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A Personal Summary of 50 Years of “Shrinkage in Regression” 
 
As someone who has been fascinated with the possibility that shrunken regression coefficient 
estimates might reduce MSE risk via variance-bias trade-offs and who has conducted and 
published research in this area, I must say that I am absolutely delighted by the recent wide-
spread tolerance for (if not outright acceptance of) shrinkage methods.  Anyway, I wish to 
summarize here some personal perspectives on why and how professional statisticians may have 
become somewhat enlightened about shrinkage over the last 50 years, 1955--2005. 
 

Early optimism about a theoretical basis for and the practical advantages of shrinkage almost 
surely started with the work of Stein(1955) and James and Stein(1961).  Unfortunately this 
shrinkage was always “uniform,” thus really doing nothing to adjust the relative magnitudes of 
correlated regression coefficient estimates for ill-conditioning.  Furthermore, although an overall 
improvement in the scalar value of “summed MSE risk” was guaranteed, there was no way to 
know “where,” in an X-space of 3 or more dimensions, risk was actually being reduced.  In 
fact, researchers on normal-theory minimax estimation in regression [such as 
Strawderman(1978) and Casella(1980,1985)] found that, when a specific “location” for 
improved risk was specified, their estimates succeeded only by concentrating shrinkage 
somewhere else!  Besides, the earlier work of Brown (1975) and Bunke(1975a, 1975b), was 
really the beginning of the end for minimax research.  After all, only OLS estimation can be 
minimax when one’s risk measures are truly multivariate (matrix rather than scalar valued.)   I 
personally would like to think that modern researchers and regression practitioners view 
shrinkage estimators as attractive, practical alternatives to OLS estimation in ill-conditioned 
models even though there cannot be any truly meaningful way to dominate OLS on MSE risk. 
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On the other hand, the real gold-rush of interest in (non-uniform) shrinkage in regression is 
undoubtedly due to the pioneering “ridge” work of Hoerl (1962) and Hoerl and Kennard 
(1970a, 1970b.)  Some of their terminology was misleading (e.g. their “too longness” argument 
was actually based upon a simple measure of coefficient variability), and their conjectures that it 
should be “easy” to pick shrunken estimators from a graphical trace display that would 
dominate OLS in MSE risk were, in fact, unquestionably naïve.  Meanwhile, a major frustration 
for me, personally, was that my research on shrinkage at Bell Labs in the 1970s lead to open 
conflict with John Tukey.  This started when my management was informed that Tukey had 
been consistently disparaging shrinkage methods at professional meetings in the 1970s and 
continued to the point where, ultimately, we formally commented on each other’s papers and 
regression training materials.  There were many authoritative critics of shrinkage “optimism” 
back then, and I hope that their unyielding skepticism will someday be discounted and forgotten. 
 
The most widely accepted forms of shrinkage in regression today are undoubtedly the random 
coefficient BLUP estimates from Henderson’s mixed model equations, as implemented in SAS 
proc mixed and the lme() and nlme() R functions.  See Robinson (1991), Littel, Milliken, Stroup 
and Wolfinger(1996) and Pinheiro and Bates(1996). 
 
Looking back upon my personal contributions to the literature on shrinkage in regression, I can 
only lament that my writings lacked focus and clarity.  I clearly love details, myself, and my 
papers have always been chuck-full of many-too-many alternative concepts.  For example, my 
1975 invited paper in Technometrics might have had much more impact if  I had only picked a 
slightly different title!  With some minor changes in emphasis, that paper could have easily been, 
say, “Maximum Likelihood Shrinkage in Regression.”  Instead, this work became identified with 
both “ridge analysis” (as averse the ridge regression) and “preliminary-test estimation” …and 
rightfully remains obscure today. 
 
Next, I became sufficiently frustrated by the process of getting a second shrinkage paper 
published in Technometrics (delayed until 1977) that I decided to submit an important 
applications manuscript on shrinkage to Annals of Statistics.  Some inexplicable delays again 
occurred, and that paper was delayed until 1978.  This paper derived the “ridge function 
theorem,” the “excess mean squared error matrix,” the “inferior direction,” and the “2/P-ths rule 
of thumb” for limiting shrinkage, plus their individual Maximum Likelihood (ML) estimators for 
display in TRACE plots.  These graphics have clear practical implications; they show exactly 
“where and how” MSE risk might be reduced by shrinkage.  These diverse TRACE 
visualization tools are implemented in my freeware algorithms for regression shrinkage in 
XlispStat, R, S-plus, Stata, GAUSS and SAS/IML. 
 
Finally, I developed a closed form expression, Obenchain(1981), for the normal-theory ML 
estimator within the 2-parameter Goldstein and Smith (1974) shrinkage family.  Unfortunately, 
none of my attempts to present this material in a peer-reviewed publication succeeded. 
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The bottom-line on ML shrinkage is simply that the linear estimator that is Most Likely to be 
“optimal” under normal-distribution-theory is actually a nonlinear estimator.  The MSE risk 
profile of an ML shrinkage estimator can always be simulated, if not computed exactly.  While 
being nowhere close to the “dominant” risk profile of the unknown optimal linear estimator, 
achievable ML profiles can nevertheless be impressively “conservative.”  In simple one-
dimensional cases, ML shrinkage can reduce MSE risk by about 50% in favorable cases (with 
low signal and/or high uncertainty) while increasing risk by at most 20% in unfavorable cases.  
In high-dimensional situations, a savings of more than 50% is possible when the worst case is a 
loss of less than 5% in MSE risk.  However, as Burr and Fry(2005) have noted, the key tactic 
in shrinkage estimation is definitely to be “cautious” rather than “greedy.” 
 
Frank and Freidman(1993), Breiman (1995), Tibshirani (1996), LeBlanc and Tibshirani (1998) 
and Efron et al. (2004) are currently keeping the shrinkage regression “home fires” burning for 
exploratory analyses of gigantic datasets.  Least Angle (LA) regression usually starts with an 
initial solution vector longer that the OLS vector.  No reduction is MSE risk relative to OLS is 
then possible until the LA solution ultimately becomes a genuine shrinkage estimator.  
 
 

The RXshrink Package 
 
 
The RXshrink package for R is fully documented with *.Rd, *.tex, *.html and *.chm files.  
The additional information provided here is purely supplemental. 
 
Traditional visualizations of shrinkage regression computations use "trace" plots.  In a trace, P 
quantities (several estimated coefficients, risks, shrinkage factors, etc.) are plotted vertically 
against a horizontal indicator of the extent of shrinkage.  Traditional “ridge” traces display the 
Ordinary-Least-Squares (OLS) solution at their left-hand extreme and cover the full range of 
shrinkage that culminates in "total" shrinkage at their right-hand extreme (where all “centered” 
regression coefficient estimates become zero.)  Here, P denotes the number of non-constant 
predictor variables in the regression model.   RXshrink functions require P to be at least 2. 
 

RXridge, RXtrisk and RXtsimu use the "Multicollinearity Allowance," denoted by MCAL 
(or simply M), as its measure of the EXTENT of shrinkage along generalized ridge paths 
whose SHAPE (or curvature) is controlled by a parameter denoted by QPAR (or simply 
Q.)  See the TECHNICAL APPENDIX at the end of this documentation for definitions of 
both MCAL and QPAR. 
 
RXlarlso and RXuclars use a horizontal trace scaling equivalent to "Multicollinearity 
Allowance" but display a P-parameter path with shrinkage factors ordered by the strengths 
of observed correlations with Y instead of by the relative spreads of the given X-regressor 
coordinates (in the same order as the precision of component estimates.)  In fact, RXuclars 
could use a closed form expression for its LA shrinkage delta-factors (which exists because 
X-space principal coordinates are uncorrelated.) 
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RXshrink functions attempt to identify shrunken coefficient estimates that are either "good" in the 
sense that they dominate least squares estimates in every (multivariate) Mean Squared Error 
sense or are "optimal" in one well-defined (univariate) MSE sense.  Definitions for "good" or 
"optimal" ridge shrinkage factors are based upon risk (expected loss) calculations that apply to 
all forms of statistical distributions.  But the ML inferences for the P-parameter and 2-parameter 
shrinkage paths explored by RXshrink functions are based upon standard normal-distribution-
theory. 
 
 

 
GUIDELINES for Interpretation of Shrinkage Trace Plots 

 
 
+-----------------------------+ 
| Shrinkage Coefficient Trace | 
+----+------------------------+----------------------------------------+ 
     | This trace shows how regression coefficient point estimates     | 
     | change as shrinkage (along a path of shape Q) occurs.  Any      | 
     | coefficient estimate that is numerically "stable" will plot     | 
     | close to the straight line from its least-squares estimate at   | 
     | MCAL=0 to zero at MCAL=P.  Unstable coefficient estimates       | 
     | will change more quickly, possibly switching numerical sign, as | 
     | soon as MCAL starts increasing from zero.  Super-stable         | 
     | estimates will change only very little initially, finally       | 
     | approaching zero only as MCAL approaches P.                     | 
     +-----------------------------------------------------------------+ 
 
+----------------------------------------------------+ 
| Estimated "Scaled" Risk (Mean-Squared-Error) Trace | 
+----+-----------------------------------------------+-----------------+ 
     | This trace gives normal distribution theory, "modified" maximum | 
     | likelihood estimates of "scaled" risk (mean-squared-error       | 
     | loss) as shrinkage of shape Q occurs.                           | 
     |                                                                 | 
     |     The risk is "scaled" by dividing it by an estimate of the   | 
     |     error (disturbance term) variance. In other words, scaled   | 
     |     risk expresses imprecision in fitted coefficients as a      | 
     |     multiple of the variance of a single observation.           | 
     |                                                                 | 
     |     Maximum likelihood scaled risk estimates are "modified,"    | 
     |     first of all, so as to be unbiased.  Then they are adjusted | 
     |     upward, if necessary, to have correct range relative to a   | 
     |     known lower bound on scaled risk, which re-introduces bias. | 
     +-----------------------------------------------------------------+ 
 
+---------------------------+ 
| Excess EigenValues Trace  | 
+----+----------------------+------------------------------------------+ 
     | This trace plots the EigenValues of the estimated difference in | 
     | Mean Squared Error matrices, ordinary least squares minus ridge.| 
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     | As long as all EigenValues are zero or positive, there is good  | 
     | reason to hope that the corresponding ridge estimators yield    | 
     | smaller MSE risk than Least Squares for all directions in       | 
     | P-space (i.e. all possible linear combinations.)  As shrinkage  | 
     | continues, at most one negative EigenValue will appear.         | 
     +-----------------------------------------------------------------+ 
 
+----------------------------------+ 
| Inferior Direction-Cosine Trace  | 
+----+-----------------------------+-----------------------------------+ 
     | This trace plots the Direction Cosines (normalized EigenVector) | 
     | corresponding to any negative EigenValue of the difference in   | 
     | MeanSquaredError matrices, OLS - ridge.  This direction gives   | 
     | that single linear combination of ridge regression coefficients | 
     | that not only fails to benefit from ridge shrinkage of shape Q  | 
     | but probably actually suffers increased risk due to shrinkage.  | 
     +-----------------------------------------------------------------+ 
 
+--------------------------------+ 
| Shrinkage Factor Pattern Trace | 
+----+---------------------------+-------------------------------------+ 
     | This trace plots the Delta Shrinkage-Factor Pattern as shrinkage| 
     | of shape Q occurs.  All deltas are equal when Q=1; the trailing | 
     | deltas are small when Q < 1; and the leading deltas are small   | 
     | when Q > 1.                                                     | 
     +-----------------------------------------------------------------+ 
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+--------------------------------------------------------------------+ 
|  TECHNICAL APPENDIX......"Extent" and "Shape" of Shrinkage in the  | 
|                          Two-Parameter Generalized Ridge Family.   | 
+--------------------------------------------------------------------+ 
 
MCAL = the "Multicollinearity Allowance" parameter that indexes 
           the "extent" of ridge shrinkage along any ridge path. 
     = R - trace( R x R diagonal matrix of Delta Shrinkage Factors ). 
 
MCAL = 0 ...yields zero shrinkage.  This is the "starting point" of the 
            ridge path, where the ridge estimator coincides with the 
            Ordinary Least Squares estimator at the left-hand extreme 
            (because all R of the Delta factors are equal to 1.) 
 
MCAL = R ...yields "total" shrinkage.  This is the right-hand "end 
            point" of the path, where the ridge estimator is all ZEROS. 
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Again, MCAL = R - Delta[1] -...- Delta[R], where Delta[j] is the ridge 
"shrinkage factor" applied to the j-th uncorrelated component, c[j], of 
Bzero .  The average value of Delta[1],...,Delta[R] is (R-M)/R, which is 
Theil's "proportion of posterior precision in Bstar due to sample 
information."  More importantly, MCAL can be interpreted as the 
approximate deficiency in the rank of ( I - 11'/ N ) X.  For example, if 
the regressor matrix has only two relatively small singular values, then 
the coefficient ridge trace is expected to "stabilize" at about MCAL = 
2.  Perfectly stable relative magnitudes plot on the MCAL-scale as 
straight lines all intersecting at MCAL = R and Bstar = 0. 
 
Q = the ridge parameter that controls the "shape" (or "curvature") of 
    the ridge path through regression coefficient likelihood space. 
 
    Q = +1 ...yields uniform shrinkage (all Shrinkage Factors equal.) 
    Q =  0 ...yields Hoerl-Kennard "ordinary" ridge regression. 
    Q = -5 ...is usually very close, numerically, to "Principal 
              Components Regression," with exact agreement in the 
              limit as Q approaches minus infinity. 
 
Shrinkage Factor Formulas... 
 
   P = Number of Predictor Variables (non-constant Regressors), 
   R = Rank of the Centered Predictor Variable X-matrix, 
   N = Number of Observations (or Regressor Combinations), and 
 
   generalized ridge regression "Shrinkage Factors" are of the form... 
 
                                              EigenValue 
                     Delta  =    ---------------------------------- 
                                 EigenValue + Konstant*EigenValue^Q 
 
   or, equivalently,...                           1 
                            =      ----------------------------- 
                                   1 + Konstant*EigenValue^(Q-1) 
 
Empirical evidence that choice of "shape" as well as "extent" of 
shrinkage can be rewarding is given in the following table... 
 
 
                                          Min.MeanSqErr  Min.MeanSqErr 
Data Set        Number of     Number of   Extent of      Shrinkage 
Name            Observations  Predictors  Shrinkage      Shape 
=============   ============  ==========  =============  ============= 
 
FACE data       N = 21,       R = 10,     MCAL = 2.3,    Qshape = +.77 
 
Air Pollution   N = 60,       R = 15,     MCAL = 5.4,    Qshape = +.07 
and Mortality 
 
Acetylene       N = 16,       R = 9,      MCAL = 5.2,    Qshape = -.35 
 
Ten-Factor      N = 36,       R = 10,     MCAL = 3.6,    Qshape = -.78 
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Stack Loss      N = 15,       R = 3,      MCAL = 0.24,   Qshape = -.95 
 
Mantell, Bell   N = 25,       R = 3,      MCAL = 0.95,   Qshape = -1.1 
Productivity 
 
Wood Beam       N = 10,       R = 2,      MCAL = 0.26,   Qshape = -1.4 
 
Longley         N = 16,       R = 6,      MCAL = 4.0,    Qshape = -1.4 
 
Hocking MPG     N = 32,       R = 10,     MCAL = 8.8,    Qshape = -7.6 
 
Diesel data     N = 44,       R = 9,      MCAL = 4.9,    Qshape =  -20 
 
Portland        N = 13,       R = 4,      MCAL = 3.0,    Qshape = -INF. 
Cement, Hald. 
 
=============   ============  ==========  =============  ============= 
Data Set        Number of     Number of   Min.MeanSqErr  Min.MeanSqErr 
Name            Observations  Predictors  Extent of      Shrinkage 
                                          Shrinkage      Shape 
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