguments

file name of the file to compile.

lib name of shared library object (without extension).

options linker options (in one string) to prepend to a compilation command.

logWindow if TRUE, a log window containing the compiler output will be displayed.

logFile if TRUE, a log file containing the compiler output will be created.

Details

If lib="", it will take the same name as file (with a different extension).

If an object with the same name has already been dynamically loaded in R, it will be unloaded automatically for
recompilation.

The name of the log file, if created, uses the string value from lib concatenated with ".log".

See Also

loadC

compileDescription 93

Examples

Not run:
compileC("myFile.c", lib="myLib", options="myObj.o")
End(Not run)

compileDescription Convert and Save a Window Description as a List

Description

Convert a window description file (ASCII markup file) to an equivalent window description list. The output list
(an ASCII file containing R-source code) is complete, i.e., all default values have been added.

Usage

compileDescription(descFile, outFile)

Arguments

descFile name of window description file (markup file).
outFile name of output file containing R source code.

Details

The window description file descFile is converted to a list, which is then converted to R code, and saved to
outFile.

See Also

parseWinFile, createWin

createVector Create a GUI with a Vector Widget

Description

Create a basic window containing a vector and a submit button. This provides a quick way to create a window
without the need for a window description file.

Usage

createVector(vec, vectorLabels=NULL, func="",
windowname="vectorwindow")

Arguments

vec a vector of strings representing widget variables. The values in vec become the default values
for the widget. If vec is named, the names are used as the variable names.

vectorLabels an optional vector of strings to use as labels above each widget.
func string name of function to call when new data are entered in widget boxes or when "GO" is

pressed.
windowname unique window name, required if multiple vector windows are created.

94 createWin

See Also

createWin

Examples

Not run:
#user defined function which is called on new data
drawLiss <- function() {

getWinVal(scope="L");
tt <- 2*pi*(0:k)/k; x <- sin(2*pi*m*tt); y <- sin(2*pi*(n*tt+phi));
plot(x,y,type="p"); invisible(NULL); };

#create the vector window
createVector(c(m=2, n=3, phi=0, k=1000),

vectorLabels=c("x cycles","y cycles", "y phase", "points"),
func="drawLiss");

End(Not run)

createWin Create a GUI Window

Description

Create a GUI window with widgets using instructions from a Window Description (markup) File.

Usage

createWin(fname, astext=FALSE)

Arguments

fname name of window description file or list returned from parseWinFile.

astext logical: if TRUE, interpret fname as a vector of strings with each element representing a line
in a window description file.

Details

Generally, the markup file contains a single widget per line. However, widgets can span multiple lines by including
a backslash (’\’) character at the end of a line, prompting the suppression of the newline character.

For more details on widget types and markup file, see “PBSModelling-UG.pdf” in the R directory
.../library/PBSmodelling/doc.

It is possible to use a Window Description List produced by compileDescription rather than a file name for
fname.

Another alternative is to pass a vector of characters to fname and set astext=T. This vector represents the file
contents where each element is equivalent to a new line in the window description file.

Note

Microsoft Windows users may experience difficulties switching focus between the R console and GUI windows.
The latter frequently disappear from the screen and need to be reselected (either clicking on the task bar or pressing
<Alt><Tab>. This issue can be resolved by switching from MDI to SDI mode. From the R console menu bar,
select <Edit> and <GUI preferences>, then change the value of “single or multiple windows” to SDI.

declareGUIoptions 95

See Also

parseWinFile, getWinVal, setWinVal

closeWin, compileDescription, createVector

initHistory for an example of using astext=TRUE

Examples

Not run:
See file .../library/PBSmodelling/testWidgets/LissWin.txt

Calculate and draw the Lissajous figure
drawLiss <- function() {

getWinVal(scope="L"); ti=2*pi*(0:k)/k;
x=sin(2*pi*m*ti); y=sin(2*pi*(n*ti+phi));
plot(x,y,type=ptype); invisible(NULL); };

createWin(system.file("testWidgets/LissWin.txt",package="PBSmodelling"));
End(Not run)

declareGUIoptions Declare Option Names that Correspond with Widget Names

Description

This function allows a GUI creator to specify widget names that correspond to names in PBS options. These
widgets can then be used to load and set PBS options uing getGUIoptions and setGUIoptions.

Usage

declareGUIoptions(newOptions)

Arguments

newOptions a character vector of option names

Details

declareGUIoptions is typically called in a GUI initialization function. The option names are remembered
and used for the functions getGUIoptions, setGUIoptions, and promptSave.

See Also

getGUIoptions, setGUIoptions, promptWriteOptions

Examples

Not run:
declareGUIOptions("editor")
End(Not run)

96 expandGraph

drawBars Draw a Linear Barplot on the Current Plot

Description

Draw a linear barplot on the current plot.

Usage

drawBars(x, y, width, base = 0, ...)

Arguments

x x-coordinates

y y-coordinates

width bar width, computed if missing

base y-value of the base of each bar

... further graphical parameters (see par) may also be supplied as arguments

Examples

plot(0:10,0:10,type="n")
drawBars(x=1:9,y=9:1,col="deepskyblue4",lwd=3)

expandGraph Expand the Plot Area by Adjusting Margins

Description

Optimize the plotting region(s) by minimizing margins.

Usage

expandGraph(mar=c(4,3,1.2,0.5), mgp=c(1.6,.5,0),...)

Arguments

mar numerical vector of the form ’c(bottom, left, top, right)’ specifying the margins of the plot

mgp numerical vector of the form ’c(axis title, axis labels, axis line)’ specifying the margins for
axis title, axis labels, and axis line

... additional graphical parameters to be passed to par

See Also

resetGraph

exportHistory 97

Examples

resetGraph(); expandGraph(mfrow=c(2,1));
tt=seq(from=-10, to=10, by=0.05);

plot(tt,sin(tt), xlab="this is the x label", ylab="this is the y label",
main="main title", sub="sometimes there is a \"sub\" title")

plot(cos(tt),sin(tt*2), xlab="cos(t)", ylab="sin(2 t)", main="main title",
sub="sometimes there is a \"sub\" title")

exportHistory Export a Saved History

Description

Export the current history list.

Usage

exportHistory(hisname="", fname="")

Arguments

hisname name of the history list to export. If set to "", the value from getWinAct()[1] will be
used instead.

fname file name where history will be saved. If it is set to "", a <Save As> window will be displayed.

See Also

importHistory, initHistory, promptSaveFile

findPat Search a Character Vector to Find Multiple Patterns

Description

Use all available patterns in pat to search in vec, and return the matched elements in vec.

Usage

findPat(pat, vec)

Arguments

pat character vector of patterns to match in vec
vec character vector where matches are sought

Value

A character vector of all matched strings.

Examples

#find all strings with a vowel, or that start with a number
findPat(c("[aeoiy]", "^[0-9]"), c("hello", "WRLD", "11b"))

98 findPrefix

findPrefix Find a Prefix Based on Names of Existing Files

Description

Find the prefixes of files with a given suffix in the working directory.

Usage

findPrefix(suffix)

Arguments

suffix character vector of suffixes

Details

The function findPrefix locates all files in the working directory that end with one of the provided suffixes.
The suffixes may contain wildcards ("*" to match 0 or more characters, "?" to match any single character).

If findPrefix was called from a widget as specified in a window description file, then the value of a widget
named prefix will be set to the prefix of the first matching file found, with an exception: if the value of the
prefix widget matches one of the file prefixes found, it will not be changed.

To use this function in a window description file, the action of the widget is used to specify the suffixes to match,
with the suffixes separated by commas. For example, action=.c,.cpp would set a prefix widget to the first
file found with an extension .c or .cpp.

Value

A character vector of all the prefixes of files in the working directory that matched to one of the given suffixes.

See Also

setwdGUI

Examples

Not run:
Match files that end with '.a' followed by 0 or more characters,
'.b' followed by any single character, '.c', or '-old.d'
(a suffix does not have to be a file extension)
findPrefix(".a*", ".b?", ".c", "-old.d")
End(Not run)

focusWin 99

focusWin Set the Focus on a Particular Window

Description

Bring the specified window into focus, and set it as the active window. focusWin will fail to bring the window
into focus if it is called from the R console, since the R console returns focus to itself once a function returns.
However, it will work if focusWin is called as a result of calling a function from the GUI window. (i.e., pushing
a button or any other widget that has a function argument).

Usage

focusWin(winName, winVal=TRUE)

Arguments

winName name of window to focus

winVal if TRUE, associate winName with the default window for setWinVal and getWinVal

Examples

Not run:
focus <- function() {

winName <- getWinVal()$select;
focusWin(winName);
cat("calling focusWin(\"", winName, "\")\n", sep="");
cat("getWinVal()$myvar = ", getWinVal()$myvar, "\n\n", sep=""); };

#create three windows named win1, win2, win3
#each having three radio buttons, which are used to change the focus
for(i in 1:3) {

winDesc <- c(
paste('window name=win',i,' title="Win',i,'"', sep=''),
paste('entry myvar ', i, sep=''),
'radio name=select value=win1 text="one" function=focus mode=character',
'radio name=select value=win2 text="two" function=focus mode=character',
'radio name=select value=win3 text="three" function=focus mode=character');

createWin(winDesc, astext=TRUE); };
End(Not run)

genMatrix Generate Test Matrices for plotBubbles

Description

Generate a test matrix of random numbers (mu = mean and signa = standard deviation), primarily for plotBubbles.

Usage

genMatrix(m,n,mu=0,sigma=1)

100 getChoice

Arguments

m number of rows

n number of columns

mu mean of normal distribution

sigma standard deviation of normal distribution

Value

An m by n matrix with normally distributed random values.

See Also

plotBubbles

Examples

plotBubbles(genMatrix(20,6))

getChoice Choose One String Item from a List of Choices

Description

Prompts the user to choose one string item from a list of choices displayed in a GUI. The simplest case getChoice()
yields TRUE or FALSE.

Usage

getChoice(choice=c("Yes","No"), question="Make a choice: ",
winname="getChoice", horizontal=TRUE, radio=FALSE,
qcolor="blue", gui=FALSE, quiet=FALSE)

Arguments

choice vector of strings from which to choose.

question question or prompting statement.

winname window name for the getChoice GUI.

horizontal logical: if TRUE, display the choices horizontally, else vertically.

radio logical: if TRUE, display the choices as radio buttons, else as buttons.

qcolor colour for question.

gui logical: if TRUE, getChoice is functional when called from a GUI, else it is functional from
command line programs.

quiet logical: if TRUE, don’t print the choice on the command line.

Details

The user’s choice is stored in .PBSmod$options$getChoice (or whatever winname is supplied).

getChoice generates an onClose function that returns focus to the calling window (if applicable) and prints
out the choice.

getGUIoptions 101

Value

If called from a GUI (gui=TRUE), no value is returned directly. Rather, the choice is written to the PBS options
workspace, accessible through getPBSoptions("getChoice") (or whatever winname was supplied).

If called from a command line program (gui=FASLE), the choice is returned directly as a string scalar (e.g.,
answer <- getChoice(gui=F)).

Note

Microsoft Windows users may experience difficulties switching focus between the R console and GUI windows.
The latter frequently disappear from the screen and need to be reselected (either clicking on the task bar or pressing
<Alt><Tab>. This issue can be resolved by switching from MDI to SDI mode. From the R console menu bar,
select <Edit> and <GUI preferences>, then change the value of “single or multiple windows” to SDI.

See Also

chooseWinVal, getWinVal, setWinVal

Examples

Not run:
#-- Example 1
getChoice(c("Fame","Fortune","Health","Beauty","Lunch"),

"What do you want?",qcolor="red",gui=F)

#-- Example 2
getChoice(c("Homer Simpson","Wilberforce Humphries","Miss Marple"),

"Who`s your idol?",horiz=F,radio=T,gui=F)
End(Not run)

getGUIoptions Get PBS Options for Widgets

Description

Get the PBS options declared for GUI usage and set their corresponding widget values.

Usage

getGUIoptions()

Details

The options declared using declareGUIoptions are copied from the R environment into widget values.
These widgets should have names that match the names of their corresponding options.

See Also

declareGUIoptions, setGUIoptions, promptWriteOptions, readPBSoptions

Examples

Not run:
getPBSoptions() #loads from default PBSoptions.txt
End(Not run)

102 getPBSoptions

getPBSext Get a Command Associated With a File Name

Description

Display all locally defined file extensions and their associated commands, or search for the command associated
with a specific file extension ext.

Usage

getPBSext(ext)

Arguments

ext optional string specifying a file extension.

Value

Command associated with file extension.

Note

These file associations are not saved from one PBS Modelling session to the next unless explicity saved and loaded
(see writePBSoptions and readPBSoptions).

See Also

setPBSext, openFile, clearPBSext

getPBSoptions Retreive A User Option

Description

Get a previously defined user option.

Usage

getPBSoptions(option)

Arguments

option name of option to retrieve. If omitted, a list containing all options is returned.

Value

Value of the specified option, or NULL if the specified option is not found.

See Also

getPBSext, readPBSoptions

getWinAct 103

getWinAct Retreive the Last Window Action

Description

Get a string vector of actions (latest to earliest).

Usage

getWinAct(winName)

Arguments

winName name of window to retrieve action from

Details

When a function is called from a GUI, a string descriptor associated with the action of the function is stored
internaly (appended to the first position of the action vector). A user can utilize this action as a type of argument
for programming purposes. The command getWinAct()[1] yields the latest action.

Value

String vector of recorded actions (latest first).

getWinFun Retrieve Names of Functions Referenced in a Window

Description

Get a vector of all function names referenced by a window.

Usage

getWinFun(winName)

Arguments

winName name of window, to retrieve its function list

Value

A vector of function names referenced by a window.

104 getYes

getWinVal Retreive Widget Values for Use in R Code

Description

Get a list of variables defined and set by the GUI widgets. An optional argument scope directs the function to
create local or global variables based on the list that is returned.

Usage

getWinVal(v=NULL, scope="", asvector=FALSE, winName="")

Arguments

v vector of variable names to retrieve from the GUI widgets. If NULL, v retrieves all variables
from all GUI widgets.

scope scope of the retrieval. The default sets no variables in the non-GUI environment; scope="L"
creates variables locally in relation to the parent frame that called the function; and scope="G"
creates global variables(pos=1).

asvector return a vector instead of a list. WARNING: if a widget variable defines a true vector or matrix,
this will not work.

winName window from which to select GUI widget values. The default takes the window that has most
recently received new user input.

Value

A list (or vector) with named components, where names and values are defined by GUI widgets.

See Also

parseWinFile, setWinVal, clearWinVal

getYes Prompt the User to Choose Yes or No

Description

Display a message prompt with "Yes" and "No" buttons.

Usage

getYes(message, title="Choice", icon="question")

Arguments

message message to display in prompt window.

title title of prompt window.

icon icon to display in prompt window; options are "error", "info", "question", or "warning".

importHistory 105

Value

Returns TRUE if the "Yes" button is clicked, FALSE if the "No" button is clicked.

See Also

showAlert, getChoice, chooseWinVal

Examples

Not run:
#default settings
if(getYes("Print the number 1?"))

print(1)
End(Not run)

importHistory Import a History List from a File

Description

Import a history list from file fname, and place it into the history list hisname.

Usage

importHistory(hisname="", fname="", updateHis=TRUE)

Arguments

hisname name of the history list to be populated. The default ("") uses the value from getWinAct()[1].

fname file name of history file to import. The default ("") causes an open-file window to be dis-
played.

updateHis logical: if TRUE, update the history widget to reflect the change in size and index.

See Also

exportHistory, initHistory, promptOpenFile

initHistory Create Structures for a New History Widget

Description

PBS history functions (below) are available to those who would like to use the package’s history functionality,
without using the pre-defined history widget. These functions allow users to create customized history widgets.

106 initHistory

Usage

initHistory(hisname,indexname=NULL,sizename=NULL,modename=NULL,
func=NULL,overwrite=TRUE)

rmHistory(hisname="", index="")
addHistory(hisname="")
forwHistory(hisname="")
backHistory(hisname="")
lastHistory(hisname="")
firstHistory(hisname="")
jumpHistory(hisname="", index="")
clearHistory(hisname="")

Arguments

hisname name of the history "list" to manipulate. If it is omitted, the function uses the value of
getWinAct()[1] as the history name. This allows the calling of functions directly from the
window description file (except initHistory, which must be called before createWin()).

indexname name of the index entry widget in the window description file. If NULL, then the current index
feature will be disabled.

sizename name of the current size entry widget. If NULL, then the current size feature will be disabled.

modename name of the radio widgets used to change addHistoryś mode. If NULL, then the default mode
will be to insert after the current index.

index index to the history item. The default ("") causes the value to be extracted from the widget
identified by indexname.

func name of user supplied function to call when viewing history items.

overwrite if TRUE, history (matching hisname) will be cleared. Otherwise, the imported history will
be merged with the current one.

Details

PBS Modelling includes a pre-built history widget designed to collect interesting choices of GUI variables so that
they can be redisplayed later, rather like a slide show.

Normally, a user would invoke a history widget simply by including a reference to it in the window description
file. However, PBS Modelling includes support functions (above) for customized applications.

To create a customized history, each button must be described separately in the window description file rather than
making reference to the history widget.

The history "List" must be initialized before any other functions may be called. The use of a unique history name
(hisname) is used to associate a unique history session with the supporting functions.

The indexname and sizename arguments correspond to the given names of entry widgets in the window
description file, which will be used to display the current index and total size of the list. The indexname entry
widget can also be used by jumpHistory to retrieve a target index.

See Also

importHistory, exportHistory

Examples

Not run:
Example of creating a custom history widget that saves values
whenever the "Plot" button is pressed. The user can tweak the

isWhat 107

inputs "a", "b", and "points" before each "Plot" and see the
"Index" increase. After sufficient archiving, the user can review
scenarios using the "Back" and "Next" buttons.
A custom history is needed to achieve this functionality since
the packages pre-defined history widget does not update plots.

To start, create a Window Description to be used with createWin
using astext=TRUE. P.S. Watch out for special characters which
must be "escaped" twice (first for R, then PBSmodelling).

winDesc <- '
window title="Custom History"
vector names="a b k" labels="a b points" font="bold" \\
values="1 1 1000" function=myPlot
grid 1 3

button function=myHistoryBack text="<- Back"
button function=myPlot text="Plot"
button function=myHistoryForw text="Next ->"

grid 2 2
label "Index"
entry name="myHistoryIndex" width=5
label "Size"
entry name="myHistorySize" width=5

'
Convert text to vector with each line represented as a new element
winDesc <- strsplit(winDesc, "\n")[[1]]

Custom functions to update plots after restoring history values
myHistoryBack <- function() {

backHistory("myHistory");
myPlot(saveVal=FALSE); # show the plot with saved values

}
myHistoryForw <- function() {

forwHistory("myHistory");
myPlot(saveVal=FALSE); # show the plot with saved values

}
myPlot <- function(saveVal=TRUE) {

save all data whenever plot is called (directly)
if (saveVal) addHistory("myHistory");
getWinVal(scope="L");
tt <- 2*pi*(0:k)/k;
x <- (1+sin(a*tt)); y <- cos(tt)*(1+sin(b*tt));
plot(x, y);

}

initHistory("myHistory", "myHistoryIndex", "myHistorySize")
createWin(winDesc, astext=TRUE)
End(Not run)

isWhat Identify an Object and Print Information

Description

Identify an object by class, mode, typeof, and attributes.

108 loadC

Usage

isWhat(x)

Arguments

x an R object

Value

No value is returned. The function prints the object’s characteristics on the command line.

loadC Launch a GUI for Compiling and Loading C Code

Description

A GUI interface allows users to edit, compile, and embed C functions in the R environment.

Usage

loadC()

Details

The function loadC() launches an interactive GUI that can be used to manage the construction of C func-
tions intended to be called from R. The GUI provides tools to edit, compile, load, and run C functions in the R
environment.

The loadC GUI also includes a tool for comparison between the running times and return values of R and C
functions. It is assumed that the R and C functions are named prefix.r and prefix.c, respectively, where
prefix can be any user-chosen prefix. If an initialization function prefix.init exists, it is called before the
start of the comparison.

The GUI controls:

File Prefix Prefix for .c and .r files.
Lib Prefix Prefix for shared library object.
Set WD Set the working directory.
Open Log Open the log file.
Open.c File Open the file prefix.c from the working directory.
Open .r File Open the file prefix.r from the working directory.
COMPILE Compile prefix.c into a shared library object.
LOAD Load the shared library object.
SOURCE R Source the file prefix.r.
UNLOAD Unload the shared library object.
Options
Editor Text editor to use.
Update Commit option changes.
Browse Browse for a text editor.
Clean Options
Select All Select all check boxes specifying file types.
Select None Select none of the check boxes.
Clean Proj Clean the project of selected file types.
Clean All Clean the directory of selected file types.

openExamples 109

Comparison
Times to Run Number of times to run the R and C functions.
RUN Run the comparison between R and C functions.
R Time Computing time to run the R function multiple times.
C Time Computing time to run the C function multiple times.
Ratio Ratio of R/C run times.

See Also

compileC

openExamples Open Example Files from a Package

Description

Open examples from the examples subdirectory of a given package.

Usage

openExamples(package, prefix, suffix)

Arguments

package name of the package that contains the examples.
prefix prefix of the example file(s).
suffix character vector of suffixes for the example files.

Details

Copies of each example file are placed in the working directory and opened. If files with the same name already
exist, the user is prompted with a choice to overwrite.

To use this function in a window description file, the package, prefix and suffix arguments must be
specified as the action of the widget that calls openExamples. Furthermore, package, prefix, and each
suffix must be separated by commas. For example, action=myPackage,example1,.r,.c will copy
example1.r and example2.c from the examples directory of the package myPackage to the working
directory and open these files. If the function was called by a widget, a widget named prefix will be set to the
specified prefix.

Note

If all the required arguments are missing, it is assumed that the function is being called by a GUI widget.

See Also

openFile, openProjFiles, openPackageFile

Examples

Not run:
Copies example1.c and example2.r from the examples directory in
myPackage to the working directory, and opens these files
openExamples("myPackage", "example1", c(".r", ".c"))
End(Not run)

110 openPackageFile

openFile Open a File with an Associated Program

Description

Open a file using the program associated with its extension defined by the Windows shell. Non-windows users,
or users wishing to overide the default application, can specify a program association using setPBSext.

Usage

openFile(fname)

Arguments

fname name of file to open.

Value

An invisible string vector of the file names and/or commands + file names.

Note

If a command is registered with setPBSext, then openFile will replace all occurrences of "%f" with the
absolute path of the filename, before executing the command.

See Also

getPBSext, setPBSext, clearPBSext, writePBSoptions

Examples

Not run:
Set up firefox to open .html files
setPBSext("html", '"c:/Program Files/Mozilla Firefox/firefox.exe" file://%f')
openFile("foo.html")
End(Not run)

openPackageFile Open a File from a Package Subdirectory

Description

Open a file from a package in the R library, given the package name and the file path relative to the package root
directory.

Usage

openPackageFile(package, filepath)

Arguments

package name of the package

filepath path to file from the package’s root directory

openProjFiles 111

Details

The openFile function is used to open the file, using associations set by setPBSext.

To use this function in a window description file, the package and filepath arguments must be specified
as the action of the widget that calls openPackageFile. Furthermore, package and filepath must be
separated by commas (e.g., action=myPackage,/doc/help.pdf).

Note

If all the required arguments are missing, it is assumed that the function is being called by a GUI widget.

See Also

openFile, setPBSext, openProjFiles, openExamples

Examples

Not run:
openPackageFile("myPackage", "/doc/help.pdf")
End(Not run)

openProjFiles Open Files with a Common Prefix

Description

Open one or more files from the working directory, given one file prefix and one or more file suffixes.

Usage

openProjFiles(prefix, suffix, package=NULL, warn=NULL, alert=TRUE)

Arguments

prefix a single prefix to prepend to each suffix

suffix a character vector of suffixes to append to the prefix

package name of the package that contains templates, or NULL to not use templates

warn if specified, use to temporarily override the current R warn option during this function’s activ-
ity; if NULL, the current warning settings are used.

alert if TRUE, an alert message is shown should any files fail to be opened;
if FALSE, no alert is displayed.

Details

The suffixes may contain wildcards ("*" to match 0 or more characters, "?" to match any single character).

For any file that does not exist in the working directory, a template can optionally be copied from a directory
named templates in the specified package. The templates in this directory should have the prefix template,
followed by the suffix to match when openProjFiles is called (e.g., template.c to match the suffix .c.
After being copied to the working directory, the new file is renamed to use the specified prefix.

To use this function in a window description file, the package and suffix arguments must be specified as the
action of the widget that calls openProjFiles. Furthermore, package and each suffix must be separated
by commas. For example, action=myPackage,.r,.c will try to open a .r and .c file in the working

112 pad0

directory, copying templates from the template directory for the package myPackage, if the files didn’t already
exist. To disable templates, leave package unspecified but keep the leading comma (e.g., action=,.r,.c).
When the function is called from a widget in this fashion, the prefix is taken from the value of a widget named
prefix.

Note

If all the required arguments are missing, it is assumed that the function is being called by a GUI widget.

See Also

openFile, setPBSext, openExamples, openPackageFile

Examples

Not run:
openProjFiles("foo", c(".r", ".c"), package="myPackage")
End(Not run)

pad0 Pad Numbers with Leading Zeroes

Description

Convert numbers to integers then text, and pad them with leading zeroes.

Usage

pad0(x, n, f = 0)

Arguments

x vector of numbers

n number of text characters representing a padded integer

f factor of 10 transformation on x before padding

Value

A character vector representing x with leading zeroes.

Examples

resetGraph(); x <- pad0(x=123,n=10,f=0:7);
addLabel(.5,.5,paste(x,collapse="\n"),cex=1.5);

parseWinFile 113

parseWinFile Convert a Window Description File into a List Object

Description

Parse a window description file (markup file) into the list format expected by createWin.

Usage

parseWinFile(fname, astext=FALSE)

Arguments

fname file name of the window description file.

astext if TRUE, fname is interpreted as a vector of strings, with each element representing a line of
code in a window description file.

Value

A list representing a parsed window description file that can be directly passed to createWin.

Note

All widgets are forced into a 1-column by N-row grid.

See Also

createWin, compileDescription

Examples

Not run:
x<-parseWinFile(system.file("examples/LissFigWin.txt",package="PBSmodelling"))
createWin(x)
End(Not run)

pause Pause Between Graphics Displays or Other Calculations

Description

Pause, typically between graphics displays. Useful for demo purposes.

Usage

pause(s = "Press <Enter> to continue")

Arguments

s text issued on the command line when pause is invoked.

114 plotACF

pickCol Pick a Colour From a Palette and get the Hexadecimal Code

Description

Display an interactive colour palette from which the user can choose a colour.

Usage

pickCol(returnValue=TRUE)

Arguments

returnValue If TRUE, display the full colour palette, choose a colour, and return the hex value to the R
session.
If FALSE, use an intermediate GUI to interact with the palette and display the hex value of the
chosen colour.

Value

A hexidecimal colour value.

See Also

testCol

Examples

Not run:
junk<-pickCol(); resetGraph(); addLabel(.5,.5,junk,cex=4,col=junk);
End(Not run)

plotACF Plot Autocorrelation Bars From a Data Frame, Matrix, or Vector

Description

Plot autocorrelation bars (ACF) from a data frame, matrix, or vector.

Usage

plotACF(file, lags=20,
clrs=c("blue","red","green","magenta","navy"), ...)

Arguments

file data frame, matrix, or vector of numeric values.

lags maximum number of lags to use in the ACF calculation.

clrs vector of colours. Patterns are repeated if the number of fields exceeed the length of clrs.

... additional arguments for plot or lines.

plotAsp 115

Details

This function is designed primarily to give greater flexibility when viewing results from the R-package BRugs.
Use plotACF in conjuction with samplesHistory("*",beg=0,plot=FALSE) rather than samplesAutoC
which calls plotAutoC.

Examples

resetGraph(); plotACF(trees,lwd=2,lags=30);

plotAsp Construct a Plot with a Specified Aspect Ratio

Description

Plot x and y coordinates using a specified aspect ratio.

Usage

plotAsp(x, y, asp=1, ...)

Arguments

x vector of x-coordinate points in the plot.

y vector of y-coordinate points in the plot.

asp y/x aspect ratio.

... additional arguments for plot.

Details

The function plotAsp differs from plot(x,y,asp=1) in the way axis limits are handled. Rather than expand
the range, plotAsp expands the margins through padding to keep the aspect ratio accurate.

Examples

x <- seq(0,10,0.1)
y <- sin(x)
par(mfrow=2:1)
plotAsp(x,y,asp=1,xlim=c(0,10),ylim=c(-2,2), main="sin(x)")
plotAsp(x,y^2,asp=1,xlim=c(0,10),ylim=c(-2,2), main="sin^2(x)")

116 plotBubbles

plotBubbles Construct a Bubble Plot from a Matrix

Description

Construct a bubble plot for a matrix z.

Usage

plotBubbles(z, xval=FALSE, yval=FALSE, dnam=FALSE, rpro=FALSE,
cpro=FALSE, rres=FALSE, cres=FALSE, powr=1, size=0.2, lwd=2,
clrs=c("black","red","blue"), hide0=FALSE, debug=FALSE, ...)

Arguments

z input matrix

xval x-values for the columns of z. if xval=TRUE, the first row contains x-values for the columns.

yval y-values for the rows of z. If yval=TRUE, the first column contains y-values for the rows.

dnam logical: if TRUE, attempt to use dimnames of input matrix z as xval and yval. The
dimnames are converted to numeric values and must be strictly inreasing or decreasing. If
successful, these values will overwrite previously specified values of xval and yval or any
default indices.

rpro logical: if TRUE, convert rows to proportions.

cpro logical: if TRUE, convert columns to proportions.

rres logical: if TRUE, use row residuals (subtract row means).

cres logical: if TRUE, use column residuals (subtract column means).

powr power transform. Radii are proportional to z^powr. Note: powr=0.5 yields bubble areas
proportional to z.

size size (inches) of the largest bubble.

lwd line width for drawing circles.

clrs colours (3-element vector) used for positive, negative, and zero values, respectively.

hide0 logical: if TRUE, hide zero-value bubbles.

debug logical: if TRUE, display debug information.

... additional arguments for symbols function.

Details

The function plotBubbles essentially flips the z matrix visually. The columns of z become the x-values while
the rows of z become the y-values, where the first row is displayed as the bottom y-value and the last row is
displayed as the top y-value. The function’s original intention was to display proportions-at-age vs. year.

See Also

genMatrix

plotCsum 117

Examples

plotBubbles(round(genMatrix(40,20),0),clrs=c("green","grey","red"));

data(CCA.qbr)
plotBubbles(CCA.qbr,cpro=TRUE,powr=.5,dnam=TRUE,size=.15,

ylim=c(0,70),xlab="Year",ylab="Quillback Rockfish Age")

plotCsum Plot Cumulative Sum of Data

Description

Plot the cumulative frequency of a data vector or matrix, showing the median and mean of the distribution.

Usage

plotCsum(x, add = FALSE, ylim = c(0, 1), xlab = "Measure",
ylab = "Cumulative Proportion", ...)

Arguments

x vector or matrix of numeric values.

add logical: if TRUE, add the cumulative frequency curve to a current plot.

ylim limits for the y-axis.

xlab label for the x-axis.

ylab label for the y-axis.

... additional arguments for the plot function.

Examples

x <- rgamma(n=1000,shape=2)
plotCsum(x)

plotDens Plot Density Curves from a Data Frame, Matrix, or Vector

Description

Plot the density curves from a data frame, matrix, or vector. The mean density curve of the data combined is also
shown.

Usage

plotDens(file, clrs=c("blue","red","green","magenta","navy"), ...)

Arguments

file data frame, matrix, or vector of numeric values.

clrs vector of colours. Patterns are repeated if the number of fields exceeed the length of clrs.

... additional arguments for plot or lines.

118 plotFriedEggs

Details

This function is designed primarily to give greater flexibility when viewing results from the R-package BRugs.
Use plotDens in conjuction with samplesHistory("*",beg=0,plot=FALSE) rather than samplesDensity
which calls plotDensity.

Examples

z <- data.frame(y1=rnorm(50,sd=2),y2=rnorm(50,sd=1),y3=rnorm(50,sd=.5))
plotDens(z,lwd=3)

plotFriedEggs Render a Pairs Plot as Fried Eggs and Beer

Description

Create a pairs plot where the lower left half comprises either fried egg contours or smoke ring contours, the upper
right half comprises glasses of beer filled to the correlation point, and the diagonals show frequency histograms
of the input data.

Usage

plotFriedEggs(A, eggs=TRUE, rings=TRUE, levs=c(0.01,0.1,0.5,0.75,0.95),
pepper=200, replace=FALSE, jitt=c(1,1), bw=25, histclr=NULL)

Arguments

A data frame or matrix for use in a pairs plot.

eggs logical: if TRUE, fry eggs in the lower panels.

rings logical: if TRUE, blow smoke rings in the lower panels.

levs explicit contour levels expressed as quantiles.

pepper number of samples to draw from A to pepper the plots.

replace logical: if TRUE, sample A with replacement.

jitt argument factor used by function base::jitter when peppering. If user supplies two
numbers, the first will jitter x, the second will jitter y.

bw argument bandwidth used by function KernSmooth::bkde2D.

histclr user-specified colour(s) for histogram bars along the diagonal.

Details

This function comes to us from Dr. Steve Martell of the Fisheries Science Centre at UBC. Obviously many hours
of contemplation with his students at the local pub have contributed to this unique rendition of a pairs plot.

Note

If eggs=TRUE and rings=FALSE, fried eggs are served.
If eggs=FALSE and rings=TRUE, smoke rings are blown.
If eggs=TRUE and rings=TRUE, only fried eggs are served.
If eggs=FALSE and rings=FALSE, only pepper is sprinkled.

plotTrace 119

See Also

plotBubbles, scalePar

KernSmooth::bkde2D, grDevices::contourLines, graphics::contour

Examples

x=rnorm(5000,10,3); y=-x+rnorm(5000,1,4); z=x+rnorm(5000,1,3)
A=data.frame(x=x,y=y,z=z)
plotFriedEggs(A,eggs=TRUE,rings=FALSE)
pause("Here are the eggs...(Press Enter for next)")
plotFriedEggs(A,eggs=FALSE,rings=TRUE)
pause("Here are the rings...(Press Enter for next)")
plotFriedEggs(A,eggs=FALSE,rings=FALSE)
cat("Here is the pepper alone.\n")

plotTrace Plot Trace Lines from a Data Frame, Matrix, or Vector

Description

Plot trace lines from a data frame or matrix where the first field contains x-values, and subsequent fields give
y-values to be traced over x. If input is a vector, this is traced over the number of observations.

Usage

plotTrace(file, clrs=c("blue","red","green","magenta","navy"), ...)

Arguments

file data frame or matrix of x and y-values, or a vector of y-values.

clrs vector of colours. Patterns are repeated if the number of traces (y-fields) exceeed the length of
clrs.

... additional arguments for plot or lines.

Details

This function is designed primarily to give greater flexibility when viewing results from the R-package BRugs.
Use plotTrace in conjuction with samplesHistory("*",beg=0,plot=FALSE) rather than samplesHistory
which calls plotHistory.

Examples

z <- data.frame(x=1:50,y1=rnorm(50,sd=3),y2=rnorm(50,sd=1),y3=rnorm(50,sd=.25))
plotTrace(z,lwd=3)

120 promptOpenFile

presentTalk Run an R Presentation

Description

Start an R talk from a talk description file that launches a control GUI.

Usage

presentTalk(x, debug=FALSE)

Arguments

x string name of talk description file.

debug logical: if TRUE, the command line reflects indices and some booleans.

Details

presentTalk is a tool that facilitates lectures and workshops in R. The function allows the presenter to show
code snippets alongside their execution, making use of R’s graphical capabilities. When presentTalk is called,
a graphical user interface (GUI) is launched that allows the user to control the flow of the talk (e.g., switching
between talks or skipping to various sections of a talk.

The automatic control buttons allow the user to move forward or backward in the talk. The GO button moves
forward one tag segment, the Back button moves back to the previous tag segment. The blue buttons allow
movement among sections - Start to the first section of the talk, Prev to the previous section, Curr to the start
of the current section, and Next to the next section.

In addition to the automatic menu items, a user can add buttons to the GUI that accomplish similar purposes.

Note

The use of chunk in the R code is equivalent to the use of segment in the documentation.
See the PBSmodelling User’s Guide for more information.

promptOpenFile Display an "Open File" Dialogue

Description

Display the default Open prompt provided by the Operating System.

Usage

promptOpenFile(initialfile="", filetype=list(c("*","All Files")),
open=TRUE)

promptSaveFile 121

Arguments

initialfile file name of the text file containing the list.

filetype a list of character vectors indicating file types made available to users of the GUI. Each vector
is of length one or two. The first element specifies either the file extension or "*" for all file
types. The second element gives an optional descriptor name for the file type. The supplied
filetype list appears as a set of choices in the pull-down box labelled “Files of type:"”.

open logical: if TRUE display Open prompt, if FALSE display Save As prompt.

Value

The file name and path of the file selected by the user.

See Also

promptSaveFile

Examples

Not run:
Open a filename, and return it line by line in a vector
scan(promptOpenFile(),what=character(),sep="\n")

Illustrates how to set filetype.
promptOpenFile("intial_file.txt", filetype=list(c(".txt", "text files"),

c(".r", "R files"), c("*", "All Files")))
End(Not run)

promptSaveFile Display a "Save File" Dialogue

Description

Display the default Save As prompt provided by the Operating System.

Usage

promptSaveFile(initialfile="", filetype=list(c("*", "All Files")),
save=TRUE)

Arguments

initialfile file name of the text file containing the list.

filetype a list of character vectors indicating file types made available to users of the GUI. Each vector
is of length one or two. The first element specifies either the file extension or "*" for all file
types. The second element gives an optional descriptor name for the file type. The supplied
filetype list appears as a set of choices in the pull-down box labelled “Files of type:”.

save logical: if TRUE display Save As prompt, if FALSE display Open prompt.

Value

The file name and path of the file selected by the user.

122 promptWriteOptions

See Also

promptOpenFile

Examples

Not run:
#illustrates how to set filetype.
promptSaveFile("intial_file.txt", filetype=list(c(".txt", "text files"),

c(".r", "R files"), c("*", "All Files")))
End(Not run)

promptWriteOptions Prompt the User to Write Changed Options

Description

If changes have been made to PBS options, this function allows the user to choose whether to write PBS options
to an external file that can be loaded later by readPBSoptions.

Usage

promptWriteOptions(fname="")

Arguments

fname name of file where options will be saved.

Details

If there are options that have been changed in the GUI but have not been commited to PBSmodelling memory in
the global R environment, the user is prompted to choose whether or not to commit these options.

Then, if any PBS options have been changed, the user is prompted to choose whether to save these options to the
file fname. (When a new R session is started or when a call to readPBSoptions or writePBSoptions
is made, PBS options are considered to be unchanged; when an option is set, the options are considered to be
changed).

If fname="", the user is prompted to save under the file name last used by a call to readPBSoptions or
writePBSoptions if available. Otherwise, the default file name "PBSoptions.txt" is used.

See Also

writePBSoptions, readPBSoptions, setPBSoptions

Examples

Not run:
promptWriteOptions() #uses default filename PBSoptions.txt
End(Not run)

readList 123

readList Read a List from a File in PBS Modelling Format

Description

Read in a list previously saved to a file by writeList. At present, only two formats are supported - R’s native
format used by the dput function or an ad hoc PBSmodelling format. The function readList detects the
format automatically.

For information about the PBSmodelling format, see writeList.

Usage

readList(fname)

Arguments

fname file name of the text file containing the list.

See Also

writeList, unpackList

readPBSoptions Read PBS Options from an External File

Description

Load options that were saved using writePBSoptions, for use with openFile, getPBSoptions or in-
terfaces such as loadC.

Usage

readPBSoptions(fname="PBSoptions.txt")

Arguments

fname file name or full path of file from which the options will be loaded.

Note

If an option exists in R memory but not in the saved file, the option is not cleared from memory.

See Also

writePBSoptions, getGUIoptions, openFile, getPBSoptions

124 restorePar

resetGraph Reset par Values for a Plot

Description

Reset par() to default values to ensure that a new plot utilizes a full figure region. This function helps manage
the device surface, especially after previous plotting has altered it.

Usage

resetGraph()

See Also

resetGraph

restorePar Get Actual Parameters from Scaled Values

Description

Restore scaled parameters to their original units. Used in minimization by calcMin.

Usage

restorePar(S,pvec)

Arguments

S scaled parameter vector.
pvec a data frame comprising four columns - c("val","min","max","active") and as

many rows as there are model parameters. The "active" field (logical) determines whether
the parameters are estimated (TRUE) or remain fixed (FALSE).

Details

Restoration algorithm: P = Pmin + (Pmax − Pmin)(sin(πS2))2

Value

Parameter vector converted from scaled units to original units specified by pvec.

See Also

scalePar, calcMin, GT0

Examples

pvec <- data.frame(val=c(1,100,10000),min=c(0,0,0),max=c(5,500,50000),
active=c(TRUE,TRUE,TRUE))

S <- c(.5,.5,.5)
P <- restorePar(S,pvec)
print(cbind(pvec,S,P))

runDemos 125

runDemos Interactive GUI for R Demos

Description

An interactive GUI for accessing demos from any R package installed on the user’s system. runDemos is a
convenient alternative to R’s demo function.

Usage

runDemos(package)

Arguments

package display demos from a particular package (optional).

Details

If the argument package is not specified, the function will look for demos in all packages installed on the user’s
system.

Note

The runDemosGUI attempts to retain the user’s objects and restore the working directory. However, pre-existing
objects will be overwritten if their names co-incide with names used by the various demos. Also, depending on
conditions, the user may lose working directory focus. We suggest that users run this demo from a project where
data objects are not critical. — USER BEWARE —

See Also

runExamples for examples specific to PBSmodelling.

runExamples Run GUI Examples Included with PBS Modelling

Description

Display an interactive GUI to demonstrate PBS Modelling examples.

The example source files can be found in the R directory .../library/PBSmodelling/examples.

Usage

runExamples()

Details

Some examples use external packages which must be installed to work correctly:

BRugs - LinReg, MarkRec, and CCA;

odesolve/ddesolve - FishRes;

PBSmapping - FishTows.

126 scalePar

Note

The examples are copied from .../library/PBSmodelling/examples to R’s current temporary work-
ing directory and run from there.

See Also

runDemos

scalePar Scale Parameters to [0,1]

Description

Scale parameters for function minimization by calcMin.

Usage

scalePar(pvec)

Arguments

pvec a data frame comprising four columns - c("val","min","max","active") and as
many rows as there are model parameters. The "active" field (logical) determines whether
the parameters are estimated (TRUE) or remain fixed (FALSE).

Details

Scaling algorithm: S = 2
πasin

√
P−Pmin

Pmax−Pmin

Value

Parameter vector scaled between 0 and 1.

See Also

restorePar, calcMin, GT0

Examples

pvec <- data.frame(val=c(1,100,10000),min=c(0,0,0),max=c(5,500,50000),
active=c(TRUE,TRUE,TRUE))

S <- scalePar(pvec)
print(cbind(pvec,S))

setFileOption 127

setFileOption Set a PBS File Path Option Interactively

Description

Set a PBS option by browsing for a file. This function provides an alternative to using setPBSoptions when
setting an option that has a path to a file as its value.

Usage

setFileOption(option)

Arguments

option name PBS option to change

Note

If all the required arguments are missing, it is assumed that the function is being called by a GUI widget.

See Also

setPathOption, setPBSoptions

Examples

Not run:
setPathOption("editor")
End(Not run)

setGUIoptions Set PBS Options from Widget Values

Description

Set PBS options from corresponding values of widgets in a GUI.

Usage

setGUIoptions(option)

Arguments

option the name of a single option or the string "*".

128 setPBSext

Details

A GUI may have PBS options that it uses, which have corresponding widgets that are used for entering values for
these options. These are declared by declareGUIoptions.

If the option argument is the name of an option, setGUIoptions transfers the value of this option from a
same-named widget into PBS options global R environment database.

If the option argument is "*", then all the options that have been declared by declareGUIoptions will be
transferred in this fashion.

To use this function in a window description file, the option argument must be specified as the action of the
widget that calls setGUIoptions – action=editor or action=* for example.

Note

If all the required arguments are missing, it is assumed that the function is being called by a GUI widget.

See Also

declareGUIoptions, getGUIoptions, setPBSoptions,

Examples

Not run:
setGUIoptions("editor")
End(Not run)

setPBSext Set a Command Associated with a File Name Extension

Description

Set a command with an associated extension, for use in openFile. The command must specify where the target
file name is inserted by indicating a "%f".

Usage

setPBSext(ext, cmd)

Arguments

ext string specifying the extension suffix.

cmd command string to associate with the extension.

Note

These values are not saved from one PBS Modelling session to the next.

See Also

getPBSext, openFile, clearPBSext

setPBSoptions 129

setPBSoptions Set A User Option

Description

Options set by the user for use by other functions.

Usage

setPBSoptions(option, value, sublist=FALSE)

Arguments

option name of the option to set.

value new value to assign this option.

sublist if value is a sublist (list component) of option, this list component can be changed indi-
vidually using sublist=TRUE.

Note

A value .PBSmod$.options$.optionsChanged is set to TRUE when an option is changed, so that the
user doesn’t always have to be prompted to save the options file.
By default, .PBSmod$.options$.optionsChanged is not set or NULL.
Also, if an option is set to "" or NULL then it is removed.
.initPBSoptions() is now called first (options starting with a dot "." do not set .optionsChanged).

See Also

getPBSoptions, writePBSoptions, readPBSoptions

setPathOption Set a PBS Path Option Interactively

Description

Set a PBS option by browsing for a directory. This function provides an alternative to using setPBSoptions
when setting an option that has a path as its value.

Usage

setPathOption(option)

Arguments

option name PBS option to change

Note

If all the required arguments are missing, it is assumed that the function is being called by a GUI widget.

130 setWinVal

See Also

setFileOption, setPBSoptions

Examples

Not run:
setPathOption("myPath")
End(Not run)

setWinAct Add a Window Action to the Saved Action Vector

Description

Append a string value specifying an action to the first position of an action vector.

Usage

setWinAct(winName, action)

Arguments

winName window name where action is taking place.

action string value describing an action.

Details

When a function is called from a GUI, a string descriptor associated with the action of the function is stored
internaly (appended to the first position of the action vector). A user can utilize this action as a type of argument
for programming purposes. The command getWinAct()[1] yields the latest action.

Sometimes it is useful to “fake” an action. Calling setWinAct allows the recording of an action, even if a button
has not been pressed.

setWinVal Update Widget Values

Description

Update a widget with a new value.

Usage

setWinVal(vars, winName)

Arguments

vars a list or vector with named components.

winName window from which to select GUI widget values. The default takes the window that has most
recently received new user input.

setwdGUI 131

Details

The vars argument expects a list or vector with named elements. Every element name corresponds to the widget
name which will be updated with the supplied element value.

The vector, matrix, and data widgets can be updated in several ways. If more than one name is specified
for the names argument of these widgets, each element is treated like an entry widget.

If however, a single name describes any of these three widgets, the entire widget can be updated by passing an
appropriately sized object.

Alternatively, any element can be updated by appending its index in square brackets to the end of the name. The
data widget is indexed differently than the matrix widget by adding "d" after the brackets. This tweak is
necessary for the internal coding (bookkeeping) of PBS Modelling. Example: "foo[1,1]d".

See Also

getWinVal, createWin

Examples

Not run:
winDesc <- c("vector length=3 name=vec",

"matrix nrow=2 ncol=2 name=mat",
"slideplus name=foo");

createWin(winDesc, astext=TRUE)
setWinVal(list(vec=1:3, "mat[1,1]"=123, foo.max=1.5, foo.min=0.25, foo=0.7))
End(Not run)

setwdGUI Browse for Working Directory and Optionally Find Prefix

Description

Allows the user to browse a directory tree to set the working directory. Optionally, files with given suffixes can be
located in the new directory.

Usage

setwdGUI(suffix)

Arguments

suffix character vector of suffixes or "" (See Details).

Details

The suffix argument is passed to a call to findPrefix after the working directory is changed (See setwd).
If suffix is set to the empty string "", then findPrefix will not be called.

To use this function in a window description file, the suffix argument must be specified as the action of the
widget that calls setwdGUI. Furthermore, the suffixes must be separated by commas (e.g., action=.c,.cpp).
If action=, is specified, then findPrefix will not be called.

Value

If suffixes are given, a character vector of prefixes of all files in the working directory that match one of the given
suffixes is returned; otherwise, the function returns invisible().

132 show0

Note

If all the required arguments are missing, it is assumed that the function is being called by a GUI widget.

See Also

findPrefix, setwd

Examples

Not run:
#match files that end with ".a" followed by 0 or more characters, ".b" followed
#by any single character, ".c", or "-old.d" (a suffix does not have to be a
#file extension)
findPrefix(".a*", ".b?", ".c", "-old.d")
End(Not run)

show0 Convert Numbers into Text with Specified Decimal Places

Description

Return a character representation of a number with added zeroes out to a specified number of decimal places.

Usage

show0(x, n, add2int = FALSE)

Arguments

x numeric data (scalar, vector, or matrix).
n number of decimal places to show, including zeroes.
add2int If TRUE, add zeroes on the end of integers.

Value

A scalar/vector of strings representing numbers. Useful for labelling purposes.

Note

This function does not round or truncate numbers. It simply adds zeroes if n is greater than the available digits in
the decimal part of a number.

Examples

frame()

#do not show decimals on integers
addLabel(0.25,0.75,show0(15.2,4))
addLabel(0.25,0.7,show0(15.1,4))
addLabel(0.25,0.65,show0(15,4))

#show decimals on integers
addLabel(0.25,0.55,show0(15.2,4,TRUE))
addLabel(0.25,0.5,show0(15.1,4,TRUE))
addLabel(0.25,0.45,show0(15,4,TRUE))

showAlert 133

showAlert Display a Message in an Alert Window

Description

Display an alert window that contains a specified message and an OK button for dismissing the window.

Usage

showAlert(message, title="Alert", icon="warning")

Arguments

message message to display in alert window

title title of alert window

icon icon to display in alert window; options are "error", "info", "question", or "warning".

See Also

getYes

Examples

Not run:
showAlert("Hello World!")
End(Not run)

showArgs Display Expected Widget Arguments

Description

Display the order and default values of all widget arguments. The list can be shortened by specifying a single
widget name.

Usage

showArgs(widget="")

Arguments

widget If specified, information about this one widget only is displayed. The default displays infor-
mation about all widgets.

Value

A text stream to the R console. Cannot be directed to a file or other device.

134 showHelp

showHelp Display Help Pages for Packages in HTML Browser

Description

Display the help pages for installed packages that match the supplied pattern in an HTML browser window.

Usage

showHelp(pat="methods")

Arguments

pat string pattern to match to package names

Details

The specified pattern is matched to R-packages installed on the user’s system. The code uses the PBSmodelling
function openFile to display the HTML Help Pages using a program that the system associates with html
extensions. On systems that do not support file extension associations, the function setPBSext can temporarily
set a command to associate with an extension.

Value

A list is invisibly returned, comprising:

Apacks all packages installed on user’s system

Spacks selected packages based on specified pattern

URLs path and file name of HTML Help Page

Help pages are displayed in a separate browser window.

Note

The connection time for browsers (at least in Windows OS) is slow. If the HTML browser program is not already
running, multiple matching pages will most likely not be displayed. However, subsequent calls to showHelp
should show all matches.

See Also

openFile, setPBSext, getPBSext

showRes 135

showRes Show Results of Expression Represented by Text

Description

Evaluate the supplied expression, reflect it on the command line, and show the results of the evaluation.

Usage

showRes(x, cr=TRUE, pau=TRUE)

Arguments

x an R expression to evaluate
cr logical: if TRUE, introduce extra carriage returns
pau logical: if TRUE, pause after expression reflection and execution

Value

The results of the expression are return invisibly.

Examples

showRes("x=rnorm(100)",pau=FALSE)

showVignettes Display Vignettes for Packages

Description

Create a GUI that displays all vignettes for installed packages. The user can choose to view the source file for
building the vignette or the final .pdf file.

Usage

showVignettes(package)

Arguments

package character string specifying package name that exists in the user’s R library

Details

If the argument package is not specified, the function will look for vignettes in all packages installed on the
user’s system. The user can choose to view the source file for building the vignette (usually *.Rnw or *.Snw
files) or the final build from the source code (*.pdf).

showVignettes uses the PBSmodelling function openFile to display the .Rnw and .pdf files using pro-
grams that the system associates with these extensions. On systems that do not support file extension associations,
the function setPBSext can temporarily set a command to associate with an extension.

See Also

showHelp, openFile, setPBSext, getPBSext

136 testCol

sortHistory Sort an Active or Saved History

Description

Utility to sort history. When called without any arguments, an interactive GUI is used to pick which history to
sort. When called with hisname, sort this active history widget. When called with file and outfile, sort
the history located in file and save to outfile.

Usage

sortHistory(file="", outfile=file, hisname="")

Arguments

file file name of saved history to sort.

outfile file to save sorted history to.

hisname name of active history widget and window it is located in, given in the form WINDOW.HISTORY.

Details

After selecting a history to sort (either from given arguments, or interactive GUI) the R data editor window will
be displayed. The editor will have one column named n̈ewẅhich will have numbers 1,2,3,...,n. This represents
the current ordering of the history. You may change the numbers around to define a new order. The list is sorted
by reassigning the index in row i as index i.

For example, if the history had three items 1,2,3. Reordering this to 3,2,1 will reverse the order; changing the list
to 1,2,1,1 will remove entry 3 and create two duplicates of entry 1.

See Also

importHistory, initHistory

testCol Display Named Colours Available Based on a Set of Strings

Description

Display colours as patches in a plot. Useful for programming purposes. Colours can be specified in any of 3
different ways: (i) by colour name, (ii) by hexidecimal colour code created by rgb(), or (iii) by an index to the
color() palette.

Usage

testCol(cnam=colors()[sample(length(colors()),15)])

Arguments

cnam vector of colour names to display. Defaults to 15 random names from the color palette.

testLty 137

See Also

pickCol

Examples

testCol(c("sky","fire","sea","wood"))

testCol(c("plum","tomato","olive","peach","honeydew"))

testCol(substring(rainbow(63),1,7))

#display all colours set in the colour palette
testCol(1:length(palette()))

#they can even be mixed
testCol(c("#9e7ad3", "purple", 6))

testLty Display Line Types Available

Description

Display line types available.

Usage

testLty(newframe = TRUE)

Arguments

newframe if TRUE, create a new blank frame, otherwise overlay current frame.

Note

Quick representation of first 20 line types for reference purposes.

testLwd Display Line Widths

Description

Display line widths. User can specify particular ranges for lwd. Colours can also be specified and are internally
repeated as necessary.

Usage

testLwd(lwd=1:20, col=c("black","blue"), newframe=TRUE)

Arguments

lwd line widths to display. Ranges can be specified.

col colours to use for lines. Patterns are repeated if length(lwd) > length(col)

newframe if TRUE, create a new blank frame, otherwise overlay current frame.

138 testWidgets

Examples

testLwd(3:15,col=c("salmon","aquamarine","gold"))

testPch Display Plotting Symbols and Backslash Characters

Description

Display plotting symbols. User can specify particular ranges (increasing continuous integer) for pch.

Usage

testPch(pch=1:100, ncol=10, grid=TRUE, newframe=TRUE, bs=FALSE)

Arguments

pch symbol codes to view.

ncol number of columns in display (can only be 2, 5, or 10). Most sensibly this is set to 10.

grid logical: if TRUE, grid lines are plotted for visual aid.

newframe logical: if TRUE reset the graph, otherwise overlay on top of the current graph.

bs logical: if TRUE, show backslash characters used in text statements (e.g., 30\272C = 30◦C).

Examples

testPch(123:255)
testPch(1:25,ncol=5)
testPch(41:277,bs=TRUE)

testWidgets Display Sample GUIs and their Source Code

Description

Display an interactive GUI to demonstrate the available widgets in PBS Modelling. A text window displays the
window description file source code. The user can modify this sample code and recreate the test GUI by pressing
the button below.

The Window Description Files can be found in the R directory
.../library/PBSmodelling/testWidgets.

Usage

testWidgets()

testWidgets 139

Details

Following are the widgets and default values supported by PBS Modelling. For detailed descriptions, see Ap-
pendix A in ‘PBSModelling-UG.pdf’ located in the R directory .../library/PBSmodelling/doc.

button text="Calculate" font="" fg="black" bg="" width=0
function="" action="button" sticky="" padx=0 pady=0

check name mode=logical checked=FALSE text="" font="" fg="black" bg=""
function="" action="check" sticky="" padx=0 pady=0

data nrow ncol names modes="numeric" rowlabels="" collabels=""
rownames="X" colnames="Y" font="" fg="black" bg="" entryfont=""
entryfg="black" entrybg="white" values="" byrow=TRUE function=""
enter=TRUE action="data" width=6 sticky="" padx=0 pady=0

entry name value="" width=20 label="" font="" fg="" bg=""
entryfont="" entryfg="black" entrybg="white" function=""
enter=TRUE action="entry" mode="numeric" sticky="" padx=0 pady=0

grid nrow=1 ncol=1 toptitle="" sidetitle="" topfont="" sidefont=""
byrow=TRUE borderwidth=1 relief="flat" sticky="" padx=0 pady=0

history name="default" function="" import="" sticky="" padx=0 pady=0

label text="" font="" fg="black" bg="" sticky="" justify="left"
wraplength=0 padx=0 pady=0

matrix nrow ncol names rowlabels="" collabels="" rownames=""
colnames="" font="" fg="black" bg="" entryfont="" entryfg="black"
entrybg="white" values="" byrow=TRUE function="" enter=TRUE
action="matrix" mode="numeric" width=6 sticky="" padx=0 pady=0

menu nitems=1 label font=""

menuitem label font="" function action="menuitem"

null padx=0 pady=0

object name font="" fg="black" bg="" entryfont=""
entryfg="black" entrybg="white" vertical=FALSE function=""
enter=TRUE action="data" width=6 sticky="" padx=0 pady=0

radio name value text="" font="" fg="black" bg="" function=""
action="radio" mode="numeric" selected=FALSE sticky="" padx=0 pady=0

slide name from=0 to=100 value=NA showvalue=FALSE
orientation="horizontal" font="" fg="black" bg="" function=""
action="slide" sticky="" padx=0 pady=0

slideplus name from=0 to=1 by=0.01 value=NA function=""
enter=FALSE action="slideplus" sticky="" padx=0 pady=0

text name height=8 width=30 edit=FALSE scrollbar=TRUE
fg="black" bg="white" mode="character" font="" value=""

140 unpackList

borderwidth=1 relief="sunken" sticky="" padx=0 pady=0

vector names length=0 labels="" values="" vecnames="" font=""
fg="black" bg="" entryfont="" entryfg="black" entrybg="white"
vertical=FALSE function="" enter=TRUE action="vector"
mode="numeric" width=6 sticky="" padx=0 pady=0

window name="window" title="" vertical=TRUE bg="#D4D0C8"
fg="#000000" onclose=""

See Also

createWin, showArgs

unpackList Unpack List Elements into Variables

Description

Make local or global variables (depending on the scope specified) from the named components of a list.

Usage

unpackList(x, scope="L")

Arguments

x named list to unpack.

scope If "L", create variables local to the parent frame that called the function. If "G", create global
variables.

Value

A character vector of unpacked variable names.

See Also

readList

Examples

x <- list(a=21,b=23);
unpackList(x);
print(a);

vbdata 141

vbdata Data: Lengths-at-Age for von Bertalanffy Curve

Description

Lengths-at-age for freshwater mussels (Anodonta kennerlyi).

Usage

data(vbdata)

Format

A data frame with 16 rows and 2 columns c("age","len").

Details

Data for demonstartion of the von Bertalanffy model used in the calcMin example.

Source

Fisheries and Oceans Canada - Mittertreiner and Schnute (1985)

References

Mittertreiner, A. and Schnute, J. (1985) Simplex: a manual and software package for easy nonlinear parameter
estimation and interpretation in fishery research. Canadian Technical Report of Fisheries and Aquatic Sciences
1384, xi + 90 pp.

vbpars Data: Initial Parameters for a von Bertalanffy Curve

Description

Starting parameter values for Linf, K, and t0 for von Bertalanffy minimization using length-at-age data (vbdata)
for freshwater mussels (Anodonta kennerlyi).

Usage

data(vbpars)

Format

A matrix with 3 rows and 3 columns c("Linf","K","t0"). Each row contains the starting values, minima,
and maxima, respectively, for the three parameters.

Details

Data for demonstration of the von Bertalanffy model used in the calcMin example.

142 writeList

References

Mittertreiner, A. and Schnute, J. (1985) Simplex: a manual and software package for easy nonlinear parameter
estimation and interpretation in fishery research. Canadian Technical Report of Fisheries and Aquatic Sciences
1384, xi + 90 pp.

view View First/Last/Random n Elements/Rows of an Object

Description

View the first or last or random n elements or rows of an object. Components of lists will be subset also.

Usage

view(obj, n=5, last=FALSE, random=FALSE, ...)

Arguments

obj object to view.

n first (default)/last/random n elements/rows of obj to view.

last logical: if TRUE, last n elements/rows of obj are displayed.

random logical: if TRUE, n random elements/rows (without replacement) of obj are displayed.

... additional arguments (e.g., replace=T if specifying random=T).

writeList Write a List to a File in PBS Modelling Format

Description

Write an ASCII text representation in either "D" format or "P" format. The "D" format makes use of dput and
dget, and produces an R representation of the list. The "P" format represents a simple list in an easy-to-read,
ad hoc PBSmodelling format.

Usage

writeList(x, fname, format="D", comments="")

Arguments

x R list object to write to an ASCII text file.

fname file name of the text file containing the list.

format format of the file to create: "D" or "P".

comments vector of character strings to use as initial-line comments in the file.

writePBSoptions 143

Details

The "D" format is equivalent to using R’s base functions dput and dget, which support all R objects.

The "P" format only supports named lists of vectors, matrices, and data frames. Scalars are treated like vectors.
Nested lists are not supported.

The "P" format writes each named element in a list using the following conventions: (i) $ followed by the name
of the data object to denote the start of that object’s description; (ii) $$ on the next line to describe the object’s
structure - object type, mode(s), names (if vector), rownames (if matrix or data), and colnames (if matrix or data);
and (iii) subsequent lines of data (one line for vector, multiple lines for matrix or data).

Multiple rows of data for matrices or data frames must have equal numbers of entries (separated by whitespace).

For complete details, see “PBSmodelling-UG.pdf” in the R directory .../library/PBSmodelling/doc.

See Also

readList, openFile

Examples

Not run:
test <- list(a=10,b=euro,c=view(WorldPhones),d=view(USArrests))
writeList(test,"test.txt",format="P",

comments=" Scalar, Vector, Matrix, Data Frame")
openFile("test.txt")
End(Not run)

writePBSoptions Write PBS Options to an External File

Description

Save options that were set using setPBSoptions, setPBSext, or interfaces such as loadC. These options
can be reloaded using readPBSoptions.

Usage

writePBSoptions(fname="PBSoptions.txt")

Arguments

fname file name or full path of file to which the options will be saved.

Note

Options with names starting with "." will not be saved.

See Also

readPBSoptions, setPBSoptions, setPBSext, promptWriteOptions

Index

∗Topic arith
calcFib, 86
calcGM, 86

∗Topic array
genMatrix, 101

∗Topic color
pickCol, 115
testCol, 139
testLty, 139
testLwd, 140
testPch, 140

∗Topic datasets
CCA.qbr, 81
vbdata, 143
vbpars, 144

∗Topic device
chooseWinVal, 89
expandGraph, 97
getChoice, 101
resetGraph, 125
showHelp, 136

∗Topic file
findPrefix, 99
openExamples, 110
openFile, 111
openPackageFile, 112
openProjFiles, 113
promptOpenFile, 122
promptSaveFile, 122
readList, 124
unpackList, 142
writeList, 145

∗Topic graphs
plotACF, 116
plotDens, 119
plotTrace, 120

∗Topic hplot
drawBars, 97
plotAsp, 116
plotBubbles, 117
plotCsum, 118
plotFriedEggs, 119

∗Topic interface
compileC, 93
loadC, 109

∗Topic iplot
addArrows, 84
addLabel, 84
addLegend, 85

∗Topic list
exportHistory, 98
importHistory, 106
parseWinFile, 114
readList, 124
sortHistory, 138
unpackList, 142
writeList, 145

∗Topic methods
clearAll, 91
clearPBSext, 92
clearWinVal, 92
focusWin, 100
getPBSext, 103
getPBSoptions, 104
getWinAct, 104
getWinFun, 105
getWinVal, 105
setPBSext, 130
setPBSoptions, 130
setWinAct, 132
setWinVal, 132

∗Topic nonlinear
calcMin, 87

∗Topic optimize
calcMin, 87
GT0, 82
restorePar, 126
scalePar, 128

∗Topic package
PBSmodelling, 83

∗Topic print
pad0, 114
show0, 134
view, 144

∗Topic programming
compileC, 93
loadC, 109

∗Topic utilities
chooseWinVal, 89
cleanProj, 90

144

INDEX 145

closeWin, 93
compileDescription, 94
createVector, 94
createWin, 95
findPat, 99
getChoice, 101
initHistory, 107
isWhat, 109
pause, 115
runDemos, 126
runExamples, 127
showArgs, 136
showHelp, 136
showRes, 137
showVignettes, 137
testCol, 139
testLty, 139
testLwd, 140
testPch, 140
testWidgets, 141

addArrows, 84, 85
addHistory (initHistory), 107
addLabel, 84, 84, 85
addLegend, 84, 85, 85

backHistory (initHistory), 107

calcFib, 86
calcGM, 86
calcMin, 83, 87, 88, 126, 128, 143, 144
CCA.qbr, 81
chooseWinVal, 89, 102, 106
cleanProj, 90
clearAll, 91
clearHistory (initHistory), 107
clearPBSext, 92, 104, 111, 130
clearWinVal, 92, 105
closeWin, 93, 96
compileC, 93, 110
compileDescription, 94, 96, 115
createVector, 94, 96
createWin, 93, 94, 95, 95, 115, 133, 142

declareGUIoptions, 96, 103, 129
drawBars, 97

expandGraph, 97
exportHistory, 98, 107, 108

findPat, 99
findPrefix, 99, 134
firstHistory (initHistory), 107
focusWin, 100
forwHistory (initHistory), 107

genMatrix, 101, 118
getChoice, 89, 101, 106
getGUIoptions, 97, 103, 125, 129
getPBSext, 92, 103, 104, 111, 130, 137, 138
getPBSoptions, 104, 125, 131
getWinAct, 104
getWinFun, 105
getWinVal, 89, 92, 96, 102, 105, 133
getYes, 106, 135
GT0, 82, 88, 126, 128

importHistory, 98, 106, 108, 138
initHistory, 96, 98, 107, 107, 138
isWhat, 109

jumpHistory (initHistory), 107

lastHistory (initHistory), 107
loadC, 94, 109

openExamples, 110, 112, 113
openFile, 92, 104, 111, 111–113, 125, 130, 137,

138, 145
openPackageFile, 111, 112, 113
openProjFiles, 111, 112, 113

pad0, 114
parseWinFile, 94, 96, 105, 114
pause, 115
PBSmodelling, 83
PBSmodelling-package (PBSmodelling), 83
pickCol, 115, 139
plotACF, 116
plotAsp, 116
plotBubbles, 101, 117, 120
plotCsum, 118
plotDens, 119
plotFriedEggs, 119
plotTrace, 120
presentTalk, 121
promptOpenFile, 107, 122, 123
promptSaveFile, 98, 122, 122
promptWriteOptions, 97, 103, 123, 146

readList, 124, 143, 145
readPBSoptions, 103, 104, 124, 125, 131, 146
resetGraph, 98, 125, 125
restorePar, 83, 88, 126, 128
rmHistory (initHistory), 107
runDemos, 126, 127
runExamples, 127, 127

scalePar, 83, 88, 120, 126, 128
setFileOption, 128, 131
setGUIoptions, 97, 103, 129

146 INDEX

setPathOption, 129, 131
setPBSext, 92, 104, 111–113, 130, 137, 138, 146
setPBSoptions, 124, 129, 130, 131, 146
setwd, 134
setwdGUI, 100, 133
setWinAct, 132
setWinVal, 89, 96, 102, 105, 132
show0, 134
showAlert, 106, 135
showArgs, 136, 142
showHelp, 136, 138
showRes, 137
showVignettes, 137
sortHistory, 138

testCol, 115, 139
testLty, 139
testLwd, 140
testPch, 140
testWidgets, 141

unpackList, 124, 142

vbdata, 143, 144
vbpars, 144
view, 144

widgets (testWidgets), 141
writeList, 124, 145
writePBSoptions, 111, 124, 125, 131, 146

	PBSmodelling.pdf
	CCA.qbr
	GT0
	PBSmodelling
	addArrows
	addLabel
	addLegend
	calcFib
	calcGM
	calcMin
	chooseWinVal
	cleanProj
	clearAll
	clearPBSext
	clearWinVal
	closeWin
	compileC
	compileDescription
	createVector
	createWin
	declareGUIoptions
	drawBars
	expandGraph
	exportHistory
	findPat
	findPrefix
	focusWin
	genMatrix
	getChoice
	getGUIoptions
	getPBSext
	getPBSoptions
	getWinAct
	getWinFun
	getWinVal
	getYes
	importHistory
	initHistory
	isWhat
	loadC
	openExamples
	openFile
	openPackageFile
	openProjFiles
	pad0
	parseWinFile
	pause
	pickCol
	plotACF
	plotAsp
	plotBubbles
	plotCsum
	plotDens
	plotFriedEggs
	plotTrace
	presentTalk
	promptOpenFile
	promptSaveFile
	promptWriteOptions
	readList
	readPBSoptions
	resetGraph
	restorePar
	runDemos
	runExamples
	scalePar
	setFileOption
	setGUIoptions
	setPBSext
	setPBSoptions
	setPathOption
	setWinAct
	setWinVal
	setwdGUI
	show0
	showAlert
	showArgs
	showHelp
	showRes
	showVignettes
	sortHistory
	testCol
	testLty
	testLwd
	testPch
	testWidgets
	unpackList
	vbdata
	vbpars
	view
	writeList
	writePBSoptions

