
Automatic Spike Train Analysis and HTML Report

Generation. An implementation with R, R2HTML and

STAR.

Christophe Pouzat and Antoine Chaffiol

Laboratoire de Physiologie Cérébrale, CNRS UMR 8118
UFR biomédicale de l’université Paris-Descartes

45, rue des Saints-Pères
75006 Paris, France

September 8, 2008

Abstract

Multi-electrode arrays (MEA) allow experimentalists to record extracellularly from
many neurons simultaneously for long durations. They therefore often require that the
data analyst spends a considerable amount of time first sorting the spikes, then doing
again and again the same basic analysis on the different spike trains isolated from
the raw data. This spike train analysis also often generates a considerable amount of
figures, mainly diagnostic plots, that need to be stored (and/or printed) and organized
for efficient subsequent use. The analysis of our data recorded from the first olfactory
relay of an insect, the cockroach Periplaneta americana, has led us to settle on such
“routine” spike train analysis procedures: one applied to spontaneous activity record-
ings (typically epochs of 60s in the absence of any stimulation), the other used with
recordings where a stimulation was repetitively applied (typically 15 to 20 epochs of
10 to 15 s with an odor puff). We have developed a group of functions implementing
a mixture of common and original procedures and producing graphical or numerical
outputs. These functions can be run in batch mode and do moreover produce an
organized report of their results in an HTML file. A R package: STAR (Spike Train
Analysis with R) makes these functions readily available to the neurophysiologists
community. Like R, STAR is open source and free. We believe that our basic analysis
procedures are of general interest but they can also be very easily modified to suit
user specific needs.

1 Introduction

Multi-electrode arrays (MEA) allow experimentalists to record extracellularly from many
neurons simultaneously for long durations. They therefore often require that the data
analyst spends a considerable amount of time first sorting the spikes, then doing again
and again the same basic analysis on the different spike trains isolated from the raw data.
Although this “basic” analysis is likely to change from person to person, it will usually
include, for “spontaneous activity data”, a “laundry list” looking like:

• A display of the spike train per se in a raster plot or a counting process plot [10,43].

• A plot or a numeric quantity testing the stationarity of the train.

• Perhaps some standards distributions are fitted to the inter spike intervals (isi) and
a plot checking the quality of the fits is produced.

1

• If several neurons are recorded simultaneously then cross-correlation histograms [38,
4] are likely to be generated.

Then depending on the results of this systematic and preliminary analysis the data
analyst will decide to go further or to stop. In this scenario two issues arise:

• A lot of time ends up being spent doing fundamentally the same thing on different
data. That is a strong incentive for automatization/batch processing.

• A lot of analysis results in the form of numerical summaries and graphics are being
generated calling for a way to organize and display them in a systematic manner.

We insist here on the notion of preliminary analysis as opposed to the “refined” one which
ends up being presented and illustrated in papers. There is still a long way between the
preliminary and final analysis requiring a major input from the data analyst. The idea is
to save time and stay alert for the really important part of the analysis.

In any case, even if the data analysis software used includes routines or functions to
implement the individual components of our“laundry list”, making the analysis automatic,
i.e., suitable for processing in batch mode, can be problematic. Difficulties arise from two
sources:

• Getting good initial guesses for the optimization routines “doing the fits” can be
tedious.

• Setting some “smoothing parameters”, like a bin width, for plots is easily done by a
human trying out several values and looking at the result but is a hard task for a
“blind” computer.

We solved these two problems by:

• Using model reparametrization in the fitting routines [2] making the optimization
step more robust with respect to “bad” specifications of initial guesses.

• Using “statistical smoothing” techniques based on smoothing spline [46, 18, 19] for
the plots.

Once these two problems have received a satisfying answers the question of a suitable
software environment into which these solutions will be implemented has to be answered.
We chose R1 [40] because, among many other reasons:

• It is open source and free.

• It runs on any computer likely to be found in a physiology laboratory, PC running
Linux or Windows, Mac.

• It is a powerful and elegant programming language based on Scheme [21,1].

• It uses state of the art numerical libraries (for optimization, random number gener-
ation, clustering, etc).

• It can be used in batch mode.

• It is, in our experience at least, incomparable for graphics2.

• It is specifically designed to implement a clear and thorough type of data analysis [6].
1http://www.r-project.org
2See for instance: http://www.stat.auckland.ac.nz/~ihaka/787/ and http://addictedtor.free.

fr/graphiques/index.php

2

http://www.r-project.org
http://www.stat.auckland.ac.nz/~ihaka/787/
http://addictedtor.free.fr/graphiques/index.php
http://addictedtor.free.fr/graphiques/index.php

• It is very easily extended by its users and, so to speak, encourages its users to become
its programmers [7, 8].

Adopting R did moreover provide a pretty straightforward solution to our “analysis
results organization and display” problem. Modern computers are all equipped with a web
browser and everyone knows how to use such a software. HTML files, the type of files
that a web browser displays, can, as everyone knows, contain text, figures, mathematical
equations and more. It seems therefore reasonable to use the HTML format to organize
our analysis results. If one agrees on that, the only problem left is the generation of this
analysis specific HTML file. Well, the good news here is that the problem is solved by one
of the R user contributed add-on packages: R2HTML3 [27], which turns out to be very
simple to use.

Equipped with these tools: R, statistical smoothing plus model reparametrization and
R2HTML, we have developed a new R add-on package: STAR4 (Spike Train Analysis with
R) which like R itself is open source and free. The package contains 95 functions, most of
which are seldom directly used. It has now reached a satisfying maturity when applied to
our data recorded from the antennal lobe (first olfactory relay) of the cockroach Periplaneta
americana. We think that STAR could be useful to others and would like to know in any
case how it works on different types of data. Because STAR is open source and because
R makes it very easy for users to develop their own functions, we are confident that it
could be adapted in a short time to other preparations.

2 Methods

2.1 Animal preparation, recordings and data sets

2.1.1 Animal preparation

Adult male cockroaches, Periplaneta americana were used as experimental animals. They
were reared in an incubator with free access to food and water, at 25 ◦C. They were cold-
anesthetized prior to the experiment. Wings, legs and some mouth parts were removed.
Each insect was restrained in an acrylic glass holder, with its head fixed with dental wax
(as shown on Fig. 2 of [14]). The lower part of both Antennae was protected with plastic
tubes (to avoid contact with the physiological solution). A window of head cuticle was
opened, the tracheae on the anterior face of the brain and the sheath surrounding the
antennal lobes were removed. The esophagus was cut to reduce brain movement. Fresh
cockroach saline was superfused on the brain. The saline composition was: NaCl 130 mM,
KCl 12 mM, CaCl2 6 mM, MgCl2 3 mM, glucose 23 mM, HEPES 4mM; PH 7,2; 360
mosmol/kg.

2.1.2 In vivo recordings

MEA recordings were made in the antennal lobe using 16 sites silicon electrodes (Neu-
ronexus Technologies). The probe was gently inserted into the antennal lobe until activity
appeared at least on 4 recording sites. Signals were sampled at 12.8 kHz, band-pass filtered
between 0.3 and 5 kHz and amplified using an IDAC2000 amplifier and its Autospike 2000
acquisition program (SYNTECH).

3http://www.stat.ucl.ac.be/ISpersonnel/lecoutre/R2HTML/
4http://www.biomedicale.univ-paris5.fr/physcerv/C_Pouzat/STAR.html

3

http://www.stat.ucl.ac.be/ISpersonnel/lecoutre/R2HTML/
http://www.biomedicale.univ-paris5.fr/physcerv/C_Pouzat/STAR.html

2.1.3 Olfactory stimulations

A main moistened and filtered airflow was placed 3 cm away from the antenna, and a
secondary stream controlled by a solenoid valve was used to deliver odor puffs. A piece of
filter paper (3 mm x 20 mm) was soaked by 5 µl of pure aromatic compounds and placed
in the secondary stream. 0.5 s odor puffs were used.

2.1.4 Data sets

The examples used in this paper come from 4 experiments referred to as: e060517,
e060817, e060824 and e070528 (the names are built with 2 digits for the year, two for
the month and 2 for the day). The number of neurons reliably isolated in each of these
experiments were respectively: 3, 3, 2 and 4. The spike trains used in this paper, either
from spontaneous activity or from repeated odor stimulations are all distributed with our
package STAR. For each of these experiments the spontaneous activity of each neuron
recorded for ∼ 1 mn (58 to 61 s) is used. These specific data are referred to as eNUMBER-
spont_NEURON in Sec. 3.1 and Table 1. One odor application with ionon (19 repetitions, 15
s acquired per presentation) is used for e060517 and the corresponding data set is referred
to as: e060517ionon. Three odor applications with citronellal, terpineol and a 50 / 50
mixture of the two (20 repetitions, 15 s acquired per presentation) are used for e060817
and the corresponding data sets are refered to as: e060817citron, e060817terpi and
e060817mix. One odor application with citral (20 repetitions, 15 s acquired per presenta-
tion) is used for e060824 and the corresponding data set is referred to as: e060824citral.
One odor application with citronellal (15 repetitions, 13 s acquired per presentation) is
used for e070528 and the corresponding data set is referred to as: e070528citronellal.
A more comprehensive description of these data sets can be found in the help files of STAR.

2.2 Data analysis

All the data analysis described in this paper was carried out using R [40], some of its user
add-on packages and two additional packages developed by us, SpikeOMatic5 and STAR6.
“R is a free software environment for statistical computing and graphics. It compiles and
runs on a wide variety of UNIX platforms, Windows and MacOS.”7 The main subject of
this paper is a description of some of the features of STAR. Sec. A.1 describes briefly how
to obtain and install R and STAR.

2.3 Getting the spike trains: spike sorting

Spike sorting was carried out as described in: “The New SpikeOMatic Tutorial” [39].

2.4 Spontaneous activity analysis

We start with the analysis of “spontaneous regime” data. By that we mean data recorded
in the absence of stimulation.

2.4.1 Spike train plot

The most common way to display a spike train is probably the raster plot , which is
fundamentally a one dimensional graph where the occurrence time of the spike gives the

5http://www.biomedicale.univ-paris5.fr/physcerv/C_Pouzat/newSOM/newSOMtutorial/

newSOMtutorial.html.
6http://www.biomedicale.univ-paris5.fr/physcerv/C_Pouzat/STAR.html.
7Quotation from the home page of the “The R Project for Statistical Computing”: http://www.

r-project.org/

4

http://www.biomedicale.univ-paris5.fr/physcerv/C_Pouzat/newSOM/newSOMtutorial/newSOMtutorial.html
http://www.biomedicale.univ-paris5.fr/physcerv/C_Pouzat/newSOM/newSOMtutorial/newSOMtutorial.html
http://www.biomedicale.univ-paris5.fr/physcerv/C_Pouzat/STAR.html
http://www.r-project.org/
http://www.r-project.org/

horizontal coordinate and where a symbol like a little vertical bar, or a star (“*”) is used
to represent each spike. As abundantly illustrated by [43, Turnbull et al, 2005] and, in
fact, proposed much earlier in the first figure of the book of [10, Cox and Lewis, 1966], it
is much more informative to plot the cumulative number of events as a function of their
occurrence time as shown on Fig. 1, where a classical raster plot is also added at the
bottom of the graph. With this representation we can see the discharge dynamics much
more clearly. When the firing rate increases it becomes difficult (if not impossible) to
see the individual spike symbols on the raster and the capacity to distinguish between a
moderate and a large increase in firing rate is strongly compromised. For instance on the
raster of Fig. 1 the burst of spikes coming just after second 30 is barely distinguishable
from the one coming at the end of the recording epoch, while on the cumulative plot we
clearly see that the slope is much smaller for the second than for the first burst implying
that the firing rate is smaller in the second than in the first burst. The increments of the
cumulative plots during a burst give us, by definition, the number of spikes in the burst.
The long burst coming after the 20th second is for instance made of roughly 100 spikes.
We also see on the figure that their are no regular pattern of increase during a burst,
implying that the successive bursts are made of a variable number of spikes. Clearly, we
can say a lot more about a spike train by looking at a cumulative plot rather than at a
raster plot. In addition important non-stationarities of the discharge will show up as a
curvature of the graph, which will be concave for a decelerating discharge and convex for
an accelerating one.

We refer to the kind of plot shown on Fig. 1 as a counting process plot because that
what such plots are called in the (statistical) literature dealing with series of (identical)
events [3, 22]. A Counting process is a right continuous step function which undergoes
a unit jump every time an event occurs. More formally [3, Brillinger, 1988, p190, Eq.
2.1]: For points {tj} randomly scattered along a line, the counting process N(t) gives the
number of points observed in the interval (0, t].

N(t) =]{tj with 0 < tj ≤ t} (1)

where] stands for the cardinality (number of elements) of a set and where the {tj} stand
the the occurrence times of the spikes.

2.4.2 Poisson process

In the simplest case neuronal discharges are be well approximated by a homogenous Pois-
son process, which is formally defined as a stochastic process fully characterized by a time
independent rate parameter, ν, such that the number of events observed in (t, t+τ] follows
a Poisson distribution with parameter ντ (for all t > 0). Using our previous Counting
process definition (Eq. 1) we would write:

Prob{N(t+ τ)−N(t) = n} =
(ντ)n

n!
exp(−ντ) (2)

The additional requirement of independence of the observed counts, n1 and n2, on two
non-overlapping time intervals: (t1, t1 + τ1] and (t2, t2 + τ2], defines a homogenous Poisson
process.

The homogenous Poisson process is not very useful to analyze “directly” real spike
trains, at least not ours, but its extension to time dependent discharges (with the in-
homogenous Poisson process) is extremely useful to describe mean responses of a single
neuron to repeated presentations of a given stimulus.

5

0 10 20 30 40 50 60

0
20

0
40

0
60

0
80

0
10

00

Counting Process of e070528spont[[4]]

Time (s)

C
um

ul
at

iv
e

N
um

be
r

of
 E

ve
nt

s

Figure 1: A spike train plot of neuron 4, data set, e070528, spontaneous regime. The
generation of this figure with STAR is explained in Sec. A.8.

6

2.4.3 Renewal test plot

When a homogenous Poisson process is not good enough for the data, the next type of
models to try is the homogenous renewal process. A homogeneous renewal process is a
process where the intervals between successive events, the inter spike intervals (isi), come
all independently from the same distribution (they are said to be independent and iden-
tically distributed or iid). In other words it is enough to characterize the isi distribution
(together with the distribution of the first event) to fully characterize the whole process.

The definition of a homogenous renewal process leads us quickly to a graphical test
that such processes should pass. Let as before, {tj}Kj=1, be our K spike times from which
we get K− 1 isis: {isij = tj+1− tj}K−1

j=1 . We can sort these isis in increasing order to get:
{i(j)}, where i(j) ≤ i(l) if j < l. Let Oj be the rank of interval ij of the original (unsorted
sequence) in the new sorted one. To use a concrete example, let us assume that we have
the following original sequence of 5 isis (expressed in s):

1 2 3 4 5
0.031 0.062 0.073 0.092 0.054

Then the {Oj} sequence is:

1 2 3 4 5
1 3 4 5 2

and the corresponding sorted sequence, {i(j)}, is:

1 5 2 3 4
0.031 0.054 0.062 0.073 0.092

Now if the {ij} are iid then the {Oj} should be very nearly so (in the sense that the
joint distribution of (Oj , Oj+k) should be uniform on {1, . . . ,K−1}×{1, . . . , Oj −1, Oj +
1, . . . ,K−1} for k 6= 0). Then if we plot Oj+1 as a function of Oj we should see the square
{1, . . . ,K − 1} × {1, . . . ,K − 1} uniformly filled, without a pattern.

By plotting Oj+1 as a function of Oj instead of ij+1 as a function of ij we are making
a better use of the surface of the plot and that is not an aesthetic issue but a way to
make the plot more informative as shown on Fig. 13. We can then subdivide the surface
defined by the {1, . . . ,K − 1} × {1, . . . ,K − 1} square into sub-squares and apply a χ2

test to the contingency table so defined. This is what we systematically do with our data.
We generate two plots: Oj+1 vsOj and Oj+2 vsOj . We subdivide the surface of the plots
into squares of identical surface. The surface is chosen per default8 so that under the null
hypothesis of independence, at least 25 events would fall into into each square (this is to
insure the applicability of the χ2 test). We do this χ2 statistics computation not only at
lag 1 and 2 but also up to lag: 10 log10(K− 1)9 (this maximal lag can be set by the user).
We then also plot this χ2 statistics as a function of the lag and show the 95% confidence
region of the χ2 in the background.

We also plot the isi empirical autocorrelation function, what [37, Perkel et al, 1967]
call the serial correlation coefficients function10, and test it against the null hypothesis
of no correlation.

Fig. 2 shows what we call a “renewal test plot” from which it is rather clear that
the homogenous renewal process model does not apply. These renewal test plots are, in
our experience, also very sensitive to non-stationarities which makes sense given that a
homogenous renewal process must be stationary by definition. The reader is invited to
explore this with one of the demonstrations of STAR. Sec. A.10 describes how to do that.

8See the documentation of the renewalTestPlot function of STAR
9log10 stands for the decimal logarithm, i.e., log10(10) = 1.

10Defined in their Eq. 7 and 8, p 400

7

0 200 400 600 800 1000

0
20

0
40

0
60

0
80

0
10

00

Order Statistic Correlation at Lag 1

Ok

O
k++

1

0 200 400 600 800 1000

0
20

0
40

0
60

0
80

0
10

00

Order Statistic Correlation at Lag 2

Ok

O
k++

2

0 5 10 15 20 25 30

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag (in isi #)

IS
I a

cf

0 5 10 15 20 25 30

50
10

0
15

0
20

0

χχ2 Statistics

Lag (in isi #)

χχ2

●

● ●

● ●
● ●

●

●
●

●

●

●
●

●

● ●
●

● ●
●

Figure 2: A “renewalTestPlot” of neuron 4, data set, e070528, spontaneous regime. The
generation of this figure with STAR is explained in Sec. A.10.

8

2.4.4 Bivariate duration distributions fits

In addition to the renewal test plot we have included in our automatic spike train analysis
procedures a systematic fit of the empirical isi distribution with 6 common bivariate
duration distributions [31] whose probability density functions (pdf s) are:

• log normal:

dlnorm(i;µ, σ2) =
1√
i2πσ2

exp
(
− 1

2
(log i− µ)2

σ2

)
(3)

• inverse Gaussian:

dinvgauss(i;µ, σ2) =
1√

2πσ2i3
exp

(
− 1

2
(i− µ)2

iσ2µ2

)
(4)

• gamma:

dgamma(i;α, β) =
iα−1

βαΓ(α)
exp(− i

α
) (5)

• Weibull:
dweibull(i;α, β) =

α

β
(
i

β
)α−1 exp(−(

i

β
)α) (6)

• refractory exponential:

drexp(i;α, imin) =
{

0 if i < imin
α exp(−α (i− imin)) if i ≥ imin

(7)

• log logistic:

dllogis(i;µ, σ) =
1
iσ

exp(− log i−µ
σ)(

1 + exp(− log i−µ
σ)

)2 (8)

The names we have used for these pdf s like, dlnorm, are the names under which these
functions can be called in R. Parameters estimates for these distributions are obtained
by the maximum likelihood method [24]. The ones of the lognormal, inverse Gaussian
and refractory exponential distributions are available in closed form [31]. The ones of
the gamma, Weibull and log logistic distributions are obtained by numerical optimization
using function optim for the Weibull and the log logistic distributions and using the
profile likelihood method for the gamma distribution [32, Monahan, 2001, pp 210-216].
Initial guesses are obtained by the method of moments. In addition reparametrization
is used systematically for parameters which are constrained to be positive [2, 32], like
the two parameters of the gamma distribution. For those the log likelihood function is
written in term of the log parameters. See the examples of gammaMLE, weibullMLE and
llogisMLE for details.

Once some or all of these distributions have been automatically fitted the capacities of
the models to fit the data are compared with the Akaike’s Information Criterion11 [5,31].
The Akaike’s Information Criterion selects the best model among a set of models but
does not provide any clue regarding how well the best model fits the data. A way to do
that is build a theoretical quantile quantile plots (Q-Q plots) [9, Chambers et al, 1983,
Chap. 6] as shown on Fig. A.12. On these plots, a perfect fit would fall on the diagonal
which is drawn in red. 95 and 99% pointwise confidence intervals are also drawn12.

11Strictly speaking, the Akaike’s Information Criterion being designed to compare models with different
number of parameters is not required here, a direct likelihood comparison would lead to the same result.
We have included it in STAR since distributions with more than 2 parameters will be implemented in a
near future.

12To be honest we have to say that Fig. 3 is one of our rare examples where one of 6 duration distribution
(the inverse Gaussian) is able to fit our data.

9

0.005 0.020 0.050 0.200 0.500 2.000

0.
00

5
0.

02
0

0.
10

0
0.

50
0

2.
00

0

Quantiles of invgauss

0.002 0.005 0.020 0.050 0.200 0.500 2.000

0.
00

2
0.

01
0

0.
05

0
0.

50
0

Quantiles of lnorm

1e−04 1e−03 1e−02 1e−01 1e+00

1e
−

04
1e

−
02

1e
+

00

Quantiles of gamma

1e−04 1e−03 1e−02 1e−01 1e+00
1e

−
04

1e
−

02
1e

+
00

Quantiles of weibull

1e−03 1e−02 1e−01 1e+00 1e+01

1e
−

03
1e

−
02

1e
−

01
1e

+
00

1e
+

01

Quantiles of llogis

0.01 0.02 0.05 0.10 0.20 0.50 1.00

0.
01

0.
05

0.
20

1.
00

Quantiles of rexp

Figure 3: theoretical quantile quantile plots of the six fitted duration distribution to the
isis of neuron 1, data set, e070528, spontaneous regime. The generation of this figure with
STAR is explained in Sec. A.12.

10

2.4.5 Cross correlation histograms

The cross-correlation histograms functionalities we have included in STAR are very close
to what is described under this name in [4, Brillinger et al, 1976]. The main difference is
that we don’t use the square root transformation to stabilize the variance since there is
no variance to stabilize under the null hypothesis of no correlation.

In addition STAR provides a smooth cross-correlation histogram which is build exactly
in the same way as the smooth peri stimulus time histograms of Sec. 2.5.2, where they are
described in detail. Fig. 7 shows a screen shot of an automatically generated report where
both types of cross-correlation histograms applied to the same data can be seen.

2.5 Stimulus response analysis

We next consider the analysis of repeated stimulations like, in our case, 15 to 20 successive
applications of an odor puff to the antenna for 0.5 s every minute. We assume here that
the data from a single neuron have been formatted such that they are all locked with
respect to the stimulus onset. Considering that the actual number of spikes generated by
a neuron during a fixed acquisition epoch using always the same stimulus will fluctuate,
a matrix is not the proper format to store the spike trains of a neuron. The list object of
R is, on the other hand, particularly well adapted for this task (see Sec. A.6 for details
about R list objects).

2.5.1 Raster plot

Although counting process plots can be generalized to display successive responses of a
neuron to repeated stimulations we found the more conventional raster plot better suited
for this task. This is therefore the default method we use to display“raw”stimulus response
data. In our automatic spike train analysis and report generation procedure we moreover
add to it a smooth version of the classical peri stimulus time histogram [16]. We discuss
next these smooth peri stimulus time histograms.

2.5.2 Smooth PSTH

The case for using smooth as opposed to “classical” peri stimulus time histograms (psth)
has been clearly and convincingly made by [25, Kass, Ventura and Cai, 2003] and won’t
be repeated here. We are instead going to illustrate the principle while underlying the
difference in methodology. A smooth peri stimulus time histogram (spsth) is not only
statistically more “efficient” than a peri stimulus time histogram but it also facilitates the
development of an automatic spike train analysis software being not (or at least much less)
sensitive to a bin width choice.

The psth (like the spsth) can be given a firm statistical basis as soon as one considers
that the relevant feature of a single neuron response to a given stimulus is its “average” or
“mean” response, that is, it’s average instantaneous firing rate. For then if the successive
responses of the neuron are uncorrelated and are “collapsed” or aggregated13, the resulting
process tends to an inhomogenous Poisson process [44, Ventura et al, 2002, Sec. 4, p6]. A
inhomogenous Poisson process is like a homogenous Poisson process (Sec. 2.4.2) for which
the rate ν is allowed to be time dependent. That is, Eq. 2 has to be modified as follows:

Prob{N(t+ τ)−N(t) = n} =

(∫ t+τ
t ν(u) du

)n
n!

exp
(
−
∫ t+τ

t
ν(u) du

)
(9)

where we see that if ν(u) = Cst, Eq. 2 is obtained. The traditional psth produces a ν
estimate that is a step function (ν is supposed to be constant over the time period spanned

13That is, if the trial of origin of the spikes is lost (or ignored), as happens upon building a psth.

11

by a bin). The spsth produces a smooth estimate of ν. In order to produce any of the
two estimates, the “raw” data (the 15 to 20 spike trains of the considered neuron for a
given stimulus) have to be pre-processed by binning. Then for a psth, the bin counts
are divided by the number of trials and by the bin length to obtain the final estimate.
Approximate confidence intervals are also available using the Poisson assumption. Ignoring
the statistical efficiency issue, the crucial parameter is the bin width (or more generally the
sequence of bin widths). If the width is set too large, sudden changes of ν will be missed
(filtered out) and the estimate will be biased, if set too small statistical fluctuations (due
to the finite sample size) might be confounded with genuine changes of ν and the estimate
will exhibit a large variance. The traditional solution to this problem is interactive: try
out several bin widths and see the results. Having confidence intervals clearly helps in
making “objective” choices with such an approach. Fig. 16 illustrates this point14.

The smooth peri stimulus time histogram of the present paper produces an estimate,
ν̂(t), of ν(t) through a compromise between two antagonistic goals: goodness of fit and smooth-
ness (alternative, Bayesian, methods are available to built spsths [25, 47]). If {xi}Ni=1 is
the set of bin centers used in the preprocessing stage, δ, the bin width, M , the number
of stimulus presentations and if {yi}Ni=1 is the set of corresponding spike counts, the log
likelihood of ν̂ is:

L({ν̂(xi)}Ni=1) =
N∑
i=1

(
yi log

(
ν̂(xi) δM

)
− ν̂(xi) δM

)
(10)

Remember that the likelihood is proportional to the probability of the data. We are
assuming here that the bin width, δ, is small enough to approximate the integral appearing
in Eq. 9 with: ∫ xi+

δ
2

xi− δ
2

ν(u) du ≈ ν(xi) δ ∀ i ∈ {1, . . . , N}.

This log likelihood function (Eq. 10) is maximized by a step function whose step height
in each bin is given by ν̂(xi) = yi

δM . That is what the classical psth does. But we want
here a smooth estimate of ν. This is justified physiologically when the averaged response
is estimated from neurons getting their input after a rather long sequence of events: odor
molecule adsorption on the antenna’s cuticle, transduction involving second messengers
in the olfactory receptor neurons, spike propagation along the antenna’s length, synaptic
transmission from the receptors to the recorded antennal lobe neurons, feedback activity
generated within the antennal lobe [23]. Each one of these stages would smear out in
time its input even if the latter was a perfect step function. The smoothness hypothe-
sis is therefore not a mere mathematically convenient requirement but a physiologically
grounded assumption. We would moreover expect it to hold in a wide range of neuro-
physiological studies and definitely in any setting involving neurones recorded after the
receptors stage. But arguing that smoothness makes sense does not give us directly a way
of enforcing it as a constraint in our mathematical formulation. There is moreover another
obvious constraint that ν, being an instantaneous firing rate, must satisfy: it must be non-
negative. This latter constraint is dealt with as we did previously for the non-negative
parameters of our duration distributions (Sec. 2.4.4): the log of ν is estimated directly.
To make subsequent equations shorter we will write:

η() = log
(
ν() δM

)
(11)

14But the reader should keep in mind that if the bin width is chosen after seeing the data, the interpre-
tation of the pointwise 95% confidence interval as: “The true mean value of ν() over the bin should fall in
the confidence interval 95 out of a 100 experimental replication”, is not valid anymore.

12

Our previous log likelihood equation, Eq. 10 becomes:

L({η̂(xi)}Ni=1) =
N∑
i=1

(
yi η̂(xi)− exp

(
η̂(xi)

))
(12)

In order to benefit from the powerful smoothing spline results [46, 18] we are going to
enforce our smoothness constraint by forcing the integral of the squared second derivative
of η̂ to be finite, that is: ∫ (d2η̂(x)

dx2

)2
dx < ∞, (13)

where the integral is evaluated on a domain containing all the xis. We could here also
use first order derivatives as well as third or higher order. The key requirement is to take
the integral of the square of the chosen derivative. Choosing higher order derivatives leads
to longer and more “memory hungry” computations as well as to estimates for which, by
definition, derivatives at higher order do exist. Notice that the penalization is uniform on
the definition domain of x. This is a potential weakness of the approach since for instance
the spsth would ideally be flat prior to the stimulus onset which would lead one to want to
constrain the pre-stimulus period to be smoother than the subsequent one. We combine
our “goodness of fit requirement” (Eq. 12) with our “smoothness” requirement (Eq. 13) by
finding the smooth function η̂ minimizing the penalized likelihood :

−
N∑
i=1

(
yi η̂(xi)− exp

(
η̂(xi)

))
+ λ

∫ (d2η̂(x)
dx2

)2
dx, (14)

where the smoothing parameter, λ, is non negative. The first term here is the opposite of
our log likelihood defined by Eq. 12. Minimizing this term amounts to maximizing the log
likelihood and therefore to have a “good” fit. The second term is positive or null. It is null
regardless of the value of λ when ν̂ is a linear function (whose graph is a straight line).
As shown on Fig. 4 the chosen value of λ will have a crucial influence on the estimated
function. A small value will lead to a function matching arbitrarily precisely the data
while a large value will lead to a linear function (see also Fig. 4.1-4.3 [46, pp 46-47] and
Fig. 1.1 [18, p 3]).

Three key results As mentioned before the smoothing spline theory is, thanks to the
work of Grace Wahba and her collaborators [46,18], extremely well developed. This is the
availability of a strong theoretical results together with the availability of software which
lead us to use this methodology. We will state here three results which are particularly
important.

Solution of the penalized likelihood problem It can be shown [26], [46, Chap.
1], [18, Chap. 2 and 5] that the function η̂λ minimizing Eq. 14 for a fixed λ exists in a
finite dimensional space whose basis functions can be found. That is, η̂λ can be written
as:

η̂λ(x) =
1∑
j=0

dj φj(x) +
N∑
i=1

ciR(xi, x) , (15)

where, assuming that a smoothness constraint on the second order derivative is used
(Eq. 13) and that the xis have been rescaled such that their definition domain is [0, 1]:

φ0(x) = 1 φ1(x) = x− 0.5

13

0 2 4 6 8 10 12

0
20

40
60

80
10

0

λλ == λλ0 1000

F
re

q.
 (

H
z)

A

"raw" data
fit

0 2 4 6 8 10 12
0

20
40

60
80

10
0

λλ == λλ0

B

"raw" data
fit

0 2 4 6 8 10 12

0
20

40
60

80
10

0

λλ == 1000λλ0

Time (s)

F
re

q.
 (

H
z)

C

"raw" data
fit

0 2 4 6 8 10 12

0
20

40
60

80
10

0

λλ comparison

Time (s)

D

λλ == λλ0 1000
λλ == λλ0

λλ == 1000λλ0

Figure 4: Influence of smoothing parameter choice. Comparison of fitted smooth peri
stimulus time histograms using 3 different values for the smoothing parameter λ. An
optimal value, λ0 was obtained by the cross-validation method described in the sequel.
Two additional were performed with λ0

1000 (A) and with 1000λ0 (C). On A,B and C, the
“raw data” (classical psth built with a bin width of 25 ms) appear as black and the fitted
curve appears as red. D, the 3 fits superposed. A small λ leads clearly to a “wiggly” fit
following the data closely, while a large one generates a fit following only the very slow
variations of the discharge.

14

and

R(xi, x) = [(x− 1
2

)2− 1
12

] [(xi−
1
2

)2− 1
12

]/4− [(| xi−x | −
1
2

)4− 1
2

(| xi−x | −
1
2

)2+
7

240
]/24

The coefficients, d0, d1 and {ci}Ni=1 have to be found but classical methods for generalized
linear models with penalization, penalized iteratively re-weighted least squares (PIRLS),
can be directly used for that [18, Chap. 3 and 5] as detailed in Sec. B of the Appendix.
The user of these methods should moreover be aware that at least 2 symmetric matrices
whose approximate size are N2 have to be allocated during the calculations. This is a
strong incentive to keep our preprocessing bin size δ (Eq. 10) as “large” as possible. If we
have an acquisition duration of 15 s for each stimulus presentation and if we use a δ of 25
ms we are going to need 2 · (40 · 15)2 ≈ 2.9 MB of RAM. If we use instead a δ of 1 ms
we are going to need 252 more, that is, roughly 1.8 GB. The first memory requirement is
negligible for a modern PC, the second is likely to induce a ”catastrophic” computation
slowdown due to swap space filling if a “tiny” laptop is used.

Smoothing parameter selection by “performance-oriented iteration” The
practical use of the smoothing spline methodology requires the availability of an efficient
method for setting the smoothing parameter, λ (Fig. 4). Assuming that the data where
generated by η, we define the “optimal” λ0 as the one which minimizes:

1
N

N∑
i=1

(
exp

(
η(xi)

)
− exp

(
ηλ(xi)

))
·
(
η(xi)− ηλ(xi)

)
which is the average symmetrize Kullback-Leibler distance over the sample points [18, p
152]. Notice that we do not assume here that the “true”η function satisfies Eq. 13, it could
for instance be discontinuous. The PIRLS algorithm used to estimate η̂λ at fixed λ can be
combined with the cross-validation approaches used to choose λ in penalized weighted least
squares (PWLS). Each iteration of the PIRLS algorithm is a Newton iteration where a new
η

(k+1)
λ is found as the minimizer of the quadratic approximation of the negative (penalized)

log likelihood surface at the present η(k)
λ estimate. But the structure of the quadratic

approximation is the same as the one of a PWLS. The idea of the performance-oriented
iteration is then to solve a succession of PWLS problems by updating simultaneously the
coefficients d0, d1, {ci}Ni=1 and the smoothing parameter. The cross-validation scheme used
to estimate λ can be shown to give on average the optimal λ0 in the PWLS setting [11,
46, 18]. In the present setting, strong arguments together with simulations suggests that
the same holds but no formal proof is available [17]. Monte-Carlo simulations presented in
Sec. 3.2.3, Fig. 10 A, demonstrate that the performance-oriented iteration is performing
very well in the present setting.

For completeness we mention here that theoretically better cross-validation schemes
have been designed for the present setting [48,20]. These schemes do moreover outperform
the present performance-oriented iteration scheme in multidimensional problems. They
can moreover be used in our software by calling function gsspsth instead of gsspsth0.
On our data we have nevertheless found that they do not improve the estimation of λ
while they require more computation time.

Confidence intervals One of the most surprising results of the smoothing spline the-
ory is that “confidence intervals” can be obtained [45,34,46,18]. That is, a confidence band
can be constructed around η̂λ such that 95% of the {η(xi)}Ni=1 (where η is again the truth)
are contained in it on average. The average coverage probability is exact in the Gaussian
regression case and approximate in the present Poisson regression case. Monte-Carlo sim-
ulations presented in the Results section demonstrate that they are accurate on average

15

in the present setting. The pointwise coverage probability is nevertheless not uniform. A
well known shortcoming for smoothing spline applied to Gaussian regression [45, 34, 12].
Using Monte Carlo simulations we show that the same goes in the present setting.

Numerical implementation All the numerical routines required to implement the
smoothing spline methodology of this paper (and much more) are readily available in
Chong Gu’s user contributed R package: gss (for general smoothing spline) [18, 19]. The
STAR function, gsspsth0, used to generate the smooth peri stimulus time histograms of
this manuscript does a very simple job indeed:

1. Preprocessing: Given a bin size, δ, whose default is 25 ms, build an unnormalized
classical psth , that is, create a vector, Time, containing the centers of the bins and
a vector, Count, containing the total number of spikes (from all the trials) in each
bin.

2. Call gss function gssanova0 with Count as the dependent variable and Time as the
independent one, specifying that the Poisson family has to be used.

3. Use gss function/method predict.gssanova0 (see Sec. A.7 of the Appendix) on the
output of gssanov0 to get the estimate η̂λ and its associated standard error: sebηλ .

4. Postprocessing: Get the estimated instantaneous frequency:

ν̂λ =
ebηλ
δM

and the upper / lower limit of the 95 % confidence band:

ebηλ±1.96 sebηλ
δM

2.5.3 Empirical check of the spsth smoothing parameter and confidence in-
tervals by Monte-Carlo simulations

In order to check the validity of the smoothing parameter selection and of the confi-
dence intervals (or confidence bands) of our spsths we used four data sets which are dis-
tributed with our package STAR (Sec. 2.1.4). For each neuron / data set combination
(e.g., e070528citronellal_1) the following simulations and analysis were carried out:

1. Get a spsth, ν̂λ, using bin width of 25 ms which is the default value for this parameter
in STAR (Fig. 5 A to B).

2. Extract the smoothing parameter value from the fit result. This value will be the
target ”best value” for the simulation: λ0.

3. For j = 1 : R (R equals 999 or 1000) do:

(a) Simulate with the thinning method [13, pp 253-256], ideal spike trains whose
discharge is an inhomogeneous Poisson process of instantaneous rate: ν̂λ. The
number of simulated trains is identical to the number of odor presentations used
in the original data set (Fig. 5 B to C).

(b) Fit a spsth to the simulated data using a bin width of 25 ms to get: λ(j) and
ν̃

(j)
λ (Fig. 5 D).

(c) Built the 95% confidence bands around ν̃(j)
λ and count the number of points of

{ν̂λ(xi)}Ni=1 which are inside the band (Fig. 5 D).

16

4. Build a box plot or an histogram of the empirical λs as well as of the fraction of
points of the true curve which are inside the confidence band.

5. Build the estimate of E(η̃λ):

η̃λ,•(xi) =
1
R

R∑
j=1

η̃
(j)
λ (xi) i ∈ {1, . . . , N}

to obtain the pointwise bias estimate:

b(xi) = η̂λ(xi)− η̃λ,•(xi) (16)

6. Build an estimate of the pointwise coverage probability for a nominal 95 % confidence
interval:

cp(xi) = 1−
#{ν̂λ(xi) /∈ CI(xi)(j)}Rj=1

R
(17)

where CI(xi)(j) stands for the 95 % confidence interval built around ν̃(j) at point xi.

These simulations where carried out on a multi CPU desktop computer (Intel Core 2 Quad,
2.4 GHz with 8 Go RAM). In order to exploit fully the computing power of the machine,
3 to 4 of the 4 CPUs were used simultaneously by parallelazing the above loop. That is
when 3, respectively 4, CPUs were used a total of 999, respectively 1000, data sets were
simulated by 3, respectively 4 subprocesses of R each one carrying out 333, respectively
250, simulations. This trivial parallelization is very easily implemented in R with the user
contributed package, snow (for simple network of workstation), of Tierney, Rossini, Li and
Sevcikova [42, 41]. An additional element is required to ensure good statistical properties
of these parallel simulations: a random number generator able to generate statistically
independent streams of random numbers. Pierre L’Écuyer and collaborators [29] developed
such a generator which has been made available as an R user contributed package by
Leydold and L’Écuyer [28,30].

2.6 HTML report generation

Luckily the HTML report generation is the easiest part of this “Methods” section. HTML
files are plain ASCII files where tags are used to control the way text, images, etc, appear
on the browser. These tags are surrounded by “<>” symbols [33, Chap. 3]. This means
that as soon one is using an analysis software which can append text to an ASCII file it
becomes possible to write an HTML file from the analysis software. Of course R can do
that and even better, thanks to Eric Lecoutre’s package R2HTML [27], one can write on
HTML file without having to really learn HTML. Lecoutre short 2003 paper [27] is enough
to get one going within 15 minutes.

The “strategy” we followed to develop our reportHTML methods was first to write an
R script, that is, a succession of R commands that was satisfying for what we wanted
to do (basic analysis of spike trains). We then turned this script into a function so that
arguments could be passed in order to adapt to, say, different data names. After that
we used R2HTML function HTMLInitFile at the beginning of the function to open the
resulting file, we used function HTML to write the specific computation results we wanted
to include in the HTML file, while with function HTMLInsertGraph we were able to include
graphs in the report. We ended up closing the HTML file with function HTMLEndFile. It
could hardly be simpler.

17

0 2 4 6 8 10 12

5
10

15

e070528citronellal_n1

Time (s)

| || |||| | | | ||| |||||||| |||||| | | | | | | | | ||| | || |||| | | | | || | | || ||| || | |
| | |||||| ||| || | | |||||| | | | | | ||||| |||||||||||||||||||||||||||||||||||||| || ||||| || | || | |||||| ||| || | | ||| ||

| |||||||| |||||||||| | | | | ||||| | | | || | | || || | | ||| | ||| | ||| || |||
| | | | | | | ||||| ||| | | |||||| | | | || ||| || | | || | |||||| |||| | | | || ||| ||||

|||||| || ||||||||| | | |||| | |||| ||||||||| | ||| | | | ||||||||||||||||||||||||||||||||||||| | | | | | | || || ||| || | | | ||| | ||

1
3

5
7

9
11

13
15

0 2 4 6 8 10 12

A

0 2 4 6 8 10 12

0
20

40
60

80

SPSTH

Time (s)
F

re
q.

 (
H

z)

B

log((λλ0)) == −− 20.2

0 2 4 6 8 10 12

5
10

15

Simulated Data

Time (s)

|| | | || | | || | | |||||| | | | || | | | || | |||| |||||||||||||||||||||||||||||||||||||| |||| | | | ||||| || | | | | | | | | |
|| ||||| | | | ||| | | |||| ||| | ||| | || | ||| || || |||||||||||||||| |||||||||||||| | |||| ||| ||| || | || | |||| ||| || | | | ||| | | |

|||| ||| ||||| | | | |||||| || | | ||| | | | | ||| | ||| || | |||||| | | | | | | ||| || || | | | |
| |||| ||| | || || | |||| | ||||| | || | || | | || | | | | | | | | | | | |||||||| | ||

|| | | ||||||| || | | |||| ||| || || ||| | | || | | |||||||||||||||||||||||||| | | || || || ||| | | | | | ||| | ||| | |
|| | || | ||| ||||| | |||| ||| || | | | ||||| | | || || | | | | ||| | ||||| | | | | | | | |||| |

1
3

5
7

9
11

13
15

0 2 4 6 8 10 12

C

0 2 4 6 8 10 12

0
20

40
60

80

Comparison between "truth" and estimate

Time (s)

F
re

q.
 (

H
z)

D

log((λλ)) == −− 1918 / 520 points out

Figure 5: Simulation principle. A, raster plot of one of the neurons in our data set. B,
the smooth peri stimulus time histogram together with the log of the estimated λ. C, One
data set simulated as an inhomogeneous Poisson process using the smooth peri stimulus
time histogram of B. D, grey band: the 95% confidence band obtained from the the fit
of the simulated data; black curve: the “truth”, that is the smooth peri stimulus time
histogram used to simulate the data. The X axis has been blanked at the locations where
the ”truth” is out of the confidence band. The number of points of the truth which are out
of the band is indicated together with the total number of points making the smooth peri
stimulus time histogram. The log of the estimated λ is also shown. Notice two features on
D: The estimated penalty weight, λ, is larger than the true one, λ0, and the grey band is
slightly smoother than the truth. The locations where the truth is out of the confidence
bands seem to be preferentially associated with times at which the truth undergoes a“fast”
slope change. This impression is correct as will be shown in Sec. 3.2.4.

18

2.7 Computers and software versions used for the analysis

Unless otherwise stated (e.g., Sec. 2.5.3) the analysis described in this manuscript was
carried out on laptop PC running Linux (Ubuntu 8.04.1). R version 2.7.2 was compiled
with gcc15 4.3.1 using R’s default compilation flags. The hardware characteristics of the
laptop were: a dual core CPU (Intel Core 2) at 2 GHz with 1 GB of RAM.

2.8 Reproducing the present analysis

We are trying to implement the rather strict “reproducible research” paradigm of [15, Gen-
tleman and Temple-Lang, 2004]. This means that in addition to giving access to the soft-
ware (STAR) and to the data sets used in the present paper we provide a compendium [15]
which is fundamentally a metafile containing both the text of the present paper and the
R instructions required to regenerate all the figures and tables of the paper. By editing
this metafile the interested reader can have access to the complete description of the com-
putations involved in the paper and change them if he/she wants. Like the data sets, the
metafile is distributed with the package. The user contributed package cacheSweave of
Roger Peng [36] has been a tremendous help for developing our compendium.

3 Results

The general features of our data analysis procedures are illustrated and characterized
by applying them to each data set of Sec. 2.1.4. The automatic report generation is
illustrated using 2 data sets: e070528spont 4 for the “spontaneous regime” data and
e070528citronellal 1 for the “stimulus response regime” data.

3.1 Spontaneous activity analysis

Run-time as well as summary data obtained by running the same analysis on our 12
spontaneous data sets are presented first. The HTML report generated out of one of the
data set is illustrated next.

3.1.1 Robustness and run-time of spontaneous activity analysis

We do not have a formal proof of the “robustness” of our analysis routines for the gamma,
Weibull and loglogistic models but the systematic application of the same automatic meth-
ods to diverse data sets can be used to argue in favor of it. The renewal test plots
(Sec. 2.4.3) and the 6 bivariate duration distribution models (Sec. 2.4.4) were therefore sys-
tematically generated and fitted to the 12 spontaneous spike trains described in Sec. 2.1.4.
In all the cases the analysis did run smoothly. This data set contains moreover only one
spike train for which one of the bivariate duration density models can be considered as
reasonable as judged by the Q-Q plot (Sec. 2.4.4, Fig. 3). Table 1 contains the run-time
results. The run-time of report generation is also given for each data set. The latter time
is much larger than the previous ones because the Q-Q plots are included in the report as
well as the smooth version of the cross-correlograms. As expected the computation time
is proportional to the number of spikes in the train with an increase of 0.52, 0.24 and of
38 ms per spike for the renewal test plot, the fits and the reports respectively.

3.1.2 Example of automatic report generation

Our automatic spontaneous spike train analysis and report generation procedure, re-
portHTML.spikeTrain, performs sequentially the “sub-tasks” of Sec. 2.4. To avoid having

15http://gcc.gnu.org

19

http://gcc.gnu.org

N Renewal Fit Report
e060517spont 1 356 0.54 0.22 11.24
e060517spont 2 490 0.31 0.17 12.44
e060517spont 3 216 0.15 0.08 6.50
e060817spont 1 529 0.32 0.13 27.44
e060817spont 2 1229 0.71 0.37 47.49
e060817spont 3 781 0.46 0.23 28.82
e060824spont 1 505 0.31 0.14 10.21
e060824spont 2 64 0.08 0.05 3.25
e070528spont 1 336 0.22 0.09 19.33
e070528spont 2 1173 0.68 0.27 50.52
e070528spont 3 1834 1.06 0.50 65.29
e070528spont 4 1015 0.62 0.23 42.46

Table 1: Summary statistics of spontaneous spike train analysis. N: The number of spikes.
Renewal: Time (s) required to carry out the computation and to generate the renewal test
plot (Sec. 2.4.3). Fit: Time (s) required to fit the 6 duration density models (Sec. 2.4.4).
Report: Time (s) required to generate an HTML report as detailed in Sec. 3.1.2

too many figures of screen shots in this paper we do not show the whole report here but it
can be seen on our web site16 and it can be reproduce by the reader on his/her computer.

Briefly, a spike train plot (Sec. 2.4.1) is made and added to the HTML report. For
instance, Fig. 1 can be seen again on the screen shot of the HTML report shown in Fig. 6.

Summary information including the number of spikes, the times of the first and last
spikes, the mean isi , etc, are computed and added to the report as can be seen at the
bottom of Fig. 6.

The renewal test plots (Sec. 2.4.3, Fig. 2) are built and added to the report (not shown
on screen shots).

If other spike trains (from simultaneously recorded neurons) are provided, then cross-
correlation histograms are estimated. Two estimations methods are available (Sec. 2.4.5),
the classical histogram and a smooth version of it. Argument chh controls if a single
estimation is performed or if both are performed. Fig. 7 shows a screen shot where the
cross-correlation histograms built with neuron 4 as a reference and neuron 2 as a test.
Confidence intervals at 95% level are shown on these two cross-correlation histograms.
The excess of spikes of neuron 2 roughly 100 ms before a spike in neuron 4 seems to be
significant.

Function reportHTML.spikeTrain also writes to disk a data file (using the R data format)
where analysis results are stored. The data analyst can therefore quickly go back to the
intermediate results if something appears suspicious in the report.

3.2 Stimulus response analysis

Most of the analysis presented in this section will consist in a systematic application of the
same routines to each of the odor response data sets of STAR (Sec. 2.1.4). Fig. 8 shows the
smooth peri stimulus time histogram obtained for each neuron in each data set using our
default preprocessing bin width. On each plot the 0.5 s opening odor delivery valve comes
around second 5. The reader can see that the data sets exhibit diverse type of responses
(but more excitation than inhibition). The basal firing rates range from 5 to 40 Hz. The
largest response is above 80 Hz.

16 http://www.biomedicale.univ-paris5.fr/physcerv/C_Pouzat/STAR_folder/e070528spontN1.

html

20

http://www.biomedicale.univ-paris5.fr/physcerv/C_Pouzat/STAR_folder/e070528spontN1.html
http://www.biomedicale.univ-paris5.fr/physcerv/C_Pouzat/STAR_folder/e070528spontN1.html

Figure 6: Fig. 1 as it appears in the automatically generated HTML report.

Figure 7: Smooth and“classical”cross-correlation histograms between neuron 4 (reference)
and neuron 2 (test) as they appear in the automatically generated HTML report. One
both plots the dotted lines define a pointwise 95 % confidence region.

21

e060517ionon_1

e060517ionon_2

e060517ionon_3

e060817citron_1

e060817citron_2

e060817citron_3

e060817terpi_1

e060817terpi_2

e060817terpi_3

e060817mix_1

e060817mix_2

e060817mix_3

e060824citral_1

e060824citral_2

e070528citronellal_1

e070528citronellal_2

e070528citronellal_3

e070528citronellal_4

Figure 8: The 18 smooth peri stimulus time histograms. All graphs have the same scale.
The scale bar on the left side of each plot is drawn between 10 and 20 Hz. The time axis
spans 15 s. The estimated smooth peri stimulus time histograms are shown as a 95 %
confidence band.

22

3.2.1 Robustness and run-time of stimulus response analysis

The approach followed in Sec. 3.1.1 to study the robustness of our routines for the analysis
of the spontaneous regime is repeated here with the stimulus response regime. Smooth
peri stimulus time histograms and HTML reports were generated using the default prepro-
cessing binwidth (25 ms). In all the cases the analysis did run smoothly. Table 2 contains
the run-time results. The computation time is proportional to the number of spikes in the
train with an increase of 0.6 and of 0.74 ms per spike for the smooth peri stimulus time
histograms and the reports respectively.

N S Duration SPSTH Report
e060517ionon 1 2073 19 15.00 7.52 10.05
e060517ionon 2 1696 19 15.00 7.01 9.17
e060517ionon 3 977 19 15.00 6.23 8.75
e060817citron 1 2639 20 15.00 7.40 9.66
e060817citron 2 6920 20 15.00 10.65 13.92
e060817citron 3 4805 20 15.00 7.40 10.60
e060817terpi 1 3117 20 15.00 7.58 10.32
e060817terpi 2 6903 20 15.00 11.05 14.08
e060817terpi 3 4762 20 15.00 7.90 10.48
e060817mix 1 2515 20 15.00 7.12 10.16
e060817mix 2 6512 20 15.00 11.01 14.32
e060817mix 3 4771 20 15.00 7.92 10.81

e060824citral 1 2065 20 15.00 8.04 10.54
e060824citral 2 599 20 15.00 7.74 9.70

e070528citronellal 1 1596 15 13.00 5.36 7.89
e070528citronellal 2 3073 15 13.00 5.96 8.16
e070528citronellal 3 5884 15 13.00 7.20 9.44
e070528citronellal 4 2873 15 13.00 5.42 7.39

Table 2: Summary statistics of stimulus response analysis. N: The total number of spikes.
S: The number of stimulations. Duration: Duration (s) of the acquisition for each stim-
ulation. SPSTH: Time (s) required to compute the smooth peri stimulus time histogram.
Report: Time (s) required to generate an HTML report.

3.2.2 Insensitivity to the preprocessing bin width

In order to put on a firmer basis our claim of insensitivity’s of our spsth to the preprocessing
bin width used, we show on Fig 9 the effect of a 5 times bin width reduction. We use the
3 neurons of data set e060817mix because a the variety of neuronal responses present in
this data set (see also Fig. 8 column 4). In order to make the comparison between the
two spsths obtained with the two bin width clearer, we only show part of the recording
window (from 5 to 10 s) and the “coarser” spsth generated with the largest bin width (25
ms, default value) appears as a 95 % confidence band. The “finer” spsth obtained with the
smallest bin width (5 ms) is shown as a black curve. It can be seen than the finer spsth is
“wigglier” and within the confidence band of the coarser. Using a 5 ms bin width instead
of a 25 ms one will therefore not essentially change our estimation.

23

6 7 8 9

0
20

40
60

80

e060817mix_1

Time (s)

F
re

q.
 (

H
z)

6 7 8 9

0
20

40
60

80

e060817mix_2

Time (s)

F
re

q.
 (

H
z)

6 7 8 9

0
5

10
15

20
25

30

e060817mix_3

Time (s)

F
re

q.
 (

H
z)

Figure 9: Absence of effect of the preprocessing bin width on the spsths. The 3 neu-
rons of data set e060817mix are illustrated (3rd column of Fig. 8). Each graph shows
the spsth obtained with the default bin width (25 ms) as a grey confidence band. The
spsth obtained with a preprocessing bin width of 5 ms is shown a black curve.

24

●

●

●
●
●

●

●

●
●
●

●

●

●

●
●
●

●

●

●

●

●

●

●
●

●

●

●●

●

●●

●

●
●●●●●●
●
●●
●

●
●

●

●●
●
●
●

●●●

●

●

●●●●●

●●

●

●
●●

●

●

●

●

●●

●

●

●

●

●

●
●
●●

●●

●
●
●
●

●
●
●

●

●
●

●

●●●

●

●

●
●
●

●

●

●

●●●●

●

●

●●

●●
●

●

●●

●●

●
●●●
●

●
●

●

●●
●
●
●
●●●●

●●

●●
●●

●

●
●

●

●

●

●

●

●●●

●

●

●●●

●

●
●

●●

●

●

●
●

●

●
●
●●

●
●

●

●●

●●

●

●

●

●

●

●

●

●
●●●

●

●

●

●

●

●●

●

●●

●

●

●

●

●
●
●

●
●
●

●
●

●●●

●

●

●
●
●
●
●

●

●

●

●●

−
22

−
20

−
18

−
16

Smoothing Parameter Estimation
lo

g((
λλ))

A

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●
● ●●

●

●

●●●
●

●

●●●●

●

●

●
●

●

●

●

●
●●
●

●●●

●

●

●

●
●●●

●

●

●

●●●
●●
●●

●

●

●

●

●

●

●

●
●●

●

●
●●●●

●
●
●
●●

●
●
●●●●●●

●

●

●●

●

●

●●

●●●

●
●

●

●

●
●●

●

●
●

●
●
●●

●●

●●

●

●

●

●

●

●
●●●●
●

●

●●
●
●

●
●

●●
●

●

●

●

●
●

●●
●

●
●●
●

●

●
●

●

●

●

●●●

●

●
●

●

●
●

●

●
●●

●

●●
●●

●

●

●

●
●

●

●

●

●

●
●

●
●
●
●

●●

●

●

●

●●
●

●

●●

●

●
●

●

●●

●

●

●

●

●
●

●
●
●
●

●

●

●

●
●

●● ●

●

●

●
●●
●●
●●●●

●●
●

●
●
●

● ●
●
●●●
●●

●

●
●●

●

●●●
●

●●

●
●

●●●●
●
●

●

●

●

●

●

●

●
●●
●

●

●

●

●

●●●●

●●
●

●●
●

●●
●

●

●

e0
60

51
7i

on
on

_1

e0
60

51
7i

on
on

_2

e0
60

51
7i

on
on

_3

e0
60

81
7c

itr
on

_1

e0
60

81
7c

itr
on

_2

e0
60

81
7c

itr
on

_3

e0
60

81
7t

er
pi

_1

e0
60

81
7t

er
pi

_2

e0
60

81
7t

er
pi

_3

e0
60

81
7m

ix
_1

e0
60

81
7m

ix
_2

e0
60

81
7m

ix
_3

e0
60

82
4c

itr
al

_1

e0
60

82
4c

itr
al

_2

e0
70

52
8c

itr
on

el
la

l_
1

e0
70

52
8c

itr
on

el
la

l_
2

e0
70

52
8c

itr
on

el
la

l_
3

e0
70

52
8c

itr
on

el
la

l_
4

0.80

0.85

0.90

0.95

1.00

Estimated Average Coverage Prob.

C
ov

er
ag

e

B

Figure 10: A, Estimated (box plot) and actual (grey point) value of log λ. B, Estimated
average coverage probability (box plot). The nominal value appears as a dotted line.

3.2.3 Monte Carlo investigation of smoothing spline smoothing parameter se-
lection and average coverage probability for 95% confidence intervals

As described in Sec. 2.5.3 and Fig. 5 an empirical investigation of the cross-validation based
smoothing parameter selection was carried out together with an empirical determination
of the average coverage probability of the 95 % confidence intervals. The results of these
Monte Carlo simulations are summarized on Fig. 10. It can be seen that the performance-
oriented iteration algorithm slightly over smooths the data (λ > λ0 in general). This could
very well be due to the fact that our preprocessing stage (building a classical psth with
a small bin width) does itself slightly smooth the data. This slight over smoothing does
nevertheless not seem to have any consequence on the average coverage probability. But
a relatively wide distribution of the average coverage probability is seen ranging from 100
to 80 %.

25

3.2.4 Monte Carlo investigation of the pointwise coverage probability of the
95% confidence intervals

Grace Wahba who introduced the method to compute the confidence intervals [45] also took
pain insisting that these intervals must be interpreted “across the function” [46, Wahba,
1990, p 69], that is, they are valid on average over the xis as shown on Fig. 10. In order to
avoid wrong interpretations of the confidence intervals we show in this section the empirical
pointwise coverage probability of the 95% confidence intervals in three cases. The method
used to obtain these pointwise coverage probability is explained in Sec. 2.5.3. For each of
our 18 cases we estimated the pointwise coverage probability and, in each case, we look
for its smallest value (over the xi). We then selected the three cases which gave us the
three lowest values. These 3 cases are shown on Fig. 11, the worst case making the left
column. We shown on this figure (top row) the “true” η() instead of the ν() because that
is what the algorithm is working with and actually estimating. The second row shows
the estimated bias (Sec. 2.5.3), that is, the difference between the “truth” and the mean
estimated function generated by our procedure. The bias is seen to be large where the
slope of η() changes fast. This is expected since we are penalizing large values of the
second derivative of η() (Eq. 13 and 14). Where the bias is “large”, the pointwise coverage
value (Fig. 11, bottom row) can be much smaller than the nominal value (0.95).

3.2.5 Example of automatic report generation

A single screen shot of the full report is shown here. The full report can be seen in our
web site17 or, even better, can be generated by the reader as explained in Sec. A.18. Our
automatic analysis and its report are now briefly described. A raster plot is added first to
the report (Sec. 2.5.1) and a spsth (Sec. 2.5.2) is superposed to it (see Sec. A.17 for details).
Fig. 12 shows a screen shot with this raster plot. The summary of the inhomogeneous
Poisson fit (Sec. 2.5.2) leading the spsth is added next together with a short summary
describing how accurate the hypothesis of constant intensity/rate made during the pre-
processing was given the estimated rate. A plot of the smooth PSTH with approximate
95% CI is added (not shown on screen shot but it looks like the right graph of Fig. 17).
A Graph showing the results of the Ogata’s battery of tests for point processes [35] when
the spsth is taken has a model of the neuron’s response to individual stimulation is added
next (not shown). We do not discuss further this last point here given that showing that
actual non averaged neuronal discharge are not well described by inhomogenous Poisson
process is somewhat showing the obvious. This tests will be detailed elsewhere. The
impatient reader can of course already check the help files of STAR.

4 Discussion

Experimental techniques used in modern neuroscience research, like MEA recordings, tend
to generate vast amounts of data. Experience moreover shows that the analysis of these
raw data generates also a lot of “secondary” data. These quantitative aspects represent
first a serious time challenge simply because data analysis requires time. Our answer to
that challenge is to make the computer work for us. But remembering what John Tukey
said: “Numerical quantities focus on expected values, graphical summaries on unexpected
values”, we make our computer not only compute but also generate a lot of diagnostic
plots. Our approach is therefore to implement an automatic “robust” preliminary spike
train analysis. Keeping in mind that real data have a tendency to wander out of our preset

17http://www.biomedicale.univ-paris5.fr/physcerv/C_Pouzat/STAR_folder/

e070528citronellalN1.html

26

http://www.biomedicale.univ-paris5.fr/physcerv/C_Pouzat/STAR_folder/e070528citronellalN1.html
http://www.biomedicale.univ-paris5.fr/physcerv/C_Pouzat/STAR_folder/e070528citronellalN1.html

0 100 200 300 400 500

−
1

0
1

2
3

e070528citronellal_1: ηη

bin #

ηη

A1

0 100 200 300 400 500

−
0.

4
−

0.
3

−
0.

2
−

0.
1

0.
0

0.
1

Est. Pointwise Bias

bin #

ηη
−

 E
(ηη̂

)

A2

0 100 200 300 400 500

0.
2

0.
4

0.
6

0.
8

1.
0

Est. Pointwise Cov. Prob.

bin #

C
ov

er
ag

e

A3

0 100 200 300 400 500 600

−
1

0
1

2
3

e060817mix_1: ηη

bin #

ηη

B1

0 100 200 300 400 500 600

−
0.

4
−

0.
3

−
0.

2
−

0.
1

0.
0

0.
1

Est. Pointwise Bias

bin #

ηη
−

 E
(ηη̂

)

B2

0 100 200 300 400 500 600

0.
2

0.
4

0.
6

0.
8

1.
0

Est. Pointwise Cov. Prob.

bin #

C
ov

er
ag

e

B3

0 100 200 300 400 500 600

−
1

0
1

2
3

e060817terpi_1: ηη

bin #

ηη

C1

0 100 200 300 400 500 600

−
0.

4
−

0.
3

−
0.

2
−

0.
1

0.
0

0.
1

Est. Pointwise Bias

bin #

ηη
−

 E
(ηη̂

)

C2

0 100 200 300 400 500 600

0.
2

0.
4

0.
6

0.
8

1.
0

Est. Pointwise Cov. Prob.

bin #

C
ov

er
ag

e

C3

Figure 11: The three cases giving the three lowest minimal cp(xi). Top row (A1, B1,C1):
The ”true” η, that is, the one used to simulate the data. Central row (A2, B2,C2):
The estimated pointwise bias, b(xi) (Eq. 16). Bottom row (A3, B3, C3): The estimated
pointwise coverage probabilities for a 95 % confidence interval. Dotted line: the nominal
value. On a given row, all graphs have the same scale.

27

Figure 12: Raster plot with superposed smooth peri stimulus time histogram (red curve)
for neuron 1 as it appears in the automatically generated HTML report.

frames “we” generate and save many plot allowing us to scrutinize our analysis results,
judge their trustworthiness and if necessary go back to specific stages of our analysis.

A second issue neurophysiologists have to face when dealing with MEA data analysis is
the management of the “secondary” data they produce. Keeping things organized and easy
to retrieve can become a problem especially for people who do not want to print 20 graphs
per analyzed data set and/or have to move around with 20 kg of folders. The computer is
again the solution when combined with the HTML file format. With this approach the 20
kg physical folder becomes an icon in the directory arborization of one’s home directory.
The analysis results become also easy to retrieve and can even be directly be shown to
colleagues in lab meetings, as we hope our few screen shots have convinced our reader.

We have implemented both the “robust spike train analysis with lots of plots” approach
and the HTML report generation in an open source and free package: STAR. Being open
source our approach can easily be tailored to users/data specific needs. For our data it
turns out to work “well” (in the sense of actually doing what we expect it to do) and fast
(Table 1 and 2). But we insist again on the preliminary aspect of this automatic analysis.
Most of the data we showed require more sophisticated analysis techniques.

The use of the smoothing spline methodology has been decisive in the development
of a robust automatic analysis. We have tried to justify this methodological choice on
both “theoretical” (Sec. 2.5.2) and “practical” (Sec. 3.2.3 and 3.2.4) grounds. We have
moreover tried to carefully illustrate the meaning of the confidence intervals obtained
with this method (Sec. 3.2.4). Given these results we would recommend to draw spsths as
confidence bands in order to convey a better impression of what has been learned from the
data. While looking at such bands, the reader should keep in mind that a correct pointwise
confidence interval should be larger where the estimate undergoes a fast slope change. If
a data analyst wanted to make a strong statement about differences of sharp peak on
spsths, we would recommend for now a Monte Carlo simulation to be carried out in order
to correct for the bias of the estimated spsth. We could also consider implementing the
method described by [12, Cummins et al, 2001] to set locally the smoothing parameter (and

28

get a uniform coverage probability). We have exposed here only “the tip of the iceberg”
of what can be done with smoothing spline and spike trains. The methodology can be
readily extended to multidimensional cases and provide an elegant and practical solution
to, at least some, conditional intensity estimation problems (Pouzat, Chaffiol and Gu in
preparation).

Acknowledgments

We thank Chong Gu, Laurent Moreaux, Romain Franconville and Alain Marty for com-
ments on the manuscript. C. Pouzat was partly supported by a grant from the AFM/Decrypton
project. A. Chaffiol was supported by a DGA (?) fellowship.

29

A Reproducing the analysis/figures/report of this paper: A
STAR tutorial

A.1 Getting R and STAR

R is an open source and free software that can be downloaded from: http://www.r-project.
org or from any mirror site of the Comprehensive R Archive Network (CRAN). The software
documentation and user contributed add-on packages can also be downloaded from these
sites. Precise instructions can be found on how to compile or just install from binary files
the software on many different systems.

New users can get started by reading through: “An Introduction to R” which comes
with the software18. Windows users who would feel a bit lost with the sober graphical user
interface which comes with the Windows version should consider also installing “SciViews
R GUI”: http://www.sciviews.org/SciViews-R/.

STAR is not yet posted on CRAN (but it will be soon). It can be download from our
web site: http://www.biomedicale.univ-paris5.fr/physcerv/C_Pouzat/STAR.html.
Once the proper version has been downloaded (Linux, which also runs on Mac, or Win-
dows), it is installed like any other R add-on package. Check the documentation of function
install.packages to see how to do it.

A.2 Preliminary remarks

We present in this appendix the full sequence of commands of R and STAR leading to
the material, analysis, figures, etc, presented in this paper. We also try to give some
background information on R, to help motivated users getting started. Here different fonts
are going to be used to distinguish between what the user types following the R prompt
which will appear like:

this is what an R input is going to look like in the sequel

and what R returns which will appear like:

this is how R outputs will appear

A.2.1 Getting help

Once R is started help on any command like plot can be obtained by typing the command
name with ? as a prefix, i.e.:

> ?plot

It can also be done by using function help:

> help(plot)

A.2.2 Ending an R session

An R session is ended (from the command line) by the command:

> q()

18And that can also be found at: http://cran.r-project.org/doc/manuals/R-intro.html. In ad-
dition, among the user contributed documentations, we particularly like Emmanuel Paradis: “R for Be-
ginners” (http://cran.r-project.org/doc/contrib/Paradis-rdebuts_en.pdf) and Thomas Lumley: “R
fundamentals” (http://faculty.washington.edu/tlumley/Rcourse/).

30

http://www.r-project.org
http://www.r-project.org
http://www.sciviews.org/SciViews-R/
http://www.biomedicale.univ-paris5.fr/physcerv/C_Pouzat/STAR.html
http://cran.r-project.org/doc/manuals/R-intro.html
http://cran.r-project.org/doc/contrib/Paradis-rdebuts_en.pdf
http://faculty.washington.edu/tlumley/Rcourse/

A.3 Loading STAR

To use STAR, an add-on package of R, the user has to load it into R search path with the
library function as follows:

> library(STAR)

The effect of this command is to make STAR functions available to the user. Technically it
adds a new environment into which the R interpreter looks for a variable/function name
when a command is typed in by the user. Function search shows the search path used by
the interpreter:

> search()

[1] ".GlobalEnv" "package:xtable"
[3] "package:STAR" "package:gss"
[5] "package:R2HTML" "package:mgcv"
[7] "package:survival" "package:splines"
[9] "package:tools" "package:stats"
[11] "package:graphics" "package:grDevices"
[13] "package:utils" "package:datasets"
[15] "package:methods" "Autoloads"
[17] "package:base"

A.4 A comment on functions arguments

R functions like, library, often accept many arguments but only a few of them have to be
explicitly specified by the user. The idea is to have both control over the function behavior
and ease of use, i.e., short command lines to type in. This is implemented by defining
default values for the arguments, either explicitly in the argument list of the function or
internally in the function’s body. We can for instance look at the arguments accepted by
function library by using function args with library as argument:

> args(library)

function (package, help, pos = 2, lib.loc = NULL, character.only = FALSE,
logical.return = FALSE, warn.conflicts = TRUE,
keep.source = getOption("keep.source.pkgs"),
verbose = getOption("verbose"), version)

NULL

We see that among the 10 possible arguments of library the specification of a single one,
package, was sufficient to do what we wanted. Using explicitly the other arguments with
values different from their default ones would have allowed us to have a finer control on
what the function does.

We also remark that when we entered args(library) we passed a function, library, as an
argument of another function, args, without doing anything special. R being based on the
Scheme language [21] does not make any differences between functions and other types of
objects.

A.5 Loading data

All the data sets used in this paper are part of the STAR data sets which means they can
be loaded with function data. To load the data of the experiment of May 5 2007 in the
spontaneous regime which is named: “e070528spont”, we enter:

31

> data(e070528spont)

Clearly users will want to use STAR with their own data so we give a very brief descrip-
tion on how data can be loaded into R. We will load the spike train of the first neuron of
the e070528spont data set. The data are in ASCII format on a distant machine and we are
going to load them through a web connection. The data file e070528spontN1.txt is located
on our lab server at the following address: http://www.biomedicale.univ-paris5.fr/
physcerv/C_Pouzat/STAR_folder/e070528spontN1.txt. The first four lines of the file
give some information about the data:

Data set: e070528
Neuron: 1
Condition: spontaneous activity
By: Antoine Chaffiol

The following line is blank and the next 336 lines contain the spike times. We are
going to use function scan to load the data. For editing purposes, we will moreover build
the address of our file piece by piece: myURL will contain the url address of the folder
containing the data file:

> myURL <- "http://www.biomedicale.univ-paris5.fr/physcerv/C_Pouzat/STAR_folder"

and myFileName will be the name of the file per se:

> myFileName <- "e070528spontN1.txt"

Notice the use of, “<-”, for assignments. The more common symbol, “=”, could have also
been used, e.g.:

> myFileName = "e070528spontN1.txt"

would have given the same result. The file address is then obtained by gluing together the
2 pieces, myURL and myFileName, with a “/” in between using function paste:

> myFullName <- paste(myURL, "/", myFileName, sep = "")

Function scan finishes the job and reads the data into our work space:

> e070528spontN1 <- scan(myFullName, skip = 5)

Notice that we used argument, skip, to start reading the file from the sixth line. If the
data had been on our hard drive in the current working directory (see ?getwd and ?setwd)
of R, we would have used:

> e070528spontN1 <- scan("e070528spontN1.txt", skip = 5)

The first argument of scan is just the “full path” to the data file, it does not matter if
the path includes an Internet connection or not. Functions are also available to read
data in binary format (readBin) or with table structures (read.table). Check the R Data
Import/Export manual which comes with the software for a comprehensive description of
the data import/export capabilities of R.

The new object we have loaded into our R workspace, e070528spontN1, is a trite
vector of double precision numbers, that is, a numeric object for R. To convert it into a
spikeTrain object that STAR processes in a particular way, we use function as.spikeTrain:

> e070528spontN1 <- as.spikeTrain(e070528spontN1)

Function as.spikeTrain is not doing much, it merely checks that its argument can be a proper
spikeTrain object (its elements should be strictly increasing) and gives spikeTrain class at-
tribute to the object it returns. This probably looks obscure at that stage, but it should be-
come clearer after the presentation of the “class / method” mechanism (Sec. A.7 and A.9).

32

http://www.biomedicale.univ-paris5.fr/physcerv/C_Pouzat/STAR_folder/e070528spontN1.txt
http://www.biomedicale.univ-paris5.fr/physcerv/C_Pouzat/STAR_folder/e070528spontN1.txt

A.6 A Comment on list objects

If we look of the type of object we loaded into our work space with function data, by
calling function class on e070528spont:

> class(e070528spont)

[1] "list"

we see that it is a list. list objects are composite objects whose components can be indexed.
The different components of a list don’t have to be of the same type (or class to use the
proper terminology). list objects are a very convenient way to keep related objects together.
The number of components of a list is returned by function length:

> length(e070528spont)

[1] 4

Components of list objects can have names (it usually easier for a human to remember a
meaningful name than a number) which are returned by function names:

> names(e070528spont)

[1] "neuron 1" "neuron 2" "neuron 3" "neuron 4"

list components can be accessed either by their index or by their name, i.e.:

> e070528spont[[4]]

gives the same result as:

> e070528spont[["neuron 4"]]

When dealing with indexed objects like list objects it often happens that we want to perform
the same computation on every component of the object. We could for instance want to
see what is the class of e070528spont components. A function which will do this task and
spare us the job of writing a for loop is sapply19:

> sapply(e070528spont, class)

neuron 1 neuron 2 neuron 3 neuron 4
"spikeTrain" "spikeTrain" "spikeTrain" "spikeTrain"

In a similar way we could get the length of these spikeTrain components (if they have one):

> sapply(e070528spont, length)

neuron 1 neuron 2 neuron 3 neuron 4
336 1173 1834 1015

So we have learned that e070528spont is a list object with four named components of class
spikeTrain each one with a different length. Of course we could have gotten almost the same
information by looking at the documentation of e070528spont, by typing: ?e070528spont.

19Remember that when Ris running you can always get help on functions, like sapply, by typing: ?sapply.

33

A.7 A comment on the class / method mechanism

If we look at the documentation of function as.spikeTrain (?as.spikeTrain), which creates
spikeTrain objects we learn that: “A spikeTrain object is a numeric vector whose elements
are strictly increasing (that is, something which can be interpreted as a sequence of times of
successive events with no two events occurring at the same time).” At first sight creating a
new type (class) of objects which are just classical numeric vectors with a“small”peculiarity
(the successive elements must be strictly increasing) would suggest that we are “over doing
it”. This would be ignoring the gains we can obtain from the “class / method mechanism”.

When we work regularly with a type of data which has a specific structure and that
we interpret in a specific way, we quickly end up with a “standard” way of plotting as well
as summarizing them numerically. If our favorite software provides a general function for
plotting objects say, plot, to use the name of the R function doing this job, we then often
end up writing a new function or a short script which uses plot with arguments which are
specific to the type of data we are looking at. When we have reached this stage it is worth
thinking of using the “class method mechanism” provided by R20. By doing so we will
transfer the task of finding the proper plot function from us to the R interpreter. This
mechanism works by allowing users/programmers to create new “tailored” functions for
some so called generic functionwhich are very frequently used in data analysis, like plot,
print or summary. These object specific functions are called “methods” and the objects
to which they apply must have a “class”. e070528spont[[”neuron 4”]] is for instance an
object of class spikeTrain and we have written a method, plot.spikeTrain, which does
the job of generating a plot in a spikeTrain specific manner. If we then want to plot
e070528spont[[”neuron 4”]], we don’t have to remember that it is a spikeTrain object and
enter:

> plot.spikeTrain(e070528spont[["neuron 4"]])

but only:

> plot(e070528spont[["neuron 4"]])

When plot(x) is entered, the R interpreter looks for the class of x, say, xClass, then it looks
for a method called: plot.xClass. If such a method exists then the executed command is
in fact: plot.xClass(x), otherwise it is: plot.default(x).

What have just written probably looks a bit abstract to the reader who has never
been exposed to such ideas. It can also look over complicated to programmers used to a
software environment which does not offer this functionality. But it turns out to be an
extremely efficient concept. With it “casual” users can plot spikeTrain objects and obtain
immediately a meaningful display without having to know everything about the structure
of spikeTrain objects or to know all the details of the plot function. For the non-casual user
it means a big time gain when using the software because commands are much shorter.
To the programmer it means more work on a short term, but significant gains on the mid-
to long-term because it generates a better software organization.

A.8 Spike train plot generation

By now we should have guessed that Fig. 1 is simply generated by entering:

> plot(e070528spont[[4]])

In turns out that we could have generated the same figure (except the title which would
have been slightly less informative) by entering:

20And of course to switch to R if we are not already using it!

34

> e070528spont[[4]]

When the name of an single object (like e070528spont[[4]]) is typed in the command line
before pressing the return key, the R interpreter calls function print meaning that a
print method specific to the class of the object is looked for before the evaluation is
carried out. In the above example that means that what is evaluated really is:

> print.spikeTrain(e070528spont[[4]])

But we defined print.spikeTrain to be the same as plot.spikeTrain meaning that a plot is
generated just by typing a spikeTrain name at the command line before pressing return.

A.9 The class / method mechanism in action

We have just seen how to generate a plot for spikeTrain objects using transparently the
plot.spikeTrain method. As an illustration of the usefulness of the class /method mechanism,
the reader can try the following sequence of commands. First generate a plot of the
spikeTrain object, e070528spontN1, we created after loading some “raw data” (Sec. A.5):

> plot(e070528spontN1)

Now, remove the spikeTrain class attribute from e070528spontN1 with function unclass:

> e070528spontN1 <- unclass(e070528spontN1)

and plot it again:

> plot(e070528spontN1)

It is now plotted as “trite” numeric object, although its data content did not change at all.

A.10 Renewal test plot

A renewal test plot of neuron 4 of the e070528spont data set is obtained by calling function
renewalTestPlot:

> renewalTestPlot(e070528spont[[4]])

As mentioned in Sec. 2.4.3, these plots are sensitive non-stationarity detectors as illustrated
in the pkDataSet1 demo of STAR. It uses the sPK data set (?sPK) and is launched as
follows (the first command displays a list of the demos available in STAR with a short
description):

> demo(package = "STAR")

> demo(pkDataSet1)

A.11 Why is the rank more informative

In Sec. 2.4.3 we mention that plotting Oj+1 as a function of Oj is better than plotting ij+1

as a function of ij . Let us illustrate this point by generating the equivalent of the upper
left plot of Fig. 2 in term of ij instead of Oj to get Fig. 13:

> n4.isi <- diff(e070528spont[["neuron 4"]])

> plot(n4.isi[-length(n4.isi)], n4.isi[-1], pch = ".",

+ xlab = expression(i[j]), ylab = expression(i[j +

+ 1]))

35

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ij

i j++
1

Figure 13: Plot of ij+1 versus ij (in s) for neuron 4, data set, e070528, spontaneous regime.
Compare with upper left plot of Fig. 2.

A.12 Comparing duration distribution

The theoretical quantile quantile plots of the six duration distributions fitted to the isis of
neuron 1 of the e070528spont data set are generated by function compModels, which also
does the fits and returns the Akaike’s Information Criterion value for each model.

> compModels(e070528spont[[1]])

invgauss lnorm llogis weibull rexp gamma
-594.6524 -573.2588 -556.4574 -505.4907 -501.7978 -489.7187

A.13 Comparison with the isi histogram

Although we don’t use isi histograms in our automatic spike train processing, STAR has
a function to plot it together with the fit of one of the 6 duration distributions: isiHistFit.
To superpose a fitted inverse Gaussian density, to the empirical isi histogram of neuron
1 of the e070528spont as shown on Fig. 14, we would enter:

> isiHistFit(e070528spont[[1]], "invgauss", xlim = c(0,

+ 0.5))

A.14 Doing your own isi histogram generating function

We have not included any specific function to create a “simple” histogram from the isis
of a spikeTrain object. This is because the job is done easily by calling two functions
successively. The isis are obtained from a spikeTrain object, like e070528spont[[4]], by
calling method diff without further arguments (see ?diff.spikeTrain). Then hist is called
on the result. So we are now ready to create our first R function, isiHist4ST:

> isiHist4ST <- function(mySpikeTrain, ...) hist(diff(mySpikeTrain),

+ ...)

36

Isi histogram and fitted invgauss distribution for e070528spont[[1]]

CI at 95%. Sample size: 335.
isi (s)

D
en

si
ty

0.0 0.1 0.2 0.3 0.4 0.5

0
2

4
6

8
10

12
14

Figure 14: isi histogram (black rectangles) with superposed fitted inverse Gaussian density
(red curve). The 10 histogram bins are set after the fit such that if the fit was good, 10%
of the isis would fall into each bin. Data of neuron 1, data set, e070528, spontaneous
regime. For more details: ?isiHistFit.

37

We could even go further and create a hist method for spikeTrain objects considering
that only a histogram of the isis of the train would make sense:

> hist.spikeTrain <- function(mySpikeTrain, ...) hist(diff(mySpikeTrain),

+ ...)

Simple isn’t it?

A.15 The repeatedTrain class and associated methods

To illustrate the STAR functions for dealing with “stimulus responses” we are going to
use the citronellal responses of the previous experiment. They are found under the name:
e070528citronellal in STAR. 15 stimulations (0.5 s long) were applied with 1 minute inter-
vals. As in Sec.A.5 we load the data into our work space with function data:

> data(e070528citronellal)

The data set documentation (?e070528citronellal) tells us that e070528citronellal is a list of
repeatedTrain objects, which are themselves lists of spikeTrain objects (see ?as.repeatedTrain).
Like in the spikeTrain case, the motivation to create a new class was to have methods specifi-
cally tailored to their objects. For instance the print method (print.repeatedTrain) generates
a raster plot (Fig. 15 Left):

> e070528citronellal[["neuron 1"]]

while the plot method (plot.repeatedTrain) does the same while allowing for a better control
of the output with, for instance, the specification of the stimTimeCourse argument to make
the stimulus time course appear on the plot (Fig. 15 Right):

> plot(e070528citronellal[["neuron 1"]], stim = c(6.14,

+ 6.64), main = "e070528citronellal[[\"neuron 1\"]]")

Here we have specified stim instead of stimTimeCourse since partial matching is used21

when matching functions arguments.

A.16 Classical psths with STAR

We have also included in STAR classes and methods for “classical” psths. Function
psth plots or returns a psth object. And method plot (plot.psth) plots it if it was not
already done by psth. We will use them to illustrate the interactive bin width setting
process described in Sec. 2.5.2. Using the same data as in the previous section we will
construct 2 psths, one with a bin width of 250 ms, the other one with a bin width of 25
ms. The plots (Fig. 16) also shows confidence intervals:

> psth(e070528citronellal[[1]], breaks = seq(0,

+ 13, 0.25), colCI = 2, ylim = c(0, 120), sub = "bin width: 250 ms",

+ stim = c(6.14, 6.64))

> psth(e070528citronellal[[1]], breaks = seq(0,

+ 13, 0.025), colCI = 2, ylim = c(0, 120), sub = "bin width: 25 ms",

+ stim = c(6.14, 6.64))

21See Se. 4.3.2: Argument matching of R Language Definition. http://cran.r-project.org/doc/

manuals/R-lang.html.

38

http://cran.r-project.org/doc/manuals/R-lang.html
http://cran.r-project.org/doc/manuals/R-lang.html

0 2 4 6 8 10 12

5
10

15
Raster plot

Time (s)

tr
ia

l

| |||||||||||||||||| | || | |||||| | | || | | || || | | ||| | ||| | ||| || |||
| | | | | ||||||| ||| || |||||| ||||| ||| ||| |||| |||||| |||| | | ||| |||||||

1
3

5
7

9
11

13
15

0 2 4 6 8 10 12 0 2 4 6 8 10 12

5
10

15

e070528citronellal[["neuron 1"]]

Time (s)
tr

ia
l

| |||||||||||||||||| | || | |||||| | | || | | || || | | ||| | ||| | ||| || |||
| | | | | ||||||| ||| || |||||| ||||| ||| ||| |||| |||||| |||| | | ||| |||||||

1
3

5
7

9
11

13
15

0 2 4 6 8 10 12

Figure 15: Illustration of print and plot methods for repeatedTrain objects. The 15 re-
sponses of neuron 1, data set e070528citronellal are used here. Left, plot generated by:
e070528citronellal[[”neuron 1”]]. Right, plot generated by: plot(e070528citronellal[[”neuron
1”]],stim=c(6.14,6.64),main=”e070528citronellal[[n̈euron 1̈]]”). Here the user has control over
the plot title and argument stim (short for stimTimeCourse) controls the presence of the
grey rectangle in the background (signalling the odor delivery).

0 2 4 6 8 10 12

0
20

40
60

80
10

0
12

0

e070528citronellal[[1]] PSTH

bin width: 250 ms
Time (s)

F
re

q
(H

z)

0 2 4 6 8 10 12

0
20

40
60

80
10

0
12

0

e070528citronellal[[1]] PSTH

bin width: 25 ms
Time (s)

F
re

q
(H

z)

Figure 16: Illustration of psth function. The 15 responses of neuron 1, data set
e070528citronellal are used here. Left, psth obtained with a bin width of 250 ms. Right,
psth obtained with a bin width of 25 ms. The 95% confidence region appears in red.

39

0 2 4 6 8 10 12

0
10

20
30

40

Preprocessed data and smooth estimate

Time (s)

C
ou

nt
s

pe
r

bi
n

0 2 4 6 8 10 12

0
20

40
60

80
10

0
12

0

repeatedTrain PSTH

Time (s)

F
re

q
(H

z)
Figure 17: Illustration of gsspsth0 function. Same data as Fig. 16. Left, preprocessed data
(black) used to obtain the “smooth” (red). Right, spsth obtained with function gsspsth0.
The 95% confidence region appears in red. The Y axis scale has been adjusted to facilitate
comparison with Fig. 16.

A.17 Details on spsths

Smooth peri stimulus time histograms are obtained in STAR with the gsspsth0 function (see
?gsspsth0). Compared to the construction of a psth , the preprocessing step involves a “too
small” bin width. Here small refers to the fastest time constant expected to be present in
the instantaneous firing rate. By default it is set to 25 ms. That can of course be changed
by the user. Function gsspsth0 calls function gss of Chong Gu’s package gss after this
preprocessing. gss does the real work of getting the spsth. It uses smoothing spline to get
the smooth estimate.

Continuing with our previous example we would get a gsspsth0 object with:

> n1CitrGSSPSTH0 <- gsspsth0(e070528citronellal[[1]])

It can be worth comparing at that stage the preprocessed data out of which the “smooth”
was constructed with the smooth itself. This is illustrated on Fig. 17 (Left) and obtained
as follows:

> X <- n1CitrGSSPSTH0$mids

> Counts <- n1CitrGSSPSTH0$counts

> theBS <- diff(X)[1]

> nbTrials <- n1CitrGSSPSTH0$nbTrials

> Y <- n1CitrGSSPSTH0$lambdaFct(X) * theBS * nbTrials

> plot(X, Counts, type = "h", xlab = "Time (s)",

+ ylab = "Counts per bin", main = "Preprocessed data and smooth estimate")

> lines(X, Y, col = 2, lwd = 1)

The plot of the actual spsth (Fig. 17, Right) is obtained with the plot method (plot.gsspsth0):

> plot(n1CitrGSSPSTH0, colCI = 2, lwd = 1, stim = c(6.14,

+ 6.64), ylim = c(0, 120))

40

A.18 Automatic analysis and report generation

The screen shots making the figures of the “Results” section are obtained by calling
method reportHTMLon a spikeTrain object (reportHTML.spikeTrain) and on a repeated-
Train object (reportHTML.repeatedTrain). Let us start with the former, assuming that we
have created a subdirectory report in our current working directory and that we want to
save our report there:

> reportHTML(object = e070528spont[["neuron 4"]],

+ directory = "report", filename = "e070528spont_4",

+ otherST = e070528spont[-4], laglim = c(-1,

+ 1) * 0.25, forceTT = FALSE)

gss warning in gssanova0: performance-oriented iteration fails to converge

Argument forceTT controls the generation of the theoretical quantile quantile plots and of
the Ogata’s tests battery. If is is set to FALSE the plots and tests are included in the report
only if one of the 6 duration distribution models fits the data. Passing lists of spike trains
via argument otherST induces the generation of both types of cross-correlation histograms
(by default). The lag of these cross-correlation histograms is controlled by argument
laglim. For more details, see ?reportHTML.spikeTrain. We see moreover see here that a
warning is returned: gss warning in gssanova0: performance-oriented iteration
fails to converge. After checking the documentations of reportHTML.spikeTrain, gss-
lockedTrain0 and gssanova0, we see that the argument maxiter of the latter has to be
modified in order to perform enough iterations for convegence to be attained. This pre-
cisely what the “. . .” argument of reportHTML.spikeTrain allows us to do. We therefore
repeat the report generation with an additional argument, maxiter=60, instead of the
implicit default, maxiter=30, and see if the warning disappears:

> reportHTML(object = e070528spont[["neuron 4"]],

+ directory = "report", filename = "e070528spont_4",

+ otherST = e070528spont[-4], laglim = c(-1,

+ 1) * 0.25, forceTT = FALSE, maxiter = 60)

We see that with, maxiter=60, enough iterations have been performed.
The report of a repeatedTrain object illustrated in Sec. 3.2 is obtained with:

> reportHTML(object = e070528citronellal[["neuron 1"]],

+ directory = "report", filename = "e070528citronellal_1",

+ stim = c(6.14, 6.64))

A.19 Software versions used for this tutorial

The versions of R and of the other packages used in this tutorial are obtained with function
sessionInfo:

R version 2.7.2 (2008-08-25)
i686-pc-linux-gnu

locale:
LC_CTYPE=fr_FR.UTF-8;LC_NUMERIC=C;LC_TIME=fr_FR.UTF-8;LC_COLLATE=fr_FR.UTF-8;LC_MONETARY=C;LC_MESSAGES=fr_FR.UTF-8;LC_PAPER=fr_FR.UTF-8;LC_NAME=C;LC_ADDRESS=C;LC_TELEPHONE=C;LC_MEASUREMENT=fr_FR.UTF-8;LC_IDENTIFICATION=C

attached base packages:
[1] splines tools stats graphics grDevices
[6] utils datasets methods base

41

other attached packages:
[1] xtable_1.5-3 STAR_0.1-9 gss_1.0-1
[4] R2HTML_1.59 mgcv_1.4-1 survival_2.34-1

B Reproducing Fig. 4

Fig. 4 is obtained using the version of penalized iteratively re-weighted least squares de-
scribed by [18, Gu, pp 62, 76 and 151]. We first define a function performing solving a
penalized weighted least squares problem (together with some associated methods):

> ss_lambdaFixed <- function(y, x, lambda, w) {

+ rk <- function(x, y) {

+ k2 <- function(x) ((x - 0.5)^2 - 1/12)/2

+ k4 <- function(x) ((x - 0.5)^4 - (x -

+ 0.5)^2/2 + 7/240)/24

+ k2(x) * k2(y) - k4(abs(x - y))

+ }

+ S <- cbind(rep(1, length(x)), x - 0.5)

+ Q <- outer(x, x, rk)

+ if (!missing(w)) {

+ S <- diag(sqrt(w)) %*% S

+ y <- sqrt(w) * y

+ Q <- diag(sqrt(w)) %*% Q %*% diag(sqrt(w))

+ }

+ else {

+ w <- NULL

+ }

+ Sqr <- qr(S)

+ R <- qr.R(Sqr)

+ theQ <- qr.Q(Sqr, complete = TRUE)

+ tF1 <- t(theQ[, 1:2])

+ F2 <- theQ[, -(1:2)]

+ rm(theQ, Sqr)

+ n <- length(y)

+ G <- chol(t(F2) %*% Q %*% F2 + n * lambda *

+ diag(n - 2))

+ u <- forwardsolve(t(G), t(F2) %*% y)

+ v <- backsolve(G, u)

+ c <- F2 %*% v

+ rightMember <- (tF1 %*% y) - (tF1 %*% Q %*%

+ c)

+ d <- backsolve(R, rightMember)

+ result <- list(x = x, y = y, lambda = lambda,

+ w = w, n = n, d = d, c = c)

+ environment(rk) <- globalenv()

+ result$rk <- rk

+ class(result) <- "simpleSmooth"

+ result

+ }

> plot.simpleSmooth <- function(x, y, ...) {

+ plot(xx, xy, ...)

42

+ }

> predict.simpleSmooth <- function(object, newx,

+ ...) {

+ if (missing(newx))

+ newx <- object$x

+ phi <- cbind(rep(1, length(newx)), newx -

+ 0.5)

+ R <- outer(newx, object$x, object$rk)

+ if (!is.null(object$w))

+ as.vector(phi %*% object$d + R %*% (sqrt(object$w) *

+ object$c))

+ else as.vector(phi %*% object$d + R %*% object$c)

+ }

We then define a function performing one iteration of the penalized iteratively re-weighted
least squares:

> gs.iter <- function(y, x, lambda, previous, transform = NULL) {

+ pred <- predict(previous, x)

+ if (!is.null(transform))

+ pred <- transform(pred)

+ w <- exp(pred)

+ u <- -y + w

+ pseudo.y <- pred - u/w

+ ss_lambdaFixed(pseudo.y, x, lambda, w)

+ }

We then keep our example of Sec. A.17 and extract the optimal λ0 from the smooth peri
stimulus time histogram fit as well. We also define some variables used in the fits at fixed
λ:

> gfit <- evalq(gfit, env = environment(n1CitrGSSPSTH0$lambdaFct))

> Count <- gfitmfCount

> Time <- gfitmfTime

> refLambda <- 10^(gfit$nlambda)/length(Time)

> T2 <- Time/ceiling(max(Time))

> binSize <- diff(n1CitrGSSPSTH0$mids)[1]

> nbT <- n1CitrGSSPSTH0$nbTrials

> rawHist <- Count/nbT/binSize

We are now ready to perform fits at fixed λ. We are going to use: λ = λ0
1000 , λ0, 1000λ0.

We perform 30 iterations for each. The initial guess for the first fit with λ = λ0 is obtained
by fitting a Gaussian regression model to the square root of the observed variable (Count).
The two other fits use the estimate of the end of the first fit as an initial guess:

> f0 <- ss_lambdaFixed(sqrt(Count), T2, refLambda)

> f1 <- gs.iter(Count, T2, refLambda, f0, function(x) 0.5 *

+ log(x))

> fcurrent <- f1

> for (i in 1:29) fcurrent <- gs.iter(Count, T2,

+ refLambda, fcurrent)

> gcurrent <- fcurrent

> for (i in 1:29) gcurrent <- gs.iter(Count, T2,

+ refLambda * 1000, gcurrent)

43

> hcurrent <- fcurrent

> for (i in 1:29) hcurrent <- gs.iter(Count, T2,

+ refLambda/1000, hcurrent)

44

References

[1] Harold Abelson, Gerald Jay Sussman, and Julie Sussman. Structure and Interpre-
tation of Computer Programs. MIT Press, second edition edition, 1996. Book web-
site:http://mitpress.mit.edu/sicp/full-text/book/book.html.

[2] D. M. Bates and D. G. Watts. Nonlinear Regression Analysis and Its Applications.
Wiley, 1988.

[3] D. R. Brillinger. Maximum likelihood analysis of spike trains of interacting nerve
cells. Biol Cybern, 59(3):189–200, 1988.

[4] D. R. Brillinger, H. L. Bryant, and J. P. Segundo. Identification of synaptic interac-
tions. Biol Cybern, 22(4):213–228, May 1976.

[5] Kenneth P. Burnham and David R. Anderson. MODEL SLECTION AND MULTI-
MODEL INFERENCE. A Practical Information-Theoretic Approach. Springer, 2nd
edition, 2002.

[6] John Chambers. Computing with Data: Concepts and Challenges. The American
Statistician, 53(1):73–84, 1999. Available from: http://cm.bell-labs.com/stat/
doc/Neyman98.ps.

[7] John M. Chambers. Users, programmers and statistical software. Journal of
Computational and Graphical Statistics, 9(3):404–422, sep 2000. Available from:
http://cm.bell-labs.com/stat/doc/jmcJCGS2000.ps.

[8] John M. Chambers. Software for Data Analysis. Programming with R. Statistics and
Computing. Springer, 2008.

[9] John M. Chambers, William S. Cleveland, Beat Kleiner, and Paul A. Tukey. GRAPH-
ICAL METHODS FOR DATA ANALYSIS. Wadsworth & Brooks/Cole, 1983.

[10] D. R. Cox and P. A. W. Lewis. The Statistical Analysis of Series of Events. John
Wiley & Sons, 1966.

[11] Peter Craven and Grace Wahba. Smoothing noisy data with spline functions. esti-
mating the correct degree of smoothing by the method of generalized cross-validation.
Numerische Mathematik, 31:377–404, 1979. Available at: http://resolver.sub.
uni-goettingen.de/purl?GDZPPN00117486X.

[12] David J. Cummins, Tom G. Filloon, and Douglas Nychka. Confidence intervals for
nonparametric curve estimates: Toward more uniform pointwise coverage. Journal of
the American Statistical Association, 96(453):233–246, mar 2001.

[13] Luc Devroye. Non-Uniform Random Variate Generation. Springer-Verlag, 1986.
Available at: http://cg.scs.carleton.ca/~luc/rnbookindex.html.

[14] Ricardo Escola, Christophe Pouzat, Antoine Chaffiol, Blaise Yvert, Isabelle E.
Magnin, and Regis Guillemaud. Simone : A neural simulator to test mea-embedded
algorithms. IEEE Transactions on Neural and Rehabilitation Engineering, 16(2):149–
160, apr 2008.

[15] Robert Gentleman and Duncan Temple Lang. Statistical Analyses and Reproducible
Research. Working Paper 2, Bioconductor Project Working Papers, 29 May 2004.
Available at: http://www.bepress.com/bioconductor/paper2/.

45

http://mitpress.mit.edu/sicp/full-text/book/book.html
http://cm.bell-labs.com/stat/doc/Neyman98.ps
http://cm.bell-labs.com/stat/doc/Neyman98.ps
http://cm.bell-labs.com/stat/doc/jmcJCGS2000.ps
http://resolver.sub.uni-goettingen.de/purl?GDZPPN00117486X
http://resolver.sub.uni-goettingen.de/purl?GDZPPN00117486X
http://cg.scs.carleton.ca/~luc/rnbookindex.html
http://www.bepress.com/bioconductor/paper2/

[16] George L. Gerstein and Nelson Y.-S. Kiang. An approach to the quantitative
analysis of electrophysiological data from single neurons. Biophysical Journal,
1(1):15–28, September 1960. Available form: http://www.pubmedcentral.nih.gov/
articlerender.fcgi?tool=pubmed&pubmedid=13704760.

[17] Chong Gu. Cross-validating non-gaussian data. Journal of Computational and Graph-
ical Statistics, 1(2):169–179, jun 1992.

[18] Chong Gu. Smoothing Spline Anova Models. Springer, 2002.

[19] Chong Gu. Smoothing noisy data via regularization: statistical perspectives. Inverse
Problems, 24(3):034002–, 2008.

[20] Chong Gu and Dong Xiang. Cross-validating non-gaussian data: Generalized approx-
imate cross-validation revisited. Journal of Computational and Graphical Statistics,
10(3):581–591, sep 2001.

[21] R Ihaka and R Gentleman. R: A Language for Data Analysis and Graphics. Journal
of Graphical and Computational Statistics, 5:299–314, 1996.

[22] D.H. Johnson. Point process models of single-neuron discharges. J. Computational
Neuroscience, 3(4):275–299, 1996.

[23] Karl-Ernst Kaissling. R H Wright Lectures on Insect Olfaction. Munich: Typographis-
cher Betrieb, W Biering, H Numberger, 1987.

[24] J. G. Kalbfleisch. Probability and Statistical Inference. Volume 2: Statistical Inference.
Springer Texts in Statistics. Springer-Verlag, second edition, 1985.

[25] Robert E Kass, Valérie Ventura, and Can Cai. Statistical smoothing of neuronal
data. Network: Computation in Neural Systems, 14(1):5–15, 2003. Available from:
http://www.stat.cmu.edu/~kass/papers/smooth.pdf.

[26] George Kimeldorf and Grace Wahba. Some results on tchebycheffian spline functions.
J. Mathematical Analysis and Applications, 33(1):82–95, 1971. Available at: http:
//www.stat.wisc.edu/~wahba/ftp1/oldie/kw71.pdf.

[27] Eric Lecoutre. The R2HTML package. R News, 3(3):33–36, December 2003. Available
from: http://cran.r-project.org/doc/Rnews/Rnews_2003-3.pdf.

[28] Pierre L’Ecuyer and Josef Leydold. rstream: Streams of random numbers for
stochastic simulation. R News, 5(2):16–20, November 2005. Available from: http:
//CRAN.R-project.org/doc/Rnews/.

[29] Pierre L’Ecuyer, Richard Simard, E. Jack Chen, and W. David Kelton. An objected-
oriented random-number package with many long streams and substreams. Opera-
tions Research, 50(6):1073–1075, 2002. Available at: http://www.iro.umontreal.
ca/~lecuyer/myftp/papers/streams00.pdf.

[30] Joseph Leydold. rstream: Streams of random numbers, 2007. R package version 1.2.2.

[31] J.K. Lindsey. Introduction to Applied Statistics: A Modelling Approach. Oxford
University Press, 2004.

[32] John F. Monahan. Numerical Methods of Statistics. Cambridge Series in Statistical
and Probabilistic Mathematics. Cambridge University Press, first edition, 2001.

46

http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pubmed&pubmedid=13704760
http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pubmed&pubmedid=13704760
http://www.stat.cmu.edu/~kass/papers/smooth.pdf
http://www.stat.wisc.edu/~wahba/ftp1/oldie/kw71.pdf
http://www.stat.wisc.edu/~wahba/ftp1/oldie/kw71.pdf
http://cran.r-project.org/doc/Rnews/Rnews_2003-3.pdf
http://CRAN.R-project.org/doc/Rnews/
http://CRAN.R-project.org/doc/Rnews/
http://www.iro.umontreal.ca/~lecuyer/myftp/papers/streams00.pdf
http://www.iro.umontreal.ca/~lecuyer/myftp/papers/streams00.pdf

[33] Paul Murrell. Introduction to data technologies. Available at: http://www.stat.
auckland.ac.nz/~paul/ItDT/, aug 2008.

[34] Douglas Nychka. Bayesian confidence intervals for smoothing splines. Journal of the
American Statistical Association, 83(404):1134–1143, dec 1988.

[35] Yosihiko Ogata. Statistical Models for Earthquake Occurrences and Residual Analysis
for Point Processes. Journal of the American Statistical Association, 83(401):9–27,
1988.

[36] Roger D. Peng. cacheSweave: Tools for caching Sweave computations, 2007. R package
version 0.4-3.

[37] D. H. Perkel, G. L. Gerstein, and G. P. Moore. Neuronal spike trains and
stochastic point processes. I the single spike train. Biophys. J., 7:391–418, 1967.
Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=
pubmed&pubmedid=4292791.

[38] D. H. Perkel, G. L. Gerstein, and G. P. Moore. Neuronal spike trains and stochas-
tic point processes. II simultaneous spike trains. Biophys. J., 7:419–440, 1967.
Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=
pubmed&pubmedid=4292792.

[39] Christophe Pouzat. The New SpikeOMatic Tutorial, 2006. Available from:
http://www.biomedicale.univ-paris5.fr/physcerv/C_Pouzat/Data_folder/
newSOMtutorial.pdf.

[40] R Development Core Team. R: A Language and Environment for Statistical Comput-
ing. R Foundation for Statistical Computing, Vienna, Austria, 2008. ISBN 3-900051-
07-0.

[41] Anthony Rossini, Luke Tierney, and Na Li. Simple Parallel Statistical Computing
in R. UW Biostatistics Working Paper Series 193, University of Washington, 2003.
Available from: http://www.bepress.com/uwbiostat/paper193/.

[42] Luke Tierney, A. J. Rossini, Na Li, and H. Sevcikova. snow: Simple Network of
Workstations. R package version 0.3-3.

[43] Lon Turnbull, Emese Dian, and Guenter Gross. The string method of burst identifi-
cation in neuronal spike trains. J Neurosci Methods, 145(1-2):23–35, Jun 2005.

[44] Valerie Ventura, Roberto Carta, Robert E. Kass, Sonya N. Gettner, and Carl R.
Olson. Statistical analysis of temporal evolution in single-neuron firing rates. Bio-
stat, 3(1):1–20, 2002. Available from: http://www.stat.cmu.edu/~kass/papers/
temporal.pdf.

[45] Grace Wahba. Bayesian ”confidence intervals” for the cross-validated smoothing
spline. Journal of the Royal Statistical Society. Series B (Methodological), 45(1):133–
150, 1983.

[46] Grace Wahba. Spline Models for Observational Data. SIAM, 1990.

[47] Garrick Wallstrom, Jeffrey Liebner, and Robert E. Kass. An Implementation of
Bayesian Adaptive Regression Splines (BARS) in C with S and R Wrappers. Journal
of Statistical Software, 26(1):1–21, 2 2007.

47

http://www.stat.auckland.ac.nz/~paul/ItDT/
http://www.stat.auckland.ac.nz/~paul/ItDT/
http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pubmed&pubmedid=4292791
http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pubmed&pubmedid=4292791
http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pubmed&pubmedid=4292792
http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pubmed&pubmedid=4292792
http://www.biomedicale.univ-paris5.fr/physcerv/C_Pouzat/Data_folder/newSOMtutorial.pdf
http://www.biomedicale.univ-paris5.fr/physcerv/C_Pouzat/Data_folder/newSOMtutorial.pdf
http://www.bepress.com/uwbiostat/paper193/
http://www.stat.cmu.edu/~kass/papers/temporal.pdf
http://www.stat.cmu.edu/~kass/papers/temporal.pdf

[48] Dong Xiang and Grace Wahba. A generalized approximate cross validation for
smoothing splines with non-gaussian data. Statistica Sinica, 6:675–692, 1996. Avail-
able at: http://www3.stat.sinica.edu.tw/statistica/j6n3/j6n312/j6n312.
htm.

48

http://www3.stat.sinica.edu.tw/statistica/j6n3/j6n312/j6n312.htm
http://www3.stat.sinica.edu.tw/statistica/j6n3/j6n312/j6n312.htm

	Introduction
	Methods
	Animal preparation, recordings and data sets
	Animal preparation
	In vivo recordings
	Olfactory stimulations
	Data sets

	Data analysis
	Getting the spike trains: spike sorting
	Spontaneous activity analysis
	Spike train plot
	Poisson process
	Renewal test plot
	Bivariate duration distributions fits
	Cross correlation histograms

	Stimulus response analysis
	Raster plot
	Smooth PSTH
	Empirical check of the spsth smoothing parameter and confidence intervals by Monte-Carlo simulations

	HTML report generation
	Computers and software versions used for the analysis
	Reproducing the present analysis

	Results
	Spontaneous activity analysis
	Robustness and run-time of spontaneous activity analysis
	Example of automatic report generation

	Stimulus response analysis
	Robustness and run-time of stimulus response analysis
	Insensitivity to the preprocessing bin width
	Monte Carlo investigation of smoothing spline smoothing parameter selection and average coverage probability for 95% confidence intervals
	Monte Carlo investigation of the pointwise coverage probability of the 95% confidence intervals
	Example of automatic report generation

	Discussion
	Reproducing the analysis/figures/report of this paper: A STAR tutorial
	Getting R and STAR
	Preliminary remarks
	Getting help
	Ending an R session

	Loading STAR
	A comment on functions arguments
	Loading data
	A Comment on list objects
	A comment on the class / method mechanism
	Spike train plot generation
	The class / method mechanism in action
	Renewal test plot
	Why is the rank more informative
	Comparing duration distribution
	Comparison with the isi histogram
	Doing your own isi histogram generating function
	The repeatedTrain class and associated methods
	Classical psths with STAR
	Details on spsths
	Automatic analysis and report generation
	Software versions used for this tutorial

	Reproducing Fig. 4

