
Mining sequence data in R with the

TraMineR package: A user’s guide1

Alexis Gabadinho, Gilbert Ritschard, Matthias Studer
and Nicolas S. Müller

Department of Econometrics and Laboratory of Demography
University of Geneva, Switzerland

http://mephisto.unige.ch/traminer/

July 10, 2008
(For version 1.0)

1This work is part of the Swiss National Science Foundation research project FN-
100012-113998 “Mining event histories: Towards new insights on personal Swiss life
courses”.

http://mephisto.unige.ch/traminer/

2

Acknowledgments: TraMineR was mainly developed on a Ubuntu/Linux sys-
tem with several open-source free tools and programs, including of course R and
the LATEX language used to write this manual. We would like to thank all the
contributors to those free softwares. We also would like to thank Cees Elzinga for
providing us the code of his CHESA software for sequence analysis, which was help-
ful to program some of the metrics he introduced to compute distances between
sequences. Thanks also to the participants of the Research Seminar in Statistics for
the Social Sciences and Demography in Geneva as well as to the participants of the
Workshop on Sequential Data Analysis held in Lund, Sweden, May 8-9 2008, for
their useful remarks and for β-testing earlier versions of the package. Thanks also
to the Swiss Household Panel who authorized us to use a sample of their data for
illustrating this user’s guide.

Reporting bugs: We have indeed carefully tested the package. Nevertheless,
we cannot exclude that there remain programming errors and encourage you to
report any bugs you may encounter to the package maintainer who is presently
alexis.gabadinho@unige.ch. You will thus contribute to improve the package.

Referencing TraMineR: Thank you for citing this User’s guide, i.e.

Gabadinho, A., G. Ritschard, M. Studer and N. S. Müller
Mining sequence data in R with the TraMineR package: A user’s guide
University of Geneva, 2008. (http://mephisto.unige.ch/traminer)

when presenting analyses realized with the help of TraMineR.

Contents

1 Introduction 9
1.1 Preliminary remarks about sequences 10
1.2 A short example to begin with . 11

2 The TraMineR package 16
2.1 Loading, using and getting help . 16
2.2 Data sets included in the TraMineR package 17

2.2.1 The actcal data set . 18
2.2.2 The biofam data set . 19
2.2.3 Other data sets borrowed from the literature 20

2.3 Performance and memory usage . 20

3 Definition and representation of sequence data 22
3.1 Ontology . 22

3.1.1 States and events . 22
3.1.2 Single or multichannel . 23
3.1.3 Time reference: Internal and external clocks 24
3.1.4 One or several rows per individual 24
3.1.5 Ontology . 24

3.2 Identifying and defining some (common) data formats 25
3.2.1 The ‘states-sequence’ (STS) format 25
3.2.2 The ‘state-permanence-sequence’ (SPS) format 25
3.2.3 The vertical ‘time-stamped-event’ (TSE) format 25
3.2.4 The spell (SPELL) format . 27
3.2.5 The ‘person-period’ format 28
3.2.6 The ‘shifted-replicated-sequence’ format (SRS) 28

4 Importing and handling sequence data in TraMineR 29
4.1 Importing data sets into R . 29

4.1.1 Reading data from other statistical packages 29
4.1.2 Reading data from text files 30
4.1.3 Data storage in R . 30
4.1.4 Compressed and extended format 31

4.2 Sequence objects . 31
4.2.1 Creating a sequence object 32
4.2.2 Attributes of sequence objects 35
4.2.3 Indexing and printing sequences 38
4.2.4 Sequences of unequal length and missing values 39

4.3 Converting between formats . 40
4.3.1 Converting to and from the SPS format 40
4.3.2 Converting between compressed and extended formats 40
4.3.3 Converting to TSE format . 41

3

4 CONTENTS

4.3.4 Converting from SPELL format 44

5 Describing and visualizing sequences 45
5.1 General principle of TraMineR sequence plots 45

5.1.1 Color palette representing the states 45
5.1.2 Plotting the legend separately 45

5.2 Describing and visualizing sequence data 46
5.2.1 List of states present in sequence data 46
5.2.2 State distribution . 47
5.2.3 Sequence frequencies . 50
5.2.4 Transition rates . 53

5.3 Describing and visualizing individual sequences 53
5.3.1 Visualizing individual sequences 53
5.3.2 State frequencies by sequence 55
5.3.3 Extracting distinct states and durations 56
5.3.4 Sequence length . 57
5.3.5 Finding sequences with a given subsequence 57
5.3.6 Within sequence entropy . 58
5.3.7 Sequence turbulence . 64

6 Measuring similarities and distances between sequences 71
6.1 Number of matching positions . 71
6.2 Longest Common Prefix (LCP) distances 72
6.3 Longest Common Subsequence (LCS) distances 73
6.4 Optimal matching (OM) distances 74

7 Analysing event sequences 77
7.1 Creating event sequences . 77
7.2 Searching for frequent event subsequences 79
7.3 Time constraints . 80
7.4 Plotting frequencies of event subsequences 80
7.5 Selecting event subsequences . 81
7.6 Identifying discriminant event subsequences 82

A Installing and using R 83
A.1 Obtaining and installing R . 83
A.2 R basics . 83
A.3 Data manipulation in R . 84

A.3.1 Creating and printing objects 84
A.3.2 Vectors . 84
A.3.3 Data frames, matrices and lists 85
A.3.4 Accessing and extracting data 87

A.4 R libraries . 88
A.5 Some other useful functions . 89

A.5.1 The apply function . 89
A.5.2 The table function . 89

A.6 Creating and saving graphics . 89
A.7 Performance and memory usage . 90

B Installing TraMineR 91
B.1 Installing from binary package . 91

B.1.1 Windows . 91
B.1.2 Linux . 92

B.2 Installing from source package . 92

CONTENTS 5

B.2.1 Windows . 93
B.2.2 Linux . 93

C Information about TraMineR content 94

Bibliography 99

List of Tables

2.1 State definition for the activity calendar (actcal) data set 18
2.2 Covariates and state variables of the activity calendar (actcal) data set 19
2.3 State definition for the biofam data set 19
2.4 List of Variables in the biofam data set 20
2.5 List of Variables in the MVAD data set 21

3.1 Sequence data representations . 26
3.2 Living arrangements - SHP . 27

4.1 Structure for the spell format . 34
4.2 Considered events of the activity calendar (actcal data set) data set 43
4.3 Events associated to each state transition 43

6

List of Figures

1.1 A short example - Data from McVicar and Anyadike-Danes (2002) . 12
1.2 A short example - State distribution within each cluster - Data from

McVicar and Anyadike-Danes (2002) 14
1.3 A short example - State frequencies within each cluster - Data from

McVicar and Anyadike-Danes (2002) 14
1.4 A short example - Frequencies of most frequent transitions - Data

from McVicar and Anyadike-Danes (2002) 15
1.5 A short example - Most discriminating transitions between clusters -

Data from McVicar and Anyadike-Danes (2002) 15

2.1 The sequences in the first 10 rows of the actcal data set 18

3.1 First 10 sequences of the actcal data 23
3.2 Ontology of types of longitudinal data 24

5.1 Legend plotted as an additional graphic 46
5.2 Distribution of the family statuses by age in the biofam data set (data

from the Swiss Household Panel) . 48
5.3 Distribution of the work statuses by month in the actcal data set

(data from the Swiss Household Panel) 48
5.4 Entropy of state distribution by age - biofam data set 49
5.5 Plot of the 10 most frequent sequences in the actcal data set 50
5.6 Plot of the 10 most frequent sequences in the actcal data set, with

proportional bar widths . 51
5.7 Plot of the 10 most frequent sequences in the biofam data set, with

proportional bar widths . 52
5.8 Plot of the 10 first sequences of the actcal data set (seqiplot()) . . 54
5.9 Plot of all sequences of the actcal data set (seqiplot()) 54
5.10 Mean time spent in each state, actcal data. 56
5.11 Within sequence entropies - Activity calendar 61
5.12 Within sequence entropies - biofam data set 62
5.13 Low, median and high sequence entropies - biofam data set 63
5.14 Boxplot of the within sequence entropies by birth cohort - biofam

data set . 64
5.15 Boxplot of the within sequence entropies by sex - biofam data set . . 65
5.16 Histogram of the sequence turbulences - biofam data set 67
5.17 Correlation between within sequence turbulence and entropy - biofam

data set . 69
5.18 Low, median and high sequence turbulences - biofam data set 70

7.1 Frequencies of 15 most frequent event subsequences 81

7

8 LIST OF FIGURES

7.2 Frequencies of first 6 most frequent event subsequences by sex of
respondent . 81

7.3 Eight most discriminating event subsequences between men and women 82

A.1 R starting welcome message and command prompt 84

Chapter 1

Introduction

TraMineR is a R-package for mining and visualizing sequences of categorical data.
Its primary aim is the knowledge discovery from event or state sequences describing
life courses, although most of its features apply also to non temporal data such as
text or DNA sequences for instance. The name TraMineR is a contraction of Life
Trajectory Miner for R. Indeed, as some may expect, it was also inspired by the
authors’ taste for Gewurztraminer wine. This manual is essentially a tutorial that
describes the features and usage of the TraMineR package. It may also serve, how-
ever, as an introduction to sequential data analysis. The presentation is illustrated
with data from the social sciences. Illustrative datasets and R scripts (sequence of
R-commands) 1 are included in the TraMineR distribution package. For newcomers
to R, a short introduction to the R-environment is given in Appendix A in which the
reader will learn where R can be obtained as well as its basic commands and prin-
ciples. Appendix B explains how to install TraMineR in R, while Chapter 2 shortly
explains how to use the package and describes the illustrative datasets provided
with it.

Some of the features of TraMineR can be found in other statistical programs
handling sequential data. For instance, TDA (Rohwer and Pötter, 2002), which
is freely available at http://www.stat.ruhr-uni-bochum.de/tda.html, the t-
coffee/saltt program by Notredame et al. (2006), the dedicated CHESA program
by Elzinga (2007) freely downloadable at http://home.fsw.vu.nl/ch.elzinga/
and the add-on Stata package by Brzinsky-Fay et al. (2006) freely available for
licensed Stata users all compute the optimal-matching edit distance between se-
quences and each of them offers specific useful facilities for describing sets of se-
quences. TraMineR is to our knowledge the first such toolbox for the free R statis-
tical and graphical environment. Our objective with TraMineR is to put together
most of the features proposed separately by other softwares as well as offering orig-
inal tools for extracting useful knowledge from sequence data. Its salient character-
istics are

• R and TraMineR are free.

• Since TraMineR is developed in R, it takes advantage of many already opti-
mized procedures of R as well as of its powerful graphics capabilities.

• R runs under several OS including Linux, MacOS X, Unix and Windows. A
same R program runs unmodified under all operating systems2. The same is

1R demo scripts named Describing visualizing, Similarities and Event sequences are in the
demo directory of the package tree and can be run by means of the demo(), for instance
demo("Describing_visualizing",package="TraMineR") for the first one.

2Minor changes may be needed in case of references to file names and paths or other interactions
with the OS.

9

http://www.stat.ruhr-uni-bochum.de/tda.html
http://home.fsw.vu.nl/ch.elzinga/

10 Ch. 1 Introduction

indeed true for R-packages and hence for TraMineR.

• TraMineR features a unique set of procedures for analysing and visualizing
sequence data, such as

– handling a large number of state and time stamped event sequence rep-
resentations, simple functions for transforming to and from different for-
mats;

– individual sequence summaries and summaries of sequence sets;

– selecting and displaying the most frequent sequences or subsequences;

– various metrics for evaluating distances between sequences;

– aggregated and index plots of sets of sequences.

• Specific TraMineR functions can be combined in a same script with any of the
numerous basic statistical procedures of R as well as with those of any other
R-package.

Before describing the usage of the TraMineR package for R, a few remarks are
worth on the nature of sequence data considered in the particular field of social
sciences.

1.1 Preliminary remarks about sequences

In the social sciences, sequence data represent typically longitudinal biographical
data such as employment histories or family life courses. Brzinsky-Fay et al. (2006)
define for instance a sequence as an ordered list of states (employed/unemployed)
or events (leaving parental home, marriage, having a child).

For a more formal definition, we may follow for example Elzinga and Liefbroer
(2007). First, define an alphabet A as the list of possible states or events. A sequence
x of length k is then an ordered list of k successively chosen elements of A. It is often
represented by the concatenation of the k elements. A sequence can thus be written
as x = x1x2 . . . xk with xi ∈ A. We use commas when necessary for distinguishing
successive elements in a sequence. For instance, x = S,U,M,MC stands for the
sequence single, with unmarried partner, married, married with a child.

A sequence u is a subsequence of x if all successive elements ui of u appear in x
in the same order, which we simply denote by u ⊂ x. According to this definition,
unshared states can appear between those common to both sequences u and x. For
example, u = S,M is a subsequence of x = S,U,M,MC.

In addition to the sequencing of states or events that the above definitions ac-
count for, the information about sequences, especially those describing life courses,
includes often a time dimension. When necessary we should then also account either
for the time stamp of the states or events, or for the duration of either the states
or the time between events. For state sequences over time it is often assumed that
each state corresponds to periodic dates (years, months, ...). For event sequences
over time, a specific time stamp is most often assigned to each event.

All these various representations will be discussed in more details in Chapter 3.
For now let us just retain that there are multiple ways of presenting time stamped
sequence data and that TraMineR will prove useful for converting from one form to
the other.

1.2 A short example to begin with 11

1.2 A short example to begin with

Nothing is better than an example to present the features of TraMineR . We will use
for this purpose a data set from McVicar and Anyadike-Danes (2002) which is freely
downloadable from the internet (see Section 2.2). The data contains 72 monthly
activity state variables from July 1993 to June 1999 for 712 individuals. We suppose
that the file has been downloaded and imported into R (see Section 2.2), that the
name of the data frame is mvad , and that the TraMineR library has been loaded
with the library(TraMineR) command. Some results of the following commands
are presented in Figure 1.1.

1. Define a vector containing the legends for the states to appear in the graphics
and create a sequence object which will be used as argument to the next
functions

mvad.lab <- c("school", "FE", "employment","training",

"joblessness", "HE")

mvad.seq <- seqdef(mvad, 15:86, labels=mvad.lab)

2. Plot of the 10 first sequences. Result in Fig. 1.1(a).

seqiplot(mvad.seq, withlegend=F)

3. Plot all sequences sorted by variable ‘gcse5eq’, a binary dummy indicating
qualifications gained by the end of compulsory education: 1 if 5 or GCSEs at
grades A-C or equivalent, 0 otherwise. Result in Fig. 1.1(b)).

seqiplot(mvad.seq, tlim=0, sortv=mvad$gcse5eq, withborder=F, space=0,

withlegend=F)

4. Draw the sequence frequency plot of the 10 most frequent sequences with bar
width proportional to the frequencies. Result in Fig. 1.1(c).

seqfplot(mvad.seq, pbarw=T, withlegend=F)

5. Plot the state distribution by time points. Result in Fig. 1.1(d).

seqdplot(mvad.seq, withlegend=F)

6. Plot a single legend as a separate graphic since several plots use the same
color codes for the states. Result in Fig. 1.1(e).

seqlegend(mvad.seq)

7. Compute, summarize and plot the histogram of the sequence turbulences.
Result in Fig. 1.1(f).

mvad.turb <- seqST(mvad.seq)

summary(mvad.turb)

hist(mvad.turb, col="cyan")

8. Compute the optimal matching distances using substitution costs based on
transition rates observed in the data and a 1 indel cost. The resulting distance
matrix is stored in the dist.om1 object.

submat <- seqsubm(mvad.seq, method= "TRATE")

dist.om1 <- seqdist(mvad.seq, method="OM", indel=1, sm=submat)

9. Make a typology of the trajectories: load the cluster library, build a Ward hi-
erarchical clustering of the sequences from the optimal matching distances and
retrieve for each individual sequence the cluster membership of the 3 class solu-
tion. We do not show here the dendrogram produced by plot(clusterward1)
which, indeed, is not a TraMineR feature.

12 Ch. 1 Introduction

library(cluster)

clusterward1 <- agnes(dist.om1, diss=TRUE, method="ward")

plot(clusterward1)

cl1.3 <- cutree(clusterward1, k=3)

10. Plot the state distribution within each cluster. Result in Fig. 1.2.

par(mfrow=c(2,2))

seqdplot(mvad.seq[cl1.3 == 1,], withlegend=F, title="Type 1")

seqdplot(mvad.seq[cl1.3 == 2,], withlegend=F, title="Type 2")

(a) Index plot of first 10 sequences (b) Index plot of all sequences sorted by
‘gcse5eq’

(c) Frequency plot of 10 most frequent se-
quences

(d) Distribution plot by time point

(e) Legend (f) Histogram of sequence turbulence

Figure 1.1: A short example - Data from McVicar and Anyadike-Danes (2002)

1.2 A short example to begin with 13

seqdplot(mvad.seq[cl1.3 == 3,], withlegend=F, title="Type 3")

seqlegend(mvad.seq)

11. Plot the 10 most frequent sequences of each cluster. Result in Fig. 1.3.

par(mfrow=c(2,2))

seqfplot(mvad.seq[cl1.3 == 1,], pbarw=T, withlegend=F, title="Type 1")

seqfplot(mvad.seq[cl1.3 == 2,], pbarw=T, withlegend=F, title="Type 2")

seqfplot(mvad.seq[cl1.3 == 3,], pbarw=T, withlegend=F, title="Type 3")

seqlegend(mvad.seq)

Instead of focusing on sequences of states, we can look at sequences of transitions
or events.. TraMineR offers specific tools to deal with such kind of data. For dealing
with such event sequences, we can:

12. Define the sequences of transitions, put them in vertical time stamped event
form and then turn them into an event sequence object.

transition <- seqetm(mvad.seq, method="transition")

mvad.tse <- seqformat(mvad, var=15:86, from=’STS’, to=’TSE’,

tevent=transition)

mvad.seqe <- seqecreate(id=mvad.tse$id, time=mvad.tse$time,

event=mvad.tse$event)

13. Look for frequent event subsequences and plot the 15 most frequent ones.
Result in Fig. 1.4.

fsubseq <- seqefsub(mvad.seqe,pMinSupport=0.05)

seqefplot(fsubseq$subseq[1:15], mvad.seqe, col="cyan")

14. Determine the most discriminating transitions between clusters and plot the
frequencies by cluster of the 6 first ones. Result in Fig. 1.5.

discr <- seqecmpgroup(fsubseq$subseq, mvad.seqe,cl1.3)

seqefplot(fsubseq$subseq[discr$index[1:6]], mvad.seqe,

group=cl1.3, mfrow=c(2,3), col="cyan")

14 Ch. 1 Introduction

Figure 1.2: A short example - State distribution within each cluster - Data from
McVicar and Anyadike-Danes (2002)

Figure 1.3: A short example - State frequencies within each cluster - Data from
McVicar and Anyadike-Danes (2002)

1.2 A short example to begin with 15

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

(F
E

>
em

pl
oy

m
en

t)

(jo
bl

es
sn

es
s)

(t
ra

in
in

g>
em

pl
oy

m
en

t)

(e
m

pl
oy

m
en

t)

(jo
bl

es
sn

es
s>

em
pl

oy
m

en
t)

(s
ch

oo
l)

(e
m

pl
oy

m
en

t>
jo

bl
es

sn
es

s)

(t
ra

in
in

g)

(jo
bl

es
sn

es
s>

F
E

)

(e
m

pl
oy

m
en

t>
F

E
)

(F
E

)

(jo
bl

es
sn

es
s)

−
(jo

bl
es

sn
es

s>
F

E
)

(t
ra

in
in

g)
−

(t
ra

in
in

g>
em

pl
oy

m
en

t)

(e
m

pl
oy

m
en

t>
F

E
)−

(F
E

>
em

pl
oy

m
en

t)

(s
ch

oo
l>

H
E

)

Figure 1.4: A short example - Frequencies of most frequent transitions - Data from
McVicar and Anyadike-Danes (2002)

1 2 3

(training>employment)

0.
0

0.
1

0.
2

0.
3

0.
4

1 2 3

(school)

0.
0

0.
1

0.
2

0.
3

0.
4

2 3

(school>HE)

0.
00

0.
10

0.
20

0.
30

1 2

(HE>employment)

0.
00

0.
10

0.
20

1 3

(training>joblessness)

0.
00

0.
10

0.
20

0.
30

1 2 3

(FE>HE)

0.
00

0.
10

0.
20

Figure 1.5: A short example - Most discriminating transitions between clusters -
Data from McVicar and Anyadike-Danes (2002)

Chapter 2

The TraMineR package

TraMineR is an add-on package to R, providing a set of functions for describing,
visualizing and analysing sequence data, together with example data sets. The
latter are used in this manual to demonstrate the multiple powerful features offered
by the package.

TraMineR can be installed either from a precompiled binary package or from
source files. The latest versions for Linux (32 and 64 bits), Mac OS/X and Win-
dows are available at http://mephisto.unige.ch/pub/traminer/ or directly from
the CRAN http://cran.r-project.org/. For more detail on how to install
TraMineR, see Appendix B p. 91.

This chapter describes the basic use of TraMineR and presents the included data
sets that will be used in this manual to demonstrate the package capabilities.

2.1 Loading, using and getting help

Loading Once you have installed TraMineR on your system you have to load it
to access its functionalities. This is done by means of the library() command.
Typing

> library(TraMineR)

gives you access to the functions and data sets provided by the library. This com-
mand has to be issued each time you start a new R session, but needs to be issued
only once by session. All the examples in the remaining of this manual assume that
the TraMineR library is already loaded.

You get information about the installed package such as the version number and
the list of functions and data sets provided by issuing the command

> library(help=TraMineR)

The above command opens a help window. The content of the obtained help window
is shown in Appendix C. Since this appendix will probably be outdated for further
releases of the package, we recommend that you preferably check the help about
the TraMiner library on your system.

Using the functions TraMineR functions are just like other R functions. To call
them, you just type in the function name and the requested arguments surrounded
with parentheses. Most TraMineR functions require at least the name of a sequence
object created with the seqdef() or the seqecreate() functions (see Chapters 4
and 7) and (optionally) the values for some specific arguments.

If the arguments are given in the order expected by the function, you can omit
the argument names before their values. Arguments with assigned default values can

16

http://mephisto.unige.ch/pub/traminer/
http://cran.r-project.org/

2.2 Data sets included in the TraMineR package 17

be omitted, unless you want to specify a different value. However, always specifying
the names of the arguments is more secure since:

• Adding a new optional argument to a function in a new version of TraMineR
may change the order of the arguments, in which case your programs would
fail when the names of the arguments are not specified.

• Scripts are easier to understand (by you and by others) when the name of
each used argument is explicitly specified.

The seqdef() function is used to illustrate how to specify arguments. This
command is one of the first you will issue since it defines the sequence object re-
quested by most of the other functions provided by the TraMineR package. The
main arguments of seqdef() are1:

• data, the name of a data frame;

• var, which specifies the variables (names or index numbers of columns) con-
taining the sequence information (default value is ’NULL’, meaning all the
variables in the data set);

• informat, which specifies the format of the sequences (default value is ‘STS’,
the most common sequence format).

The function seqdef() accepts additional arguments (stsep, alphabet, states,
start, missing, cnames) that are described later in this manual (see Chapter 4).
The name of the data frame is mandatory, but the other arguments have default
values and can be omitted if their values are suitable to you. The options can be
given in any order if you specify the argument names before their values:

> data(actcal)

> actcal.seq <- seqdef(var=13:24,data=actcal)

[>] distinct states appearing in the data: A/B/C/D

[>] alphabet: 1=A 2=B 3=C 4=D

[>] 2000 sequences in the data set

[>] min/max sequence length: 12/12

In this example, not specifying the argument names var= and data= generates an
error message

> seqdef(13:24, actcal)

Error in subset.default(data, , var) :

argument "subset" is missing, with no default

Getting help To get help about a specific function, seqdef for instance, type

> ?seqdef

or

> help(seqtab)

2.2 Data sets included in the TraMineR package

Several sequence data sets used in this manual are included in the TraMineR package
and can be loaded in memory using the data() function. The actcal and biofam

1you can use ?seqdef or help(seqdef) or the reference manual to see what the expected
arguments are

18 Ch. 2 The TraMineR package

data sets were created from the Swiss Household Panel2, SHP, data (http://www.
swisspanel.ch/.)

2.2.1 The actcal data set

Figure 2.1 shows how to load the actcal data set, listing the names of its columns
and displaying the content of columns 13 to 24 (that contain the sequence data) in
the 10 first records. You may get an overview and summary statistics of the whole
actcal data set by issuing the summary(actcal) command (output not shown). This

> data(actcal)

> names(actcal)

[1] "idhous00" "age00" "educat00" "civsta00" "nbadul00" "nbkid00"

[7] "aoldki00" "ayouki00" "region00" "com2.00" "sex" "birthy"

[13] "jan00" "feb00" "mar00" "apr00" "may00" "jun00"

[19] "jul00" "aug00" "sep00" "oct00" "nov00" "dec00"

> actcal[1:10,13:24]

jan00 feb00 mar00 apr00 may00 jun00 jul00 aug00 sep00 oct00 nov00 dec00

2848 B B B B B B B B B B B B

1230 D D D D A A A A A A A D

2468 B B B B B B B B B B B B

654 C C C C C C C C C B B B

6946 A A A A A A A A A A A A

1872 D B B B B B B B B B B B

2905 D D D D D D D D D D D D

106 A A A A A A A A A A A A

5113 A A A A A A A A A A A A

4503 A A A A A A A A A A A A

Figure 2.1: The sequences in the first 10 rows of the actcal data set

data set contains a sample of 2000 records of individual monthly activity statuses
from January to December 2000, with the activity statuses coded as described in
Table 2.1. In addition, it contains also (first 12 columns) some covariates gathered
at the individual and household level. The variables in the data set are listed in
Table 2.2. Sequences are in the columns named ‘jan00’, ‘feb00’, etc... The row
labels are just id numbers. Notice that the numbering is not consecutive. This is
because cases were randomly selected.

Each row contains a sequence of states, i.e. activity statuses, reported by a
respondent to the wave of year 2000 of the SHP survey. The respondent whose
activity calendar is in row 1 stayed in a part-time (19-36 hours per week) payed job
during the whole period. The respondent in row 2 (labeled 1230) had no job between

2Those example data sets are random samples drawn from the original files and are only used
for documenting the package. Persons interested in using the data from the Swiss Household Panel
for their research must sign a data protection contract to get access to the complete and original
files.

Table 2.1: State definition for the activity calendar (actcal) data set

Code Status

A full-time paid job (37 hours or more per week)

B part-time paid job (19-36 hours per week)

C part-time paid job (1-18 hours per week)

D no work / unemployment / other

http://www.swisspanel.ch/
http://www.swisspanel.ch/

2.2 Data sets included in the TraMineR package 19

Table 2.2: Covariates and state variables of the activity calendar (actcal) data set

Variable Label

age00 age in 2000

educat00 education level in 2000

civsta00 civil status of the respondent in 2000

nbadul00 number of adults in the household

nbkid00 number of children under 15 in the household

aoldkid00 age of the oldest kid in the household

ayoukid00 age of the youngest kid in the household

region00 region the household is living in

com2.00 type of community the household is living in

sex sex of the respondent

birthy birth year of the respondent

jan00 activity status for January 2000

: :

dec00 activity status for December 2000

January and April 2000, then worked full-time between May and November 2000,
and had no remunerated job in December 2000. Note that row names are arbitrary
character strings that can be easily modified (we explain how in the appendix; see
paragraph A.3.4, p. 87).

2.2.2 The biofam data set

The biofam data set was constructed by Müller et al. (2007) from the data of the
retrospective biographical survey carried out by the Swiss Household Panel in 2002.
In includes only individuals who were at least 30 years old at the time of the survey
for whom we consider sequences of their family life states between ages 15 and 30.
The biofam data set is a random sample of size 2000 of the original data set. It
describes the family life courses of individuals born between 1909 and 1972. The
possible states are numbered from 0 to 7 and were derived from time stamped event
sequences using the coding of Table 2.3. The list of variables is shortly described in
Table 2.4.

Table 2.3: State definition for the biofam data set

State Leaved parental home Married Children Divorce

0 no no no no

1 yes no no no

2 no yes yes/no no

3 yes yes no no

4 no no yes no

5 yes no yes no

6 yes yes yes no

7 yes/no yes/no yes/no yes

20 Ch. 2 The TraMineR package

Table 2.4: List of Variables in the biofam data set

Variable Label

idhous household number

sex sex of the respondent

birthy birth year of the respondent

nat 1 02 first nationality of the respondent

plingu02 interview language

p02r01 Confession or religion

p02r04 Participation in religious services: Frequency

cspfaj Swiss socio-professional category: Fathers job

cspmoj Swiss socio-professional category: Mothers job

a15 family formation status at age 15

: :

a30 family formation status at age 30

2.2.3 Other data sets borrowed from the literature

The famform data set is a small illustrative data set of family forms used by
Elzinga (2008). It consists in 5 sequences of length 5, some having missing values
(NA). The states are: single (‘S’), with unmarried partner (‘U’), married (‘M’),
married with a child (‘MC’), single with a child (‘SC’). The five sequences in the
data are

v "S" "U"
w "S" "U" "M"
x "S" "U" "M" "MC"
y "S" "U" "M" "MC" "SC"
z "U" "M" "MC"

where the first column contains case labels.

The MVAD data set is the data set used and described by McVicar and
Anyadike-Danes (2002). It is used by Elzinga (2007) for illustrating his CHESA soft-
ware (http://home.fsw.vu.nl/ch.elzinga/). It can be freely downloaded from
http://www.blackwellpublishing.com/rss/Volumes/Av165p2.htm and converted
into an R data set with the following steps:

1. Convert the downloaded ‘.xls’ file into a ‘.csv’ (Comma Separated Values) file,
using for example Excel or OpenOffice.

2. Run R, and type

> mvad <- read.csv(file="/usr/local/temp/McVicar.csv",header=TRUE)

where you should indeed adapt the path “/usr/local/temp/” to the ‘.csv’ file.

The data covers 712 individuals. Each individual is characterized by 14 variables,
including a unique identifier (id), and 72 monthly activity state variables from July
1993 to June 1999. The complete list of variables is given in Table 2.5.

2.3 Performance and memory usage

Depending on your system and the size of your data, some functions for sequence
data analysis may take some time, especially the computation of distances between

http://home.fsw.vu.nl/ch.elzinga/
http://www.blackwellpublishing.com/rss/Volumes/Av165p2.htm

2.3 Performance and memory usage 21

Table 2.5: List of Variables in the MVAD data set

id unique individual identifier

weight sample weights

male binary dummy for gender, 1=male

catholic binary dummy for community, 1=Catholic

Belfast binary dummies for location of school, one of five Education and Library

Board areas in Northern Ireland

N.Eastern ”

Southern ”

S.Eastern ”

Western ”

Grammar binary dummy indicating type of secondary education, 1=grammar school

funemp binary dummy indicating father’s employment status at time of survey, 1=fa-

ther unemployed

gcse5eq binary dummy indicating qualifications gained by the end of compulsory

education, 1=5+ GCSEs at grades A-C, or equivalent

fmpr binary dummy indicating SOC code of father?s current or most recent

job,1=SOC1 (professional, managerial or related)

livboth binary dummy indicating living arrangements at time of first sweep of survey

(June 1995), 1=living with both parents

jul93 Monthly Activity Variables are coded 1-6, 1=school, 2=FE, 3=employment,

4=training, 5=joblessness, 6=HE

: ”

jun99 ”

sequences. However, as the critical functions are written in C, the speed performance
of the functions in TraMineR compares quite advantageously with other packages
that deal with sequence analysis. For instance, it is almost as efficient as TDA
and outperforms Brzinsky-Fay et al. (2006)’s package for Stata. To give an idea,
computing optimal matching distances for the 4318 sequences of length 16 (841
distinct sequences) of the original data set from which biofam was extracted takes
less than 15 seconds on a dual core processor. The resulting 4318 × 4318 distance
matrix has a size of 142Mb.

If you get some message claiming about a lack of memory, you should try gc()
to free memory from ‘garbages’ that may be produced by some memory consuming
functions.

The computation of distances between sequences was faster with version 2.6 and
2.7 of R compared with version 2.5.

Chapter 3

Definition and representation
of sequence data

Broadly, sequences are ordered lists of states or events. However, sequences repre-
sentation in data files can vary a lot, depending on the way data were collected and
the way information is organized. In some cases, sequences are not explicitly de-
fined but can be constructed from data originally collected as spells or time stamped
events.

3.1 Ontology

Before defining and describing the main formats and representations of sequence
data, we begin with an ontology. This ontology describes the main attributes we
can use to identify the various formats and characterize the nature of the sequences
we have to deal with.

3.1.1 States and events

One first distinction between the several data types is whether the basic informa-
tion they contain are states or events. Broadly, in a longitudinal framework, each
change of state is an event and each event implies a change of state. However,
the state that results from an event may also depend on the previous state, and
hence of which other events already occurred. The states of the biofam data set
were for instance derived from the combination of 4 events as described in Table 2.3
page 19. Conversion between state sequences and event sequences is therefore not
straightforward.

Figure 3.1 shows a graphical representation for 10 sequences. Here the sequences
are ordered list of states, with the states being the work status of the corresponding
respondent at each time unit, i.e. months from January to December 2000. Though
the sequences are ordered lists of states, they provide also some information about
events, especially if we consider events as simple changes of states. In sequence
number 1, no event occurred during the observation period since the respondent
stays in the same state during the whole sequence. In sequence 9, two events
occurred:

• The respondent changed his work status between time unit 4 (April 2000) and
time unit 5 (May 2000), from ‘no work’ to ‘full time paid work’.

• Then, the respondent changed again his work status between time unit 11
(November 2000) and time unit 12 (December 2000), from ‘full time paid

22

3.1 Ontology 23

S
eq

ue
nc

es
 1

−
10

jan00 mar00 may00 jul00 sep00 nov00

> 37 hours
19−36 hours

1−18 hours
no work

Figure 3.1: First 10 sequences of the actcal data

work’ to ‘no work’.

States or events can be coded with letters, character strings or digits. The
alphabet is the list of all possible states or events appearing in the data. In the
following example taken from Aassve et al. (2007), states are coded with character
strings of length 3 and separated by the ‘-’ character. We will see other formats to
represent such sequences in the following sections.

> sps

STS formatted sequence

[1] "000-000-000-000-000-000-000-000-000-000-000-000-0W0-0W0-0W0-0W0-0W0

-0W0-0W0-0W0-0W0-0WU-0WU-0WU-0WU-0WU-1WU-1WU"

[2] "000-000-000-000-000-000-000-000-000-000-000-000-0W0-0W0-0W0-0W0-0W0

-0W0-0W0-0W0-0W0-0W0-0W0-0W0-0W0-0W0-1WU-1WU"

For each state in the sequence, the first character stands for the number of chil-
dren (0=no children, 1=1 children, etc...), the second character for the work status
(0=not working, 1=working) and the third character for the union status (0=not in
union, 1=in union). The alphabet contains 16 distinct states (see Table 1, page 376
in Aassve et al., 2007).

3.1.2 Single or multichannel

In the previous example, each distinct state is actually a combination of states
pertaining to different domains: work status, number of children and union status.
The combination of all possible states in each domain yields an alphabet of 16
distinct states. As mentioned by Aassve et al., 2007, “the number of possible states
available in different time periods implies that the frequency of any specific sequence
will be very low”.

An alternative is to handle sequences of each domain separately. This is called
multichannel sequences.

24 Ch. 3 Definition and representation of sequence data

3.1.3 Time reference: Internal and external clocks

The information about time is an important part of sequence data when timing
and/or duration is a concern as in life course analysis. In the case of sequences of
states, it is important to know whether the alignment of states is done according to

• an internal time reference (e.g. age of the individual, such as in the biofam
dataset)

• or to an external time reference (e.g. January to December 2000, such as in
the actcal dataset).

3.1.4 One or several rows per individual

The most natural way of presenting sequence data is to use one row per case.
However, using several rows for data belonging to a same individual may also have
its advantages. A first example is provided by the multichannel context in which
it may be worth to explicitly distinguish between sequences belonging to different
domains or aspects (living arrangement, civil status, education, professional, ...).

In longitudinal analysis it is also sometimes more convenient to use a distinct
row

• by time unit lived by each individual: States of the different channels will be
in columns; such data presentation is commonly called person-period data.

• by spell lived by each individual: Each rows defines the states in which the
individual is during the spell; this presentation is called spell data and requires
indeed to specify the spell start and end time, or equivalently start time and
duration.

• by episode lived by each individual, i.e. a row for each date at which one or
more events occur. In this case, the row contains the time stamp and the list
of events that occur; this kind of presentation is for instance useful for mining
frequent event sub-sequences.

3.1.5 Ontology

An ontology of sequence data formats can be defined by a nested suite of ‘yes/no’
questions about properties of the format. Figure 3.2 shows an ontology of types of
longitudinal data, i.e. data organized according to time.

Figure 3.2: Ontology of types of longitudinal data

3.2 Identifying and defining some (common) data formats 25

3.2 Identifying and defining some (common) data
formats

Using some elements of the ontology, Table 3.1 defines several data formats. The
basic information used to identify them is whether the elements are states or events,
and whether the format uses a single row or more than one for each case. These
formats are further described in this section.

3.2.1 The ‘states-sequence’ (STS) format

The ‘STates-Sequence’ (STS) format is the internal format used by TraMineR (in
TraMineR, sequences are stored in sequence objects, see next section). It is one of
the most intuitive and common way of representing a sequence. In this format, the
successive states (statuses) of an individual are given in consecutive columns. Each
column is supposed to correspond to a predetermined time unit, but sequences of
states with no time reference can be handled as well using the same format. In the
actcal data set previously described (see Sec. 2.2.1), sequences are in columns 13
to 24 representing the monthly activity statuses from January to December 2000.

> actcal[1:10,13:24]

jan00 feb00 mar00 apr00 may00 jun00 jul00 aug00 sep00 oct00 nov00 dec00

2848 B B B B B B B B B B B B

1230 D D D D A A A A A A A D

2468 B B B B B B B B B B B B

654 C C C C C C C C C B B B

6946 A A A A A A A A A A A A

1872 D B B B B B B B B B B B

2905 D D D D D D D D D D D D

106 A A A A A A A A A A A A

5113 A A A A A A A A A A A A

4503 A A A A A A A A A A A A

3.2.2 The ‘state-permanence-sequence’ (SPS) format

The ‘SPS’ format, whose name ‘State-Permanence-Sequence’ is due to Aassve et al.,
2007, is for instance used by Elzinga (2008). In this format, each successive distinct
state in the sequence is given together with its duration. In one variant, each
state/duration couple is enclosed into parentheses. The example below is taken
from Aassve et al., 2007.

(000,12)-(0W0,9)-(0WU,5)-(1WU,2)

(000,12)-(0W0,14)-(1WU,2)

This format is an alternative way of representing ‘STS’ sequences. Here are the
same sequences in compressed ‘STS’ format

000-000-000-000-000-000-000-000-000-000-000-000-0W0-0W0-0W0-0W0-0W0-0W0-

0W0-0W0-0W0-0WU-0WU-0WU-0WU-0WU-1WU-1WU

000-000-000-000-000-000-000-000-000-000-000-000-0W0-0W0-0W0-0W0-0W0-0W0-

0W0-0W0-0W0-0W0-0W0-0W0-0W0-0W0-1WU-1WU

3.2.3 The vertical ‘time-stamped-event’ (TSE) format

A time-stamped-event representation consists in listing the events experienced by
each individual together with the time at which the events occurred. Sequences
of events can easily be constructed from this representation. It is also possible in
TraMineR to translate sequence data into such time-stamped event (TSE) repre-
sentation at the cost, however, of providing event definition information (see Sec-
tion 4.3.3 page 41). Each record of the TSE representation usually contains a case

26 Ch. 3 Definition and representation of sequence data

Table 3.1: Sequence data representations

D
a
ta

ty
p
e

C
o
d
e

(S
)t

a
te

s
o
r

(E
)v

en
ts

O
n
e

(1
)

o
r

se
ve

ra
l

(M
)

ro
w

s
fo

r
ea

ch
in

d
iv

id
u
a
l

Im
p
o
rt

in
to

a
se

q
u
en

ce
o
b
je

ct

E
xa

m
p
le

S
ta

te
-s

eq
u

en
ce

S
T

S
S

1
Y

es
Id

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

1
0

1
S

S
S

M
M

M
C

M
C

M
C

M
C

D
1

0
2

S
S

S
M

C
M

C
M

C
M

C
M

C
M

C
M

C

S
ta

te
-p

er
m

an
en

ce
(1

)
S

P
S

1
S

1
Y

es
Id

S
ta

te
1

S
ta

te
2

S
ta

te
3

S
ta

te
4

S
ta

te
5

1
0

1
(S

,3
)

(M
,2

)
(M

C
,4

)
(D

,1
)

1
0

2
(S

,3
)

(M
C

,7
)

S
ta

te
-p

er
m

an
en

ce
(2

)
S

P
S

2
S

1
Y

es
Id

S
ta

te
1

S
ta

te
2

S
ta

te
3

S
ta

te
4

S
ta

te
5

1
0

1
S

/
3

M
/

2
M

C
/

4
D

/
1

1
0

2
S

/
3

M
C

/
7

D
is

ti
n

ct
-S

ta
te

-
S

eq
u

en
ce

D
S

S
S

1
Y

es
(u

se
S

T
S

)

Id
S
ta

te
1

S
ta

te
2

S
ta

te
3

S
ta

te
4

S
ta

te
5

1
0

1
S

M
M

C
D

1
0

2
S

M
C

T
im

e-
st

am
p

ed
ev

en
t

T
S

E
E

M
Y

es
(e

ve
n

t
se

q
u

en
ce

)

id
ti
m

e
ev

en
t

1
0

1
2

1
M

ar
ri

ag
e

1
0

1
2

3
C

h
ild

1
0

1
2

7
D

iv
or

ce
1

0
2

2
1

M
ar

ri
ag

e
1

0
2

2
1

C
h

ild

S
p

el
l

S
P

E
L

L
S

M
Y

es

id
in

d
ex

fr
o
m

to
st

a
tu

s
1

0
1

1
1

8
2

0
S

in
g

le
1

0
1

2
2

1
2

2
M

ar
ri

ed
1

0
1

2
2

3
2

6
M

ar
ri

ed
w

C
h

ild
re

n
1

0
1

3
2

7
..

D
iv

or
ce

d
1

0
2

1
1

8
2

0
S

in
g

le
1

0
2

2
2

1
2

7
M

ar
ri

ed
w

C
h

ild
re

n

P
er

so
n

-p
er

io
d

M

3.2 Identifying and defining some (common) data formats 27

Table 3.2: Living arrangements - SHP

State Description
1 with both natural parents
2 with one parent and his/her new partner
3 with one parent alone
4 with relatives or in a foster family
5 with partner (married or not)
6 with friends or in a flat share
7 alone
8 other situation
9 with both natural parents and the partner (married / married
10 with both natural parents and (friends or flat share)
11 with partner (married or not) and (friends or flat share)

identifier, a time stamp and codes identifying the event occurring. In the following
example, 3 events, coded 5, 7 and 9, are observed at age (time) 25 for the individual
70102. Individual 215102 experiences one event (1) at age 6, two events (5, 17) at
age 21, two events (7, 18) at age 22 and two events (8, 13) at age 25.

id time event

70102 25 5

70102 25 7

70102 25 9

215102 6 1

215102 21 5

215102 21 17

215102 22 7

215102 22 18

215102 25 8

215102 25 13

3.2.4 The spell (SPELL) format

In the spell format there is one line for each spell. Each spell is characterized by
the states (supposed constant during the spell) and the spell start and end times.
Hence ‘STS’ sequences can easily be constructed from this representation. The
following example is an extract of data drawn from the retrospective questionnaire
of the Swiss Household Panel1 about living arrangements. Statuses are described
in Table 3.2. The first respondent (id 2713) lived with both natural parents from
1965 to 1989, then with a partner from 1989 to 1990 and again with a partner from
1990 to 1991 and from 1991 to 2002 (here we have multiple consecutive spells for
the same status; this is because statuses are aggregated from more detailed ones).

idpers index from until status

2713 1 1965 1989 1

2713 2 1989 1990 5

2713 3 1990 1991 5

2713 4 1991 2002 5

2714 1 1968 1985 1

2714 2 1985 1988 7

2714 3 1989 1990 5

2714 4 1990 1991 5

1Original personal identification numbers have been modified.

28 Ch. 3 Definition and representation of sequence data

2714 5 1991 2002 5

3713 1 1961 1978 1

3713 2 1978 1983 3

3713 3 1983 1984 4

3713 4 1984 1985 3

3713 5 1985 1999 4

3713 6 1999 2001 7

11714 1 1973 1993 1

11714 2 1993 2002 5

3.2.5 The ‘person-period’ format

This format is for instance used for discrete-time logistic regressions. Each line
contains information about an individual at a different time unit. There is one line
for each time unit where the individual is under observation. Such data presentation
is mainly used for discrete survival models where the focus is on a specific event
(leaving home, childbirth, death, end of job, etc.) and the time-periods considered
are those where the cases are under risk of experimenting the event. In that case,
each record contains at least the time stamp and a status variable indicating if the
event under study occurred in this time interval, and may possibly be completed
with the values of some covariates.

3.2.6 The ‘shifted-replicated-sequence’ format (SRS)

This data presentation is intended for mobility analysis where the concern is the
transition from the state observed at previous time points, t−1, t−2, . . ., to the one
observed at time t. Consider for example the sequence A,A,C,D,D where the first
element in the sequence corresponds to year 2000 and the last one to year 2004. The
shifted-replicated-sequence representation of this sequence is obtained as follows:

> seqs <- data.frame(y2000="A", y2001="A", y2002="C", y2003="D", y2004="D")

> seqformat(seqs,from="STS", to="SRS")

=> converting sequence data from STS to SRS

=> 1 rows/sequences converted to internal (STS) format

=> SRS formatted output has 5 rows

id idx T-4 T-3 T-2 T-1 T

[1] 1 1 <NA> <NA> <NA> <NA> A

[1]1 1 2 <NA> <NA> <NA> A A

[1]2 1 3 <NA> <NA> A A C

[1]3 1 4 <NA> A A C D

[1]4 1 5 A A C D D

In this presentation we collect in the columns named ‘T-1’ and ‘T’ all subsequences
between t− 1 and t, and hence all observed transitions between t− 1 and t, . This
is useful when we want t to be a relative time point rather than an absolute date.

Chapter 4

Importing and handling
sequence data in TraMineR

Two main preliminary steps are needed for the user to visualize and analyse sequence
data with the functions provided by the TraMineR package:

• Import the data into R

• Create a sequence object (either a state sequence object as described in Sec-
tion 4.2, or an event sequence object as explained in Section 7.1).

In this chapter we first describe shortly how to import data coming from other
statistical packages or text files and the way (imported) data is stored in R objects.
We describe then how TraMineR can create a sequence object by converting data
from several different input formats. The ontology and formats presented in the
previous chapter should help the user in identifying the original format of the data
he wants to analyse with TraMineR. We also describe functions provided by the
TraMineR package to work with sequence data and to convert from one format into
another one.

4.1 Importing data sets into R

Data files generated by statistical programs such as SPSS and Stata can be directly
imported into R by using the foreign1 library and saved later as R data sets. For
SPSS files the import command reads read.spss() and it is read.dta() for Stata
files. For more details, see the R-data manual http://cran.r-project.org/doc/
manuals/R-data.pdf.

4.1.1 Reading data from other statistical packages

Preliminary remarks. When importing SPSS or Stata files, variables having
attached values labels are converted into R factors2, whose values will be the value
labels in the original files. For example, a variable containing states 1, 2, 3, 4 with
value labels “single”, “living with a partner”, “married”, “divorced” will be converted
into a factor with the four levels “single”, “living with a partner”, “married”, “di-
vorced”. Hence the numerical coding is lost. If you prefer preserving the numerical
coding and losing the labels, use the convert.factors = FALSE option.

1On Ubuntu Linux (and maybe on other Linux distributions), the foreign library is not in-
stalled with the basic R installation. You have to install it explicitly on your system with the
package manager.

2see Appendix A or an introduction to R manual to see what a factor is.

29

http://cran.r-project.org/doc/manuals/R-data.pdf
http://cran.r-project.org/doc/manuals/R-data.pdf

30 Ch. 4 Importing and handling sequence data in TraMineR

Stata (‘.dta’) format. Here is an example on how to import the living arrange-
ment history data from the biographic questionnaire of the Swiss Household Panel
(SHP). The file shp0 bvla user.dta containing the data is provided on the SHP CD
that the users receive once they have signed a data protection contract. The R
function to import data sets saved in the Stata (’.dta’) format is provided by the
foreign library and reads read.dta(). The head() function shows the first 6 rows
of the imported data set.

> library(foreign)

> LA <- read.dta("*PATH*/SHP-Data/Biography/STATA/shp0_bvla_user.dta")

> head(LA)

idpers q.source bvla.idx bvla013 bvla014 bvla100

1 **01 2002 1 1965 1989 with both natural parents

2 **01 2002 2 1989 1990 with partner (married or not)

3 **01 2002 3 1990 1991 with partner (married or not)

4 **01 2002 4 1991 2002 with partner (married or not)

5 **02 2002 1 1968 1985 with both natural parents

6 **02 2002 2 1985 1988 alone

SPSS (’.sav’) format The biofam data set (see Section 2.2.2) included in the
TraMineR package was created in SPSS. Here is how it was converted into an R
data frame using the read.spss() function provided by the foreign library.

> library(foreign)

> biofam <- read.spss("*PATH*/biofam.sav", to.data.frame=TRUE)

4.1.2 Reading data from text files

Several functions are available for reading data in various text format: read.table,
read.csv, read.delim, read.fwf. See http://cran.r-project.org/doc/manuals/
R-data.pdf for details.

An example on how to read a comma separated (CSV) text file was given in
Section 2.2.3 p. 20 where we provide the command for reading the freely available
MVAD data set.

4.1.3 Data storage in R

A set of sequences, i.e. vectors or strings of states or events, can be stored in several
kinds of R objects, namely vectors, matrices, or data frames.

1. A vector is a one dimensional object (its size is just its length). Sequences
stored in vectors are typically defined as character strings, each sequence being
an element of the vector.

2. A matrix is a two dimensional object (the two dimensions are rows and
columns) containing elements of the same type. Sequences are typically de-
fined as the rows of the matrix, each column giving the state or event at a
given time point.

3. Data frame is the most common object for storing sequences. It is like a
matrix, but can contain objects from different types, for example one or more
variables representing sequences (as character strings or vectors of states or
events) and covariates. Data sets imported from other statistical packages
(See Section 4.1.1) are stored as data frames. The actcal and biofam data
sets are each a data frame object.

http://cran.r-project.org/doc/manuals/R-data.pdf
http://cran.r-project.org/doc/manuals/R-data.pdf

4.2 Sequence objects 31

4.1.4 Compressed and extended format

In data files, sequences may appear as character strings (what we call the compressed
format) or as vectors (what we call the extended format). The TraMineR package
can handle both formats and provides a function to convert between them. For
instance, the seqdef() and seqformat() functions check first whether the data
you send them as argument are in the compressed or extended format.3

The extended format In the extended format, sequences are given as vectors of
states or events, where each state or event is stored in a separate column (variable).
Each variable usually corresponds to a time unit as in the example below. The
actcal data set accompanying the TraMineR package is in the extended format.
Each column (variable) contains one state and represents a month of the activity
calendar.

> head(actcal[,13:24])

jan00 feb00 mar00 apr00 may00 jun00 jul00 aug00 sep00 oct00 nov00 dec00

2848 B B B B B B B B B B B B

1230 D D D D A A A A A A A D

2468 B B B B B B B B B B B B

654 C C C C C C C C C B B B

6946 A A A A A A A A A A A A

1872 D B B B B B B B B B B B

The compressed format. In the compressed format, a sequence is represented as
a character string. A single string variable is used for storing the sequence. States or
events are represented by words or numerical codes separated by a specific separator
character4. The handling of sequences as character strings without separator is also
possible. However, in that case states or events should be represented by single
characters or digits. The sequences below are stored in the compressed format.
They are sequences of the actcal data set compressed with the seqconc() function.

> actcal.comp <- seqconc(actcal,13:24)

> head(actcal.comp)

Sequence

[1] "B-B-B-B-B-B-B-B-B-B-B-B"

[2] "D-D-D-D-A-A-A-A-A-A-A-D"

[3] "B-B-B-B-B-B-B-B-B-B-B-B"

[4] "C-C-C-C-C-C-C-C-C-B-B-B"

[5] "A-A-A-A-A-A-A-A-A-A-A-A"

[6] "D-B-B-B-B-B-B-B-B-B-B-B"

4.2 Sequence objects

Once your data is imported into R, the next step to work with most of the functions
provided by TraMineR is to create an object containing the sequence data. Such
objects are created with the seqdef() function. This function stores the sequences
in the TraMineR internal object type5 together with some of their attributes.

The seqdef() function accepts input data stored in several of the formats de-
scribed in Chapter 3. Some examples showing how to create a sequence object from
sequence data in several input formats are provided below.

3This is done by means of the seqfcheck() function that searches for any separator in the data.
4In TraMineR, the default separator is ‘-’, but other user specified separators can be specified.
5The class of this object is ‘stslist’.

32 Ch. 4 Importing and handling sequence data in TraMineR

4.2.1 Creating a sequence object

In the example below, we load the actcal data set and create a sequence object
named ‘actcal.seq’ with the sequences contained in columns 13 to 24.

> data(actcal)

> actcal.seq <- seqdef(actcal,13:24)

[>] distinct states appearing in the data: A/B/C/D

[>] alphabet: 1=A 2=B 3=C 4=D

[>] 2000 sequences in the data set

[>] min/max sequence length: 12/12

The var argument specifying the variables that define the sequences can be a single
variable or column index number, a set of variables, or a set of column index num-
bers. In the next example, the seqdef() command is used with the variable names
as var argument. The names() function returns the names of the variables in the
data frame and can be used to locate the corresponding column numbers. In the
actcal data set, the sequences are in the variables “jan00” to “dec00” corresponding
to columns 13 to 24.

> names(actcal)

[1] "idhous00" "age00" "educat00" "civsta00" "nbadul00" "nbkid00"

[7] "aoldki00" "ayouki00" "region00" "com2.00" "sex" "birthy"

[13] "jan00" "feb00" "mar00" "apr00" "may00" "jun00"

[19] "jul00" "aug00" "sep00" "oct00" "nov00" "dec00"

Notice that the column names are grouped into a vector with the c() function.

> actcal.seq <- seqdef(actcal, var=c("jan00","feb00","mar00","apr00",

+ "may00","jun00","jul00","aug00","sep00","oct00","nov00","dec00"))

[>] distinct states appearing in the data: A/B/C/D

[>] alphabet: 1=A 2=B 3=C 4=D

[>] 2000 sequences in the data set

[>] min/max sequence length: 12/12

Using variable names instead of the column index numbers is more secure, because
if you delete a variable from the data frame the index numbers can change, while
names remain unchanged. One of the attributes stored in the sequence object is
the alphabet, i.e. the list of distinct states an individual may be in. In the previous
example, the alphabet is taken from the data, that is, we suppose that all possible
states appear in the imported sequences. Some options to specify manually the
alphabet and other attributes will be described later.

In the actcal data set, sequences are in the STS format (see Section 3.2.1), the
beloved format used by TraMineR to store data in sequence objects. If your data is
already in this format, you can omit the informat option because STS is its default
value. You just issue the seqdef() function and specify the columns containing
the sequence data with the var option (if your data contain only sequences and no
covariate, you can also omit this option).

Here is another example with STS formatted sequences taken from Aassve et al.
(2007). We first create the sequences as character strings and assemble them with
the rbind function

> seq1 <- "000-000-000-000-000-000-000-000-000-000-000-000-0W0-0W0-0W0-

0W0-0W0-0W0-0W0-0W0-0W0-0WU-0WU-0WU-0WU-0WU-1WU-1WU"

> seq2 <- "000-000-000-000-000-000-000-000-000-000-000-000-0W0-0W0-0W0-

0W0-0W0-0W0-0W0-0W0-0W0-0W0-0W0-0W0-0W0-0W0-1WU-1WU"

> seq.ex1 <- rbind(seq1,seq2)

The seq.ex1 is just a vector with 2 character strings. Now we turn it into a sequence
object using the seqdef function

4.2 Sequence objects 33

> seq.ex1 <- seqdef(seq.ex1)

[>] distinct states appearing in the data: 000/0W0/0WU/1WU

[>] alphabet: 1=000 2=0W0 3=0WU 4=1WU

[>] 2 sequences in the data set

[>] min/max sequence length: 28/28

> seq.ex1

Sequence

[1] 000-000-000-000-000-000-000-000-000-000-000-000-0W0-0W0-0W0-0W0-0W0-

0W0-0W0-0W0-0W0-0WU-0WU-0WU-0WU-0WU-1WU-1WU

[2] 000-000-000-000-000-000-000-000-000-000-000-000-0W0-0W0-0W0-0W0-0W0-

0W0-0W0-0W0-0W0-0W0-0W0-0W0-0W0-0W0-1WU-1WU

At first glance, the two sequences do not seem to be very different. However, the
difference shows up clearly when displaying them in the SPS format

> print(seq.ex1,format="SPS")

[>] STS sequences converted to 2 SPS seq./rows

SPS sequence

[1] (000,12)-(0W0,9)-(0WU,5)-(1WU,2)

[2] (000,12)-(0W0,14)-(1WU,2)

As discussed in the previous chapter, sequences may not be stored in the STS
format, depending on the way data were collected and the way information is orga-
nized. In some cases, sequences are not directly present but can be constructed from
data originally collected as spells or time stamped events. We describe hereafter
the formats that TraMineR can read and convert into a sequence object for further
visualizing and analysis, using some ‘real-life’ example data sets. The informat
option to the seqdef() function is used to specify the format of the input data. To
identify the format of your data, see Section 3.2.

Creating a sequence object from SPS-formatted data In the SPS format
(see Section 3.2.2), sequences are defined with state-duration couples. The next
example shows the content of a text file with such data and some covariates

1 95506 0.896 20 2 0 4 4 M/44 MC/9 SC/91

2 95507 0.967 20 1 0 4 1 S/66 U/10 M/12 MC/56

3 95508 0.967 20 1 0 4 4 S/72 U/5 M/67

4 95510 0.896 20 2 0 4 1 S/10 U/1 UC/133

5 95527 0.967 20 1 0 4 4 S/54 U/18 S/15 U/11 M/29 MC/17

6 95530 0.896 20 2 0 4 2 S/10 U/14 M/8 MC/112

7 95534 0.896 20 2 0 4 3 S/36 U/47 S/45 M/16

8 95537 0.842 20 3 0 4 4 S/86 M/52 MC/6

9 95538 0.967 20 1 0 4 4 S/134 M/10

10 95544 0.967 20 1 0 4 1 S/111 U/33

The first step is to import the text file into an R data frame. We specify that there
are no variable names in the first row with the header=FALSE option, that row
names (1, 2, 3, . . .) are contained in the first column with the row.names=1 option,
and that empty strings should be treated as missing values with the na.strings="".

> sweden <- read.table(file="**PATH**/sweden.txt",

+ header=FALSE, row.names=1, sep=" ", na.strings="")

The sequence data is contained in columns 8 to 19 (named V9 to V20 because in
the text file the first column contained row names). Note that sequences are stored
in an unequal number of variables, depending on the number of distinct states the
individuals passed through.

> head(sweden)

V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 V12 V13 V14 V15 V16

34 Ch. 4 Importing and handling sequence data in TraMineR

1 95506 0.896 20 2 0 4 4 M/44 MC/9 SC/91 <NA> <NA> <NA> <NA> <NA>

2 95507 0.967 20 1 0 4 1 S/66 U/10 M/12 MC/56 <NA> <NA> <NA> <NA>

3 95508 0.967 20 1 0 4 4 S/72 U/5 M/67 <NA> <NA> <NA> <NA> <NA>

4 95510 0.896 20 2 0 4 1 S/10 U/1 UC/133 <NA> <NA> <NA> <NA> <NA>

5 95527 0.967 20 1 0 4 4 S/54 U/18 S/15 U/11 M/29 MC/17 <NA> <NA>

6 95530 0.896 20 2 0 4 2 S/10 U/14 M/8 MC/112 <NA> <NA> <NA> <NA>

V17 V18 V19 V20 V21

1 <NA> <NA> <NA> <NA> NA

2 <NA> <NA> <NA> <NA> NA

3 <NA> <NA> <NA> <NA> NA

4 <NA> <NA> <NA> <NA> NA

5 <NA> <NA> <NA> <NA> NA

6 <NA> <NA> <NA> <NA> NA

Now importing this data into a sequence object is very straightforward

> sweden.seq <- seqdef(data=sweden,var=8:19,informat=’SPS2’)

[>] SPS2 data converted into 1989 STS sequences

[>] distinct states appearing in the data: M/MC/S/SC/U/UC

[>] alphabet: 1=M 2=MC 3=S 4=SC 5=U 6=UC

[>] 1989 sequences in the data set

[>] min/max sequence length: 144/144

where SPS2 is the SPS format with the ‘/’ separator, i.e./ that the coding is of the
form state/duration.

Creating a sequence object from SPELL-formatted data Data in the
SPELL format can be converted and loaded in a sequence object with the infor-
mat="SPELL" option. The data provided as spell input should comply the structure
described in Table 4.1 (variable order must be respected). An example is shown
in 3.2.4 on page 27. The spells for each individual must be sorted by starting time.
As an example let us create a sequence object with SPELL data extracted from

Table 4.1: Structure for the spell format

Position Variable
1 Personal identification number
2 Spell index for the given individual
3 Start time
4 End time
5 Status

the Swiss Household Panel retrospective survey. The original data containing living
arrangement history (see Table 3.2 on page 27 for the state description) has been
imported into R. The living arrangement histories for three individuals (id = 2713,
2714 and 3713) are displayed below.

> LA[1:15,]

idpers index from until status

1 2713 1 1965 1989 1

2 2713 2 1989 1990 5

3 2713 3 1990 1991 5

4 2713 4 1991 2002 5

5 2714 1 1968 1985 1

6 2714 2 1985 1988 7

7 2714 3 1989 1990 5

8 2714 4 1990 1991 5

4.2 Sequence objects 35

9 2714 5 1991 2002 5

10 3713 1 1961 1978 1

11 3713 2 1978 1983 3

12 3713 3 1983 1984 4

13 3713 4 1984 1985 3

14 3713 5 1985 1999 4

15 3713 6 1999 2001 7

Now we create a sequence object from this data

> LA.seq <- seqdef(LA, informat="SPELL")

[>] SPELL data converted into 5560 STS sequences

[>] STS sequences converted to 5560 STS seq./rows

[>] distinct states appearing in the data: /1/10/11/2/3/4/5/6/7/8/9

[>] alphabet: 1= 2=1 3=10 4=11 5=2 6=3 7=4 8=5 9=6 10=7 11=8 12=9

[>] 5560 sequences in the data set

[>] min/max sequence length: 0/122

and display (in SPS format) the resulting sequences for the first three individuals

> print(LA.seq[1:3,], format="SPS")

[>] converting from STS to SPS formats => 3 STS => 3 SPS seq./rows

SPS sequence

[1] (1,24)-(5,13)

[2] (1,17)-(7,3)-(5,13)

[3] (1,17)-(3,5)-(4,1)-(3,1)-(4,14)-(7,2)

4.2.2 Attributes of sequence objects

When creating a sequence object with the seqdef() function, several attributes are
stored together with the sequence data, namely:

• the alphabet

• the color palette used for representing states in plots

• optional state labels

• the code used for missing values

• the starting time of the sequences

Those attributes are retrieved by other TraMineR’s functions, for instance the al-
phabet, color palette and state labels associated to the object are used by the
TraMineR sequence plotting functions6. If no values for the attributes are pro-
vided by the user, TraMineR sets them automatically. The default values chosen
by TraMineR and the user-available options to override them are described below.

State codes. In a sequence object, the variables (columns) where the states com-
posing the sequences are stored are R factors. A R factor has an internal numeric
code and a label. It resembles the numerically coded variables with value labels we
found in SPSS or Stata. When importing data from statistical softwares such as
SPSS or Stata all variables with value labels are converted into R factors unless you
specify it otherwise. When creating a sequence object, if you do not specify yourself
the list of possible states, TraMineR uses the factor levels (i.e. the value labels) to
create the alphabet. Suppose we have imported a data set where the value labels
for the possible states are “Happy”, “Unhappy”, “Rich” and “Dead”. Looking at the
data, we get

6The color palette and state labels can be overridden by options to the plotting functions

36 Ch. 4 Importing and handling sequence data in TraMineR

> seq.ex2

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10

[1] Happy Happy Unhappy Unhappy Unhappy Unhappy Rich Rich Rich Rich

[2] Happy Happy Rich Rich Rich Rich Dead Dead Dead Dead

Now, if we create a sequence object with this data set, the sequences show out in
compressed form

> seqdef(seq.ex2)

[>] Alphabet is defined as the distinct states appearing in the data

[>] 2 sequences in the data set

[>] min/max sequence length: 10/10

Sequence

[1] Happy-Happy-Unhappy-Unhappy-Unhappy-Unhappy-Rich-Rich-Rich-Rich

[2] Happy-Happy-Rich-Rich-Rich-Rich-Dead-Dead-Dead-Dead

Depending on the length of the state labels and the length of the sequences, it may
be useful to change the state labels to shorter symbols (in the plots, one can still
optionally specify a more descriptive legend of the represented states). This can
be done when creating the sequence object with the states option. Suppose we
want to use the state labels ”D” for ”Dead”, ”H” for ”Happy”,”R” for ”Rich” and ”U”
for ”Unhappy” when creating the sequence object from the previous example. We
have to provide the seqdef function with these new labels. The order in which
we give these labels is very important: The labels must match the order of the
states as sorted in the list outputted by the seqstatl function (most often it is the
alphabetical order).

> seqstatl(seq.ex2)

[1] "Dead" "Happy" "Rich" "Unhappy"

Now, we create the sequence object with the new state labels, yielding shorter
output when displaying the sequences

> seqdef(seq.ex2,states=c("D","H","R","U"))

[>] 2 sequences in the data set

[>] min/max sequence length: 10/10

Sequence

[1] H-H-U-U-U-U-R-R-R-R

[2] H-H-R-R-R-R-D-D-D-D

Alphabet. If you create a sequence object without specifying the alphabet op-
tion, all possible states are supposed to be present in the data set and the alphabet
is set by listing the distinct states encountered. However, in some cases, we may
have to consider states that are not present in the data set used to create the se-
quence object. Suppose for instance that you want to compare two sequence data
sets and that there are some states in one data set that are not present in the other
one. Without explicitly specifying the list of the possible states with the alphabet
option when creating the sequence objects from these data sets, the missing states
will not be accounted for, which may produce misleading results when comparing
tabulation of the state frequency of the two data sets. The colors attributed to the
states will also be different for each data set which may also be source of confusion.
Let us take a short example to illustrate this point. We create two sequence objects,
one with the first three sequences of the actcal data set

> actcal.s1 <- seqdef(actcal[1:3,13:24])

[>] distinct states appearing in the data: A/B/D

[>] alphabet: 1=A 2=B 3=D

[>] 3 sequences in the data set

[>] min/max sequence length: 12/12

and one with sequences 7 to 9.

4.2 Sequence objects 37

> actcal.s2 <- seqdef(actcal[7:9,13:24])

[>] distinct states appearing in the data: A/D

[>] alphabet: 1=A 2=D

[>] 3 sequences in the data set

[>] min/max sequence length: 12/12

In the first example, the alphabet is set to (A,B,D) while in the second object it
is set to (A,D). Since we know that the possible states are (A,B,C,D), we specify
manually the alphabet for the first ...

> actcal.s1 <- seqdef(actcal[1:3,13:24], alphabet=c("A","B","C","D"))

[>] distinct states appearing in the data: A/B/D

[>] alphabet: 1=A 2=B 3=C 4=D

[>] 3 sequences in the data set

[>] min/max sequence length: 12/12

... and the second object

> actcal.s2 <- seqdef(actcal[7:9,13:24], alphabet=c("A","B","C","D"))

[>] distinct states appearing in the data: A/D

[>] alphabet: 1=A 2=B 3=C 4=D

[>] 3 sequences in the data set

[>] min/max sequence length: 12/12

which permits to directly compare plots and tabulations of each sequence object.

Color palette. The color palette attached to a sequence object is used by default
in the graphical functions provided by TraMineR. If no optional argument is pro-
vided, a color palette is created with the dedicated RColorBrewer R package, which
is loaded at start-up by TraMineR . The default color palette is Accent. It can be
overridden by the user with the cpal option. The awaited argument is a character
vector containing a color for each state in the alphabet. The colors() function
provides the list of color names available in R.

> actcal.seq <- seqdef(actcal,13:24, cpal=c("red","blue","green","yellow"))

[>] distinct states appearing in the data: A/B/C/D

[>] alphabet: 1=A 2=B 3=C 4=D

[>] 2000 sequences in the data set

[>] min/max sequence length: 12/12

The color palette for an existing sequence object may be modified by providing a
vector with color names ...

> attr(actcal.seq,"cpal") <- c("pink","purple","cyan","yellow")

... or by retrieving the colors from a color palette. In the example below, we retrieve
4 colors from the “Dark2” color palette provided by the RColorBrewer package.

> attr(actcal.seq,"cpal") <- brewer.pal(4,"Dark2")

State labels. State labels are used as legends by the TraMineR plot functions. If
not specified, labels are set with the state codes. Use the labels option to define
state labels. The labels option expects a vector containing a character string for
each state in the alphabet.

> actcal.seq <- seqdef(actcal,13:24,labels=c("> 37 hours", "19-36 hours",

+ "1-18 hours", "no work"))

[>] distinct states appearing in the data: A/B/C/D

[>] alphabet: 1=A 2=B 3=C 4=D

[>] 2000 sequences in the data set

[>] min/max sequence length: 12/12

38 Ch. 4 Importing and handling sequence data in TraMineR

Starting time The start option specifies the starting time of the sequences.
Since the value yields for all the sequences in the data, this information makes
sense only when states are dated and when all sequences have the same starting
time (are left aligned). Otherwise, you can safely ignore this option and the value
will be set to 1. This attribute is used for instance for creating column names of the
sequence object when there are no column names in the input data and no names
are provided by the user. This attribute is also updated when selecting subscripts
of a sequence object (see Section 4.2.3).

4.2.3 Indexing and printing sequences

Displaying a sequence object is as simple as typing its name. However, displaying
a sequence object containing 2000 rows such as actcal.seq for instance is not very
interesting. Subscripts can be used to display only selected rows and/or columns
of the data. Subscripts and indexes work the same way as for matrices and data
frames.

In the next example, we display only the first 5 sequences and columns 3 to 8
(March to August) of the previously created actcal.seq sequence object. Typing
a sequence object name, with or without subscripts, is equivalent to issuing the
print() command with the object name as argument

> actcal.seq[1:5,3:8]

Sequence

[1] B-B-B-B-B-B

[2] D-D-A-A-A-A

[3] B-B-B-B-B-B

[4] C-C-C-C-C-C

[5] A-A-A-A-A-A

Note that the sequences are displayed in a compressed format, i.e. as character
strings where the states are separated with the ‘-’ symbol. But internally, each
state is still stored in a single variable, as shown with the print command with the
‘extended=TRUE’ option

> print(actcal.seq[1:5,3:8], ext=TRUE)

mar00 apr00 may00 jun00 jul00 aug00

[1] B B B B B B

[2] D D A A A A

[3] B B B B B B

[4] C C C C C C

[5] A A A A A A

We get a more concise view of sequences with the SPS state-permanence represen-
tation. Obviously, the SPS format yields shorter and more readable sequences. We
obtain the SPS representation with the format="SPS" option

> print(actcal.seq[1:5,3:8], format="SPS")

[>] STS sequences converted to 5 SPS seq./rows

SPS sequence

[1] (B,6)

[2] (D,2)-(A,4)

[3] (B,6)

[4] (C,6)

[5] (A,6)

When using subscripts to select only parts of sequence objects, the result is still a
sequence object and all attributes of the parent object are preserved (inherited). As
an example, a sequence object is first created from the now well known actcal data
set, with user specified color palette and states labels

4.2 Sequence objects 39

> actcal.seq <- seqdef(actcal,13:24,

+ labels=c("> 37 hours", "19-36 hours", "1-18 hours", "no work"),

+ cpal=c("red","blue","green","yellow"))

[>] distinct states appearing in the data: A/B/C/D

[>] alphabet: 1=A 2=B 3=C 4=D

[>] 2000 sequences in the data set

[>] min/max sequence length: 12/12

and then the sequences for the summer months only are selected. We see that
the color palette (cpal attribute) and state labels (label attribute) have been
preserved, while the start attribute originally set to 1 (default value) has been
updated to 6.

> actcal.summer <- actcal.seq[,6:9]

> attr(actcal.summer,"cpal")

[1] "red" "blue" "green" "yellow"

> attr(actcal.summer,"labels")

[1] "> 37 hours" "19-36 hours" "1-18 hours" "no work"

> attr(actcal.summer,"start")

[1] 6

The column names are retrieved with the names function

> names(actcal.summer)

[1] "jun00" "jul00" "aug00" "sep00"

4.2.4 Sequences of unequal length and missing values

For several reasons, sequences in a data set may have different lengths. For example:

• The length of the follow up is not the same for all individuals.

• In event sequences, the number of events experienced by each individual differs
from one individual to the other.

• Sequences defined as the list of successive states without duration information
are typically of varying length.

In the example below taken from Elzinga (2008), sequences have unequal lengths
because they contain only the distinct states the individuals have passed through.
The example is based on the famform data set distributed with the TraMineR
package. In this data set, sequences are recorded in the compressed format, i.e. as
character strings.

> data(famform)

> famform

Sequence

v "S-U"

w "S-U-M"

x "S-U-M-MC"

y "S-U-M-MC-SC"

z "U-M-MC"

Suppose we loaded this example from a data file where the sequences are in the
‘extended’ format, i.e. each state is stored in a separate column (variable). It would
look like this, with NA values at the end of the sequences containing less than the
maximum number of states encountered

> seqdecomp(famform)

[1] [2] [3] [4] [5]

[1] "S" "U" NA NA NA

40 Ch. 4 Importing and handling sequence data in TraMineR

[2] "S" "U" "M" NA NA

[3] "S" "U" "M" "MC" NA

[4] "S" "U" "M" "MC" "SC"

[5] "U" "M" "MC" NA NA

In TraMineR, the NA at the end of a sequence are not considered as true missing
values. The sequence is supposed to end with the first NA value it contains. For
example, when creating a sequence object from the extended version of the famform
data set, we get a sequence of length 2 for the first record.

> seqdef(seqdecomp(famform))

[>] Alphabet is defined as the distinct states appearing in the data

[>] 5 sequences in the data set

[>] min/max sequence length: 2/5

Sequence

[1] S-U

[2] S-U-M

[3] S-U-M-MC

[4] S-U-M-MC-SC

[5] U-M-MC

4.3 Converting between formats

TraMineR also offers facilities to convert to and from several data forms. Such
transformations may prove useful for applying other statistical methods to our data
such as for instance survival analysis and regression trees). Data conversion is
done with the seqformat(), seqconc() and seqdecomp() functions described in
this section. The first of these functions is also used to create event sequences
from state sequences, which can then be analysed with the TraMineR functions
dedicated to event sequences (see Chapter7). The seqformat function takes as
main arguments the name of the sequence data, the names or column indexes of
the variables containing the sequences, the input and the output formats. We
describe below the various formats that seqformat() can handle. By default, the
output returned by the function is in the so called compressed format, in which the
sequences are stored in character strings. Note that for translating the seqformat()
uses the STS format as internal intermediate format. Hence some information can
be lost depending on the input and output formats.

4.3.1 Converting to and from the SPS format

The seqformat() function allows to convert from and to the state-permanence-
sequence SPS format (see Section 4.3). In the next example, we translate the
sequences contained in the actcal data frame to SPS format and store the result in
the actcal.SPS object.

> actcal.SPS <- seqformat(actcal, 13:24, from=’STS’, to=’SPS’)

Converting sequence data from STS to SPS

> actcal.SPS[1:10]

[1] "(B,12)" "(D,4)-(A,7)-(D,1)" "(B,12)"

[4] "(C,9)-(B,3)" "(A,12)" "(D,1)-(B,11)"

[7] "(D,12)" "(A,12)" "(A,12)"

[10] "(A,12)"

4.3.2 Converting between compressed and extended formats

The seqconc() and seqdecomp() functions convert between compressed and ex-
tended representations of sequence data. In the example below, we use the seq-
conc() function to translate the actcal data set into the compressed format and

4.3 Converting between formats 41

store the result in the actcal.comp object. The actcal.comp object is now a
vector, whose first 10 elements are shown here.

> actcal.comp <- seqconc(actcal,13:24)

> actcal.comp[1:10]

[1] "B-B-B-B-B-B-B-B-B-B-B-B" "D-D-D-D-A-A-A-A-A-A-A-D"

[3] "B-B-B-B-B-B-B-B-B-B-B-B" "C-C-C-C-C-C-C-C-C-B-B-B"

[5] "A-A-A-A-A-A-A-A-A-A-A-A" "D-B-B-B-B-B-B-B-B-B-B-B"

[7] "D-D-D-D-D-D-D-D-D-D-D-D" "A-A-A-A-A-A-A-A-A-A-A-A"

[9] "A-A-A-A-A-A-A-A-A-A-A-A" "A-A-A-A-A-A-A-A-A-A-A-A"

The seqdecomp() function makes the reverse transformation to the original un-
compressed format. Notice that we do not need to specify the names or column
indexes of the variables containing the sequence in the previously created act-
cal.comp data set. Indeed, the sequence is stored in the sole variable7

> actcal.ext <- seqdecomp(actcal.comp)

> actcal.ext[1:10,]

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12]

[1] "B" "B" "B" "B" "B" "B" "B" "B" "B" "B" "B" "B"

[2] "D" "D" "D" "D" "A" "A" "A" "A" "A" "A" "A" "D"

[3] "B" "B" "B" "B" "B" "B" "B" "B" "B" "B" "B" "B"

[4] "C" "C" "C" "C" "C" "C" "C" "C" "C" "B" "B" "B"

[5] "A" "A" "A" "A" "A" "A" "A" "A" "A" "A" "A" "A"

[6] "D" "B" "B" "B" "B" "B" "B" "B" "B" "B" "B" "B"

[7] "D" "D" "D" "D" "D" "D" "D" "D" "D" "D" "D" "D"

[8] "A" "A" "A" "A" "A" "A" "A" "A" "A" "A" "A" "A"

[9] "A" "A" "A" "A" "A" "A" "A" "A" "A" "A" "A" "A"

[10] "A" "A" "A" "A" "A" "A" "A" "A" "A" "A" "A" "A"

In the next example taken from Aassve et al., 2007 and introduced in Sec-
tion 3.1.1, states are coded with character strings of length 3 and separated with
the ‘-’ symbol. Each sequence is transformed into a (row) vector of 28 elements
(states).

> seqdecomp(seq.ex1)

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12]

[1] "000" "000" "000" "000" "000" "000" "000" "000" "000" "000" "000" "000"

[2] "000" "000" "000" "000" "000" "000" "000" "000" "000" "000" "000" "000"

[,13] [,14] [,15] [,16] [,17] [,18] [,19] [,20] [,21] [,22] [,23] [,24]

[1] "0W0" "0W0" "0W0" "0W0" "0W0" "0W0" "0W0" "0W0" "0W0" "0WU" "0WU" "0WU"

[2] "0W0" "0W0" "0W0" "0W0" "0W0" "0W0" "0W0" "0W0" "0W0" "0W0" "0W0" "0W0"

[,25] [,26] [,27] [,28]

[1] "0WU" "0WU" "1WU" "1WU"

[2] "0W0" "0W0" "1WU" "1WU"

To translate compressed sequences with no separator, the sep option can be set to
an empty string as in the following example. In that case, every character in the
string is assumed to represent a state or event.

> seqdecomp("aaaaaa", sep="")

[,1] [,2] [,3] [,4] [,5] [,6]

[1,] "a" "a" "a" "a" "a" "a"

4.3.3 Converting to TSE format

In order to extract time stamped events from a sequence of statuses (which is the
internal format used by TraMineR), a matrix of size ns×ns where ns is the number

7By default, when no var option is specified, the function assumes that the data set contains
only sequence data and hence retains all columns, i.e. here the single column of the actcal.comp

object.

42 Ch. 4 Importing and handling sequence data in TraMineR

of distinct states appearing in the sequences must be given. In this matrix, the cell
(a, b), where a is the row index and b the column index, contains all events associated
with a transition from state a to state b separated by a comma. The diagonal of
this matrix has a special meaning. It just defines the initial event of the sequence.
Hence the position (a, a) gives the event generated when the sequence starts with
the state a.

The exact design of this matrix can be tricky since a transition may imply several
events and the same event may appear in several transitions. However, TraMineR
implements several generic methods to build this matrix with the function seqetm().
You can then adapt the generated matrix to your need by editing the appropriate
cells. However, if you create your own matrix from scratch, you should be aware that
row and column names of the matrix MUST BE (in a one to one correspondence) the
states appearing in the data set since they are used to retrieve the events associated
with transitions from one state to the other.

The first method to generate this matrix is named “transition”. In this case, we
simply generate a distinct event for each possible transitions. The diagonal is set
to the different possible states.

> data(actcal)

> ## Creating STS format

> actcal.seq <- seqdef(actcal,13:24,

+ labels=c("FullTime", "PartTime", "LowPartTime", "NoWork"))

> transition <- seqetm(actcal.seq, method="transition")

> transition

A B C

A "FullTime" "FullTime>PartTime" "FullTime>LowPartTime"

B "PartTime>FullTime" "PartTime" "PartTime>LowPartTime"

C "LowPartTime>FullTime" "LowPartTime>PartTime" "LowPartTime"

D "NoWork>FullTime" "NoWork>PartTime" "NoWork>LowPartTime"

D

A "FullTime>NoWork"

B "PartTime>NoWork"

C "LowPartTime>NoWork"

D "NoWork"

The second method generates a “begin” event and an “end” event for each spell.
The diagonal is considered as a “begin” event. The extra parameter “bp” can be set
to “begin” to generate a distinct event on the diagonal.

> transition <- seqetm(actcal.seq, method="period")

> transition

A B C

A "FullTime" "endFullTime,PartTime" "endFullTime,LowPartTime"

B "endPartTime,FullTime" "PartTime" "endPartTime,LowPartTime"

C "endLowPartTime,FullTime" "endLowPartTime,PartTime" "LowPartTime"

D "endNoWork,FullTime" "endNoWork,PartTime" "endNoWork,LowPartTime"

D

A "endFullTime,NoWork"

B "endPartTime,NoWork"

C "endLowPartTime,NoWork"

D "NoWork"

However, most of the time, we are interested in specific events. For instance,
we may be interested in the following events in the in the activity calendar (actcal
data set).

We may thus define the following matrix: Remember that the events given on
the diagonal of this matrix are not associated to the transition from a state to each
self, but are just the starting event of the sequence. If we omit this step, information
about the beginning of the event sequence will be omitted. In our case, we insert
for example the event “FullTime” to each event sequence that begins with the state
”A”.

4.3 Converting between formats 43

Table 4.2: Considered events of the activity calendar (actcal data set) data set

Code Status

Increase Increasing activity rate

Decrease Decreasing activity rate

Start Starting an activity

Stop Stopping an activity

FullTime Starting a full-time paid job (37 hours or more per week)

PartTime Starting a part-time paid job (19-36 hours per week)

LowPartTime Starting a part-time paid job (1-18 hours per week)

NoActivity Starting a period without activity

Table 4.3: Events associated to each state transition

To state
From Full time Part time Low part time No work
state A B C D

A FullTime Decrease Decrease Stop
PartTime LowPartTime

B Increase PartTime Decrease Stop
FullTime LowPartTime

C Increase Increase LowPartTime Stop
FullTime PartTime

D Start Start Start NoActivity
FullTime PartTime LowPartTime

To generate our own matrix, we first use seqetm() to assign correct column and
rows names, and then enter the content of our own matrix.

> transition <- seqetm(actcal.seq, method="transition")

> transition[1,1:4] <- c("FullTime" , "Decrease,PartTime",

+ "Decrease,LowPartTime", "Stop")

> transition[2,1:4] <- c("Increase,FullTime", "PartTime" ,

+ "Decrease,LowPartTime", "Stop")

> transition[3,1:4] <- c("Increase,FullTime", "Increase,PartTime",

+ "LowPartTime" , "Stop")

> transition[4,1:4] <- c("Start,FullTime" , "Start,PartTime" ,

+ "Start,LowPartTime" , "NoActivity")

> transition

A B C

A "FullTime" "Decrease,PartTime" "Decrease,LowPartTime"

B "Increase,FullTime" "PartTime" "Decrease,LowPartTime"

C "Increase,FullTime" "Increase,PartTime" "LowPartTime"

D "Start,FullTime" "Start,PartTime" "Start,LowPartTime"

D

A "Stop"

B "Stop"

C "Stop"

D "NoActivity"

Once we have our event matrix, we can convert our state sequence data set into
the time stamped event (TSE) form by means of seqformat().

> actcal.tse <- seqformat(actcal, var=13:24, from=’STS’, to=’TSE’,

44 Ch. 4 Importing and handling sequence data in TraMineR

+ tevent=transition)

=> Converting 2000 sequences to TSE format, please wait

[>] STS sequences converted to 2954 TSE seq./rows

> actcal.tse[1:10,]

id time event

1 1 0 PartTime

2 2 0 NoActivity

3 2 4 Start

4 2 4 FullTime

5 2 11 Stop

6 3 0 PartTime

7 4 0 LowPartTime

8 4 9 Increase

9 4 9 PartTime

10 5 0 FullTime

Looking at the first record for individual 2 (id number have been created from the
sequences order), we see that the events “Start” and “FullTime” occur at time 4, and
therefore that individual number 2 started a full time job at time 4. This individual
then stops working (“Stop”) at time 11.

Note that the times at which the events occur are computed as the number of
positions in the sequences before the new resulting state.

4.3.4 Converting from SPELL format

The following command translates the LA data set described above (page 34) to the
STS sequence-status format. The from option of the seqformat() function is set
to ‘SPELL’.

> LA.sts <- seqformat(LA, from="SPELL", to="STS")

[>] SPELL data converted into 5560 STS sequences

Il y a eu 50 avis ou plus (utilisez warnings() pour voir les 50 premiers)

> LA.sts[1:4,]

[1] "1-5-5-5-5-5-5-5-5-5-

5-5-5-5"

[2] "1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-7-7-7-5-5-5-5-5-5-5-5-5-5-5-5-5"

[3] "1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-3-3-3-3-3-4-3-4-4-4-4-4-4-4-4-4-

4-4-4-4-4-7-7"

[4] "1-5-5-5-5-5-5-5-5-5"

It is also possible to convert directly into the more concise ‘state-permanence’ format
by setting the to option to ‘SPS’

> seqformat(LA[1:17,],from="SPELL",to="SPS")

[>] SPELL data converted into 4 STS sequences

[>] STS sequences converted to 4 SPS seq./rows

SPS sequence

[1] "(1,24)-(5,13)"

[2] "(1,17)-(7,3)-(5,13)"

[3] "(1,17)-(3,5)-(4,1)-(3,1)-(4,14)-(7,2)"

[4] "(1,20)-(5,9)"

Chapter 5

Describing and visualizing
sequences

This chapter presents the main TraMineR tools for describing and visualizing se-
quences. We first briefly explain in Section 5.1 the general plotting philosophy
adopted in TraMineR. Section 5.2 presents then tools for describing and visualiz-
ing set properties of the sequences from an aggregated standpoint and Section 5.3
focuses on the characterization of individual sequence properties and their summary.

5.1 General principle of TraMineR sequence plots

TraMineR provides three basic plotting functions for visualizing sequence charac-
teristics: seqdplot() for plotting the state distribution at each time point, seqf-
plot() for plotting the frequencies of the most frequent sequences and seqiplot()
for plotting all or a selection of individual sequences.

5.1.1 Color palette representing the states

The before-mentioned plot functions have in common to use a specific color for
each state. The choice of the colors is done by selecting a color palette. Indeed, for
facilitating readability it is important to use the same color palette for all plots based
on a same alphabet. The philosophy retained in TraMineR is therefore to attach the
alphabet and the color palette as attributes of the sequence object (see Section 4.2.2)
and letting the plotting functions retrieve these attributes when generating the plots.
The same is true also for the labels of the time axis ticks and the labels of the states.

5.1.2 Plotting the legend separately

To be understandable, a plot must be accompanied by the legend of the used state
colors. By default each sequence plot produces therefore the legend on the top of
the graphic using the attributes of the plotted sequence object.

In some cases, especially when you generate multiple plots, for instance a state
distribution plot and an sequence frequency plot, it may be preferable to generate
plots without legends and produce the legend only once separately. For doing so,
TraMineR provides the seqlegend() function that generates the legend has a sep-
arate graphic, and a withlegend=FALSE option for the seqdplot(), seqfplot and
seqiplot() functions.

For example, the following code generates two plots and a legend side by side as
shown in Figure 5.1.

45

46 Ch. 5 Describing and visualizing sequences

par(1,3)

seqdplot(biofam.seq, withlegend=FALSE)

seqfplot(biofam.seq, withlegend=FALSE, pbarw=TRUE)

seqlegend(biofam.seq)

a15 a18 a21 a24 a27 a30

F
re

q.
 (

n=
20

00
)

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

7.7%

2.2%

2%

1.5%

1.4%

1.3%
1.2%
1.1%
1.1%
1.1%

F
re

q.
 (

n=
20

00
)

a15 a18 a21 a24 a27 a30

N/N/N/N
Y/N/N/N
N/Y/*/N
Y/Y/N/N
N/N/Y/N
Y/N/Y/N
Y/Y/Y/N
//*/Y

Figure 5.1: Legend plotted as an additional graphic

5.2 Describing and visualizing sequence data

In this section we present functions for visualizing and describing sequences at the
aggregate level.

5.2.1 List of states present in sequence data

A first result we may want is just the list of states present in the data set. This
is obtained with the alphabet() function when the list of states has not been
explicitly specified by the user.1 The alphabet() function returns the list of the
possible states for a sequence object. In the following example, we see that the
alphabet for the actcal.seq sequence object contains 4 distinct states: A, B, C and
D (see Table 2.1 page 18 for their description).

> data(actcal)

> stated <- c("> 37 hours", "19-36 hours", "1-18 hours", "no work")

> actcal.seq <- seqdef(actcal,13:24,labels=stated)

[>] distinct states appearing in the data: A/B/C/D

[>] alphabet: 1=A 2=B 3=C 4=D

[>] 2000 sequences in the data set

[>] min/max sequence length: 12/12

> alphabet(actcal.seq)

[1] "A" "B" "C" "D"

To get the list of all distinct states appearing in a data set containing sequences
not converted into a sequence object, use the seqstatl() function. You tell seqs-
tatl() which variables define the sequence data by providing with the var argument
either their names or their column index numbers. For specifying the columns by
their names, you have to group them into a vector with the c() function. By de-
fault, the seqstatl() function expects a STS formatted data set as input. If the
sequences in your data are in another format, you should specify it with the format
option. In the following example, we retrieve the alphabet for the two sequences of
the sp.ex12 data set.

1in that case, some states in the alphabet may not appear in the data. See Sec. 4.2 for more
information on this topic

2this data set is created by binding two character strings with the rbind() function

5.2 Describing and visualizing sequence data 47

> sp.ex1 <- rbind("(000,12)-(0W0,9)-(0WU,5)-(1WU,2)",

+ "(000,12)-(0W0,14)-(1WU,2)")

> sp.ex1

[,1]

[1,] "(000,12)-(0W0,9)-(0WU,5)-(1WU,2)"

[2,] "(000,12)-(0W0,14)-(1WU,2)"

> seqstatl(sp.ex1, format=’SPS’)

[>] SPS data converted into 2 STS sequences

[1] "000" "0W0" "0WU" "1WU"

5.2.2 State distribution

State distribution plot. The seqdplot() function plots a graphic showing the
state distribution at each time point (the columns of the sequence object). The state
distribution itself is obtained with the seqstatd() command described below. In
the next example we plot the state distribution for the biofam data set. We first
define a bfstates vector of state labels to be used for the legend of the colors used
in the plot. This vector has eight elements since there are eight different states in
the biofam data set. The states are defined according to Table 2.3 p. 19 and their
labels are abbreviated ‘Y’ for Yes, ‘N’ for No and ‘*’ for neither Yes nor No. The
position of the Y, N, * symbols refers respectively to leaved parental home, married,
children and divorce.

> bfstates <- c("N/N/N/N", "Y/N/N/N", "N/Y/*/N", "Y/Y/N/N",

+ "N/N/Y/N", "Y/N/Y/N", "Y/Y/Y/N", "*/*/*/Y")

> biofam.seq <- seqdef(biofam,10:25,labels=bfstates)

[>] distinct states appearing in the data: 0/1/2/3/4/5/6/7

[>] alphabet: 1=0 2=1 3=2 4=3 5=4 6=5 7=6 8=7

[>] 2000 sequences in the data set

[>] min/max sequence length: 16/16

> seqdplot(biofam.seq)

The ltext argument overrides the labels associated to the sequence object (See
Section 4.2.2). The resulting graphic is shown in Figure 5.2. The proportion of
individuals who have not leaved parental home diminishes over time, while the
proportion of individuals in state Y/Y/Y/N (having left home, getting married and
having a child) increases to become the most frequent state at age 30.

The state distribution plot for the actcal data, obtained with the command
below, shows a different pattern (Figure 5.3). The distribution of the work statuses
looks very stable over time.

> seqdplot(actcal.seq)

State distribution table. Beside plotting the distribution of the states at each
time point, you may want to get the figures of the distribution. The seqstatd()
function returns the table of the state distributions together with the number of
valid states and an entropy measure for each time unit. The state distributions
are those visualized by the seqdplot()function. The following example shows the
family formation state distribution from age 15 to 30 in the (biofam data set (see
Table 2.3 page 19 for the description of the states). The first argument to the
seqstatd() function is the previously created biofam.seq sequence object.

> seqstatd(biofam.seq)
$Frequencies

a15 a16 a17 a18 a19 a20 a21 a22 a23 a24 a25 a26 a27 a28 a29 a30
0 0.99 0.95 0.92 0.88 0.82 0.71 0.60 0.50 0.42 0.34 0.25 0.20 0.16 0.13 0.10 0.08
1 0.01 0.05 0.08 0.11 0.15 0.23 0.28 0.30 0.29 0.28 0.26 0.23 0.20 0.17 0.16 0.14
2 0.00 0.00 0.00 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.08 0.09 0.10 0.10
3 0.00 0.00 0.00 0.00 0.01 0.02 0.05 0.08 0.11 0.15 0.19 0.20 0.22 0.20 0.20 0.19
4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
6 0.00 0.00 0.00 0.00 0.01 0.03 0.05 0.08 0.12 0.15 0.21 0.26 0.31 0.36 0.40 0.44

48 Ch. 5 Describing and visualizing sequences

a15 a17 a19 a21 a23 a25 a27 a29

F
re

q.
 (

n=
20

00
)

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

N/N/N/N
Y/N/N/N
N/Y/*/N

Y/Y/N/N
N/N/Y/N
Y/N/Y/N

Y/Y/Y/N
//*/Y

Figure 5.2: Distribution of the family statuses by age in the biofam data set (data
from the Swiss Household Panel)

jan00 mar00 may00 jul00 sep00 nov00

F
re

q.
 (

n=
20

00
)

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

> 37 hours
19−36 hours

1−18 hours
no work

Figure 5.3: Distribution of the work statuses by month in the actcal data set (data
from the Swiss Household Panel)

5.2 Describing and visualizing sequence data 49

7 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.02 0.02 0.03 0.03 0.04

$ValidStates
a15 a16 a17 a18 a19 a20 a21 a22 a23 a24 a25 a26 a27 a28 a29 a30
2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000

$Entropy
a15 a16 a17 a18 a19 a20 a21 a22 a23 a24 a25 a26 a27 a28 a29 a30
0.04 0.10 0.13 0.20 0.29 0.41 0.52 0.61 0.68 0.74 0.78 0.79 0.80 0.79 0.77 0.75

In addition to the state distribution at each time point, the seqstatd() function
provides also for each time point the number of valid states and the Shannon entropy
of the observed state distribution. Letting pi denote the proportion of cases in state
i at the considered time point, the entropy is

h(p1, . . . , ps) = −
s∑

i=1

pi log2(pi)

where s is the size of the alphabet. The entropy is 0 when all cases are in the
same state and is maximal when the same proportion of cases are in each state.
The entropy can be seen as a measure of the diversity of states observed at the
considered time point.

Let us look at our example above. At age 15, 99% of the respondents had not
leaved parental home (state 0), hence the entropy is very low (0.06). The entropy
of the state distribution rises with age and reaches its maximum at age 27. At this
age, 14% percent of the respondents had not leaved parental home, 29% had leaved
parental home but were not married and had no children (state 1), 1% had one or
more children without being married, and 28% had one or more children and were
married (state 6).

We can also plot the reported entropy measures. For that we need to access
the Entropy element of the list returned by seqstatd(). We first store the out-
come of the function in an object named sd and extract the entropy measures with
sd$Entropy. By the way, we illustrate also how we can save the graphic in a pdf
file so that it can for instance be inserted into this manual. To do this, we open
a pdf file with the pdf() function, create the graphic with the plot command and
close the pdf file with the dev.off() function. The result is shown in figure 5.4.
Of course, if you want to run this program on your system, you should adapt the
path to the ‘pdf’ file to your convenience. Users who prefer to save their graphics in
the postscript format can use postscript() instead of pdf(). There are likewise
png(), jpeg(), ... functions.

sd <- seqstatd(biofam.seq)

Entropy of biofam state distribution by age

Age

E
nt

ro
py

a15 a17 a19 a21 a23 a25 a27 a29

0.
2

0.
4

0.
6

0.
8

Entropy of biofam state distribution by age

Age

E
nt

ro
py

a15 a17 a19 a21 a23 a25 a27 a29

0.
2

0.
4

0.
6

0.
8

Figure 5.4: Entropy of state distribution by age - biofam data set

50 Ch. 5 Describing and visualizing sequences

agelab <- paste("a",seq(15,30),sep="")

pdf(file="**PATH**/fg_biofam-entropy.pdf",

width=8, height=6, pointsize=14)

plot(sd$Entropy,

main="Entropy of biofam state distribution by age",

xlab="Age", ylab="Entropy", type="h", lwd=3.5, col="blue",

axes=F, cex=1.3, frame.plot=T)

axis(1,labels=agelab, at=1:16)

axis(2, at=c(0.0,.2,.4,.6,.8))

dev.off()

If you prefer a line you just change the plot type from ‘h’ to ‘l’.

plot(sd$Entropy,

main="Entropy of biofam state distribution by age",

xlab="Age", ylab="Entropy", type="l", lwd=3.5, col="blue",

axes=F, cex=1.3, frame.plot=T)

In the previous commands, many graphical options are provided to make the plot
look nicer, e.g. customize the axis labels and change the line color and width. For
a list of available graphical options, type ?plot and ?par. However, if you are
frightened by all those options you can obtain your first, less sophisticated plot just
by typing

plot(sd$Entropy, type="b")

5.2.3 Sequence frequencies

Sequence frequency plot. The seqfplot() function plots the most frequent
sequences. Each sequence is plotted as a horizontal bar split in as many colorized
cells as there are states in the sequence. The sequences are ordered by decreasing
frequency from bottom up. By default, the 10 most frequent sequences are plotted.
However, you can select the number of most frequent sequences to plot with the
tlim option. The next command plots for instance the 10 most frequent sequences
of the actcal.seq sequence object. The resulting plot is shown in Figure 5.5. The
labels appearing in the plot’s legend are those attached to the object page 37.

37.9%

25.4%

12.5%

5.8%

0.8%

0.6%

0.4%

0.4%

0.4%

0.4%

F
re

q.
 (

n=
20

00
)

jan00 mar00 may00 jul00 sep00 nov00

> 37 hours
19−36 hours

1−18 hours
no work

Figure 5.5: Plot of the 10 most frequent sequences in the actcal data set

5.2 Describing and visualizing sequence data 51

37.9%

25.4%

12.5%

5.8%
0.8%0.6%0.4%0.4%0.4%0.4%

F
re

q.
 (

n=
20

00
)

jan00 mar00 may00 jul00 sep00 nov00

> 37 hours
19−36 hours

1−18 hours
no work

Figure 5.6: Plot of the 10 most frequent sequences in the actcal data set, with
proportional bar widths

seqfplot(actcal.seq)

With the pbarw=TRUE option the bar widths are set proportional to the sequence
frequency as shown in Figure 5.6.

seqfplot(actcal.seq, pbarw=TRUE)

The frequency plot for the biofam.seq sequence object (created from the biofam
data set) is obtained with the following commands and shown in Figure 5.7. Here
we attach the previously defined bfstates labels to the sequence object.

> data(biofam)

> biofam.seq <- seqdef(biofam,10:25, labels=bfstates)

[>] distinct states appearing in the data: 0/1/2/3/4/5/6/7

[>] alphabet: 1=0 2=1 3=2 4=3 5=4 6=5 7=6 8=7

[>] 2000 sequences in the data set

[>] min/max sequence length: 16/16

seqfplot(biofam.seq, pbarw=TRUE)

The most frequent sequence, living with parents without being in a partnership or
having children from age 15 to 30, is shared by less than 8% of the cases. This does
not mean that the most frequent case is to live with both parents until age 30. But,
because the timing of the events of family formation spreads over many years, its
variability is high and the probability of having many individuals with exactly the
same calendar, i.e. changing to the same statuses at the same age, is low.

Sequence frequency table. Instead of the plot, you may want numerical de-
tails (counts and percentage) about the most frequent sequences. The seqtab()
function returns a frequency table of the distinct sequences in the data set. Since
the number of distinct sequences can be very high, one can limit the table to the
most frequent sequences with the tlim option. The following example shows the
frequency table for the actcal.seq sequence object created from actcal the data
set about the activity calendar (the meaning of the states A, B, C, D is given in
Table 2.1 on page 18). The most frequent sequence (38%) in the data set is full time

52 Ch. 5 Describing and visualizing sequences

paid-job during all the period (January to December 2000) and appears 757 times.
The second most frequent sequence (25%) is no-paid job during all the period and
appears 508 times. Note that the sequences are displayed in the more readable SPS
format.

> seqtab(actcal.seq, tlim=10)

Freq Percent

A/12 757 37.85

D/12 508 25.40

B/12 250 12.50

C/12 115 5.75

C/9-D/3 15 0.75

A/10-B/2 12 0.60

B/10-C/2 8 0.40

B/11-A/1 8 0.40

D/11-C/1 8 0.40

D/9-C/3 8 0.40

We can ask for the sequence frequency table for months July (7) to September (9)
only

> seqtab(actcal.seq[,7:9], tlim=10)

Freq Percent

A/3 813 40.65

D/3 581 29.05

B/3 308 15.40

C/3 174 8.70

D/2-C/1 15 0.75

C/2-D/1 11 0.55

A/1-D/2 9 0.45

D/1-C/2 9 0.45

A/2-D/1 8 0.40

D/1-A/2 8 0.40

7.7%

2.2%

2%

1.5%
1.4%
1.3%
1.2%
1.1%
1.1%
1.1%

F
re

q.
 (

n=
20

00
)

a15 a17 a19 a21 a23 a25 a27 a29

N/N/N/N
Y/N/N/N
N/Y/*/N

Y/Y/N/N
N/N/Y/N
Y/N/Y/N

Y/Y/Y/N
//*/Y

Figure 5.7: Plot of the 10 most frequent sequences in the biofam data set, with
proportional bar widths

5.3 Describing and visualizing individual sequences 53

5.2.4 Transition rates

The seqtrate() function computes the transition rates between states or events.
The outcome is a matrix where each rows gives a transition distribution from as-
sociated originating state (or event) in t to the states in t + 1 (the figures sum to
one in each row). In the following example, the transition rate matrix for the actcal
(activity calendar) data set is computed. Transition rates from one state to the
same state (diagonal elements) have values close to 1, meaning that a person in a
given state at time t has a great probability to remain in the same state at time
t + 1. The ‘instability’ is a bit higher for the state C (part-time paid job from 1
to 18 hours a week), since the probability of staying in that state is 0.94, while the
‘instability’ of state A is the lowest with a probability of staying in that state of
0.99.

> seqtrate(actcal.seq)

[>] computing transition rates for states A/B/C/D ...

[-> A] [-> B] [-> C] [-> D]

[A ->] 0.986991870 0.005203252 0.001084011 0.006720867

[B ->] 0.009700665 0.970343681 0.007760532 0.012195122

[C ->] 0.005555556 0.014814815 0.934259259 0.045370370

[D ->] 0.008705580 0.006279435 0.014985015 0.970029970

Notice that the matrix is not symmetrical. The transition rate between states A and
B is 0.005 (0.5%), while the transition rate from B to A is 0.01 (1%). As claimed
above, the sum of the transition rates from one state to all other states (including
the transition rate between the state and itself) should equal 1. But we don’t trust
anybody and we want to check it. First, we store the result of the seqtrate()
function in an object named tr

> tr <- seqtrate(actcal.seq)

[>] computing transition rates for states A/B/C/D ...

> tr

[-> A] [-> B] [-> C] [-> D]

[A ->] 0.986991870 0.005203252 0.001084011 0.006720867

[B ->] 0.009700665 0.970343681 0.007760532 0.012195122

[C ->] 0.005555556 0.014814815 0.934259259 0.045370370

[D ->] 0.008705580 0.006279435 0.014985015 0.970029970

and apply the rowSums() function, which returns the sum of the rows, to this object

> rowSums(tr)

[A ->] [B ->] [C ->] [D ->]

1 1 1 1

Of course there is a shorter way that leads to the same result

> rowSums(seqtrate(actcal.seq))

[>] computing transition rates for states A/B/C/D ...

[A ->] [B ->] [C ->] [D ->]

1 1 1 1

5.3 Describing and visualizing individual sequences

5.3.1 Visualizing individual sequences

The seqiplot() function renders individual sequences with stacked bars depicting
the statuses over time in the same manner as the seqfplot. The difference is that
seqiplot does neither select nor rank the sequences according to their frequencies.
The interest of such plots, known as index-plots, has for instance been stressed by
Scherer (2001), Brzinsky-Fay et al. (2006) and Gauthier (2007). In TraMineR you

54 Ch. 5 Describing and visualizing sequences

can select the indexes of the sequences to be plotted with the tlim option, which
takes 1:10 as default value, i.e. the 10 first rows of the sequence object. Several
other options are available to fine tune the graphic. You find their description in
the reference manual or in on-line help of the function, which you get by typing
?seqiplot or help(seqiplot). In the first example below, the 10 first sequences
in the actcal.seq sequence object are plotted (Figure 5.8). The legend uses the
labels attached to the actcal.seq object and the color palette is the one set by
default.

seqiplot(actcal.seq)

S
eq

ue
nc

es
 1

−
10

jan00 mar00 may00 jul00 sep00 nov00

> 37 hours
19−36 hours

1−18 hours
no work

Figure 5.8: Plot of the 10 first sequences of the actcal data set (seqiplot())

Figure 5.9: Plot of all sequences of the actcal data set (seqiplot())

5.3 Describing and visualizing individual sequences 55

In the next example, we plot all sequences in the previously defined actcal.seq
sequence object, sorted by sex with the vsort option. The withborder=FALSE
option specifies that the borders of the bars are not plotted and the space=0 option
that the bars representing individual sequences are plotted without space between
them, yielding a more clean graphic when a large number of sequences are plotted.
The vsort option can be useful to distinguish patterns depending on a covariate
value. Here the bottom sequences correspond to men (lower value) and the upper
ones to women. We may observe that the color corresponding to partial time work
is more frequent on the top half, i.e. for the female population (Figure 5.9). This
plot of individual sequences complements the “averaged” representation provided by
the state distribution plot by rendering the diversity of the sequences.

seqiplot(actcal.seq, sortv=actcal$sex, tlim=0,

withborder=FALSE, space=0)

Remark: Outputting figures generated by seqiplot() for thousands of sequences
produces very heavy files in postscript or pdf. We suggest that you save in that
case the figures in png format by using png() instead of postscript() or pdf().
Figure 5.9, for instance, was obtained by issuing

png(file=paste(graphdir,"actcal-seqiplot-all.png",sep=""), unit="px",

width=1024, height=850, pointsize=26)

before the sequiplot() command, and dev.off() afterwards. You may get an
ides of the resulting quality degradation by comparing Figure 5.9 with for instance
Figure 5.8. This permitted, however, to reduce the size of this manual in pdf format
by about 5MB.

5.3.2 State frequencies by sequence

The seqistatd function returns for each sequence the time spent in the different
states.

> seqistatd(actcal.seq[1:10,])

[>] Computing state distribution for 10 sequences...

A B C D

[1,] 0 12 0 0

[2,] 7 0 0 5

[3,] 0 12 0 0

[4,] 0 3 9 0

[5,] 12 0 0 0

[6,] 0 11 0 1

[7,] 0 0 0 12

[8,] 12 0 0 0

[9,] 12 0 0 0

[10,] 12 0 0 0

We may be interested in the mean time spent in each state. This can be done
by means of the apply() function, with which we can “apply” the mean function to
each column of the matrix outputted by seqistatd. In the following example, we
first store the outcome of the seqistatd function in statd, and then compute the
mean of by columns (2nd dimension) with the apply function.

> statd <- seqistatd(actcal.seq)

[>] Computing state distribution for 2000 sequences...

> apply(statd,2,mean)

A B C D

5.0275 1.9745 1.1780 3.8200

We can indeed plot these mean values (Figure 5.10)

56 Ch. 5 Describing and visualizing sequences

barplot(apply(statd,2,mean), main="Mean time spent in each state",

col="lightblue")

A B C D

Mean time spent in each state

0
1

2
3

4
5

Figure 5.10: Mean time spent in each state, actcal data.

5.3.3 Extracting distinct states and durations

A sequence can be considered as an ordered list of the distinct states an individual
has passed through and their associated durations. This is the way the state-
permanence SPS format represents sequences, as shown for the actcal.seq object

> print(actcal.seq[1:10,],"SPS")

[>] STS sequences converted to 10 SPS seq./rows

SPS sequence

[1] (B,12)

[2] (D,4)-(A,7)-(D,1)

[3] (B,12)

[4] (C,9)-(B,3)

[5] (A,12)

[6] (D,1)-(B,11)

[7] (D,12)

[8] (A,12)

[9] (A,12)

[10] (A,12)

The seqdss() and seqdur() functions are provided to extract distinct states and
durations from sequences. Such separated information is required for example
for computing sequence turbulence as will be explained below in Section 5.3.7 on
page 64. In the following example we extract this separated information from the
10 first sequences of the actcal.seq object. Distinct sequences are obtained with

> seqdss(actcal.seq[1:10,])

[>] alphabet: 1=A 2=B 3=C 4=D

[>] 10 sequences in the data set

[>] min/max sequence length: 1/3

Sequence

[1] B

[2] D-A-D

[3] B

[4] C-B

[5] A

[6] D-B

[7] D

5.3 Describing and visualizing individual sequences 57

[8] A

[9] A

[10] A

and durations with

> seqdur(actcal.seq[1:10,])

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12]

[1,] 12 NA NA NA NA NA NA NA NA NA NA NA

[2,] 4 7 1 NA NA NA NA NA NA NA NA NA

[3,] 12 NA NA NA NA NA NA NA NA NA NA NA

[4,] 9 3 NA NA NA NA NA NA NA NA NA NA

[5,] 12 NA NA NA NA NA NA NA NA NA NA NA

[6,] 1 11 NA NA NA NA NA NA NA NA NA NA

[7,] 12 NA NA NA NA NA NA NA NA NA NA NA

[8,] 12 NA NA NA NA NA NA NA NA NA NA NA

[9,] 12 NA NA NA NA NA NA NA NA NA NA NA

[10,] 12 NA NA NA NA NA NA NA NA NA NA NA

Note that durations are stored in a matrix with a number of columns equal to the
maximum sequence length encountered. This is because in a sequence of length 12
for instance, there can be at most 12 possible distinct states.

5.3.4 Sequence length

The seqlength() function returns the length of the sequences in a sequence object.

> data(famform)

> famform.seq <- seqdef(famform)

[>] distinct states appearing in the data: M/MC/S/SC/U

[>] alphabet: 1=M 2=MC 3=S 4=SC 5=U

[>] 5 sequences in the data set

[>] min/max sequence length: 2/5

> famform.seq

Sequence

[1] S-U

[2] S-U-M

[3] S-U-M-MC

[4] S-U-M-MC-SC

[5] U-M-MC

> seqlength(famform.seq)

[1] [2] [3] [4] [5]

2 3 4 5 3

5.3.5 Finding sequences with a given subsequence

The seqpm() function counts the number of sequences that contain a given subse-
quence and collects their row index numbers. The function returns a list with two
elements. The first element, MTab, is just a table with the number of occurrences
of the given subsequence in the data. Note that only one occurrence is counted
per sequence, even when the sub-sequence appears more than one time in the se-
quence. The second element of the list, MIndex, gives the row index numbers of
the sequences containing the subsequence. These index numbers may be useful for
accessing the concerned sequences (example below). Since it is easier to search a
pattern in a character string, the function first translates the sequence data in this
format when using the seqconc function with the TRUE option.

In the following example, we search for the pattern ‘DAAD’ (see Table 2.1
page 18 for the meaning of the states) into the activity calendar sequence data
object.

58 Ch. 5 Describing and visualizing sequences

> seqpm(actcal.seq,"DAAD")

[>] pattern DAAD has been found in 4 sequences

$MTab

pattern nbocc

1 DAAD 4

$MIndex

[1] 964 967 1197 1797

Four sequences contain the pattern. If we want to look at the sequences containing
the ‘DAAD’ subsequence, we use the ‘$MIndex’ element of the list returned by the
seqpm() function. We first store the result of the function in an object named daad
and then access the sequences containing the pattern using daad$MIndex as row
index for the actcal.seq sequence object (since we want all the columns we leave
the column index empty).

> daad <- seqpm(actcal.seq,"DAAD")

[>] pattern DAAD has been found in 4 sequences

> actcal.seq[daad$MIndex,]

Sequence

[1] D-A-A-D-D-D-D-D-D-A-A-A

[2] D-D-A-A-D-D-A-A-A-A-A-A

[3] D-D-B-B-C-D-D-A-A-D-C-C

[4] D-D-D-D-A-A-D-A-B-B-D-D

5.3.6 Within sequence entropy

In order to measure the diversity of the states in a given sequence, TraMineR offers
two functions: The first one measures the entropy of the sequence and the second
one, which is discussed later in Section 5.3.7, is the Turbulence.

TraMineR provides the function seqient() that returns the Shannon entropy
of each sequence in the data. The entropy of a sequence is computed using the
formula

h(π1, . . . , πs) = −
s∑

i=1

πi log2 πi

where s is the size of the alphabet and πi the proportion of occurrences of the ith
state in the considered sequence. The entropy can be interpreted as the ‘uncertainty’
of predicting the states in a given sequence. If all states in the sequence are the
same, the entropy is equal to 0. The maximum entropy for a sequence of length 12
with an alphabet of 4 states is 1.386294 and is attained when each of the four states
appears 3 times.

The seqient() function returns a vector containing the entropy for each se-
quence of the provided sequence object. By default, sequient() normalizes the
entropy by dividing the value of h(π1, . . . , πs) by the entropy of the alphabet. The
latter is indeed an upper bound of the entropy that corresponds to the maximal
possible entropy when the sequence length is a multiple of the alphabet size. The
normalized entropy has a maximal value of 1. Unstandardized entropies can be
obtained with the norm=F option. In the example below, the normalized entropies
for the 10 first sequences of the actcal.seq object are computed. As expected,
the entropy for the first sequence is 0, since it belongs to an individual who worked
full-time during all the period. The entropy is higher for sequence number 2, which
describes an individual who changed many times his activity status

> seqient(actcal.seq[1:10,])

[>] computing within sequence entropy for 10 sequences...

Entropy

[1] 0.0000000

5.3 Describing and visualizing individual sequences 59

[2] 0.4899344

[3] 0.0000000

[4] 0.4056391

[5] 0.0000000

[6] 0.2069084

[7] 0.0000000

[8] 0.0000000

[9] 0.0000000

[10] 0.0000000

Note that this entropy measure does not account for the ordering of the states in
the sequence. To demonstrate this, we construct a small data set containing three
sequences with the same states ordered differently. We first construct one vector for
each sequence, and aggregate them with the rbind() function, obtaining a matrix
that we then convert into a sequence object.

> s1 <- c("A","A","A","B","B","B","C","C","C","D","D","D")

> s2 <- c("A","D","A","B","C","B","C","B","C","D","A","D")

> s3 <- c("A","B","A","B","A","B","C","D","C","D","C","D")

> ex1 <- rbind(s1,s2,s3)

> ex1

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12]

s1 "A" "A" "A" "B" "B" "B" "C" "C" "C" "D" "D" "D"

s2 "A" "D" "A" "B" "C" "B" "C" "B" "C" "D" "A" "D"

s3 "A" "B" "A" "B" "A" "B" "C" "D" "C" "D" "C" "D"

> ex1 <- seqdef(ex1)

[>] distinct states appearing in the data: A/B/C/D

[>] alphabet: 1=A 2=B 3=C 4=D

[>] 3 sequences in the data set

[>] min/max sequence length: 12/12

Now that the sequence object is created we display its content.

> ex1

Sequence

[1] A-A-A-B-B-B-C-C-C-D-D-D

[2] A-D-A-B-C-B-C-B-C-D-A-D

[3] A-B-A-B-A-B-C-D-C-D-C-D

We check that the three sequences in the ex1 object contain the same number of
A,B,C and D states. This is done with the seqistatd() function

> seqistatd(ex1)

[>] Computing state distribution for 3 sequences...

A B C D

[1,] 3 3 3 3

[2,] 3 3 3 3

[3,] 3 3 3 3

Now we are able to verify that the entropy is the same for all sequences. As shown
by the results of the seqient() function, our claim is true. The normalized entropy
equals the maximum theoretical entropy, i.e. the entropy of a sequence with all
states equally frequent. Unlike the entropy, Elzinga (2006)’s turbulence measure,
which you may also get with TraMineR (see Section 5.3.7), takes account of the
state ordering.

> seqient(ex1)

[>] computing within sequence entropy for 3 sequences...

Entropy

[1] 1

[2] 1

[3] 1

60 Ch. 5 Describing and visualizing sequences

The entropy without normalization is computed using the norm=FALSE option

> seqient(ex1,norm=FALSE)

[>] computing within sequence entropy for 3 sequences...

Entropy

[1] 1.386294

[2] 1.386294

[3] 1.386294

Now we are very impatient to plot an histogram of the within entropy of the
sequences in the actcal data set. We first store the results of the seqient() function
in an object named actcal.ient and plot it using the hist() function. By the
way, we produce some summary statistics using the summary() function and learn
that the mean and the maximum normalized entropy are respectively 0.07484 and
0.97957.

> actcal.ient <- seqient(actcal.seq)

[>] computing within sequence entropy for 2000 sequences...

> summary(actcal.ient)

Entropy

Min. :0.00000

1st Qu.:0.00000

Median :0.00000

Mean :0.07484

3rd Qu.:0.00000

Max. :0.97957

> hist(actcal.ient,col="cyan",

+ main="Entropy for the sequences in the actcal data set",

+ xlab="Entropy")

The histogram can be seen in Figure 5.11. To obtain this figure, we could have
spare time by typing only one single command

> hist(seqient(actcal.seq),col="cyan",

+ main="Entropy for the sequences in the actcal data set",

+ xlab="Entropy")

[>] computing within sequence entropy for 2000 sequences...

Now we would like to know what the maximum value of the within sequence entropy
is and look at the sequence(s) reaching this maximum value. The max() function
returns the maximum of the actcal.ient vector of within sequence entropies. The
which() function is used to locate the row index number(s) of the sequences that
reach this maximum entropy. It is here the row number 1836, which is labeled 5587
in our data set.

> max(actcal.ient)

[1] 0.979574

> which(actcal.ient==max(actcal.ient))

[1] 1836

> actcal.seq[1836,]

Sequence

[1] A-B-B-C-D-D-D-D-C-C-A-A

The same result can be obtained more simply but also more mysteriously with a
single command. Below we display the rows of the actcal data frame which contain
more information than the sole sequences of the actcal.seq object, and we can see
that this is a woman aged 37, having two children aged 14 and 10.

> actcal[actcal.ient==max(actcal.ient),]

idhous00 age00 educat00 civsta00 nbadul00 nbkid00 aoldki00 ayouki00

5587 116151 37 apprenticeship married 2 2 14 10

5.3 Describing and visualizing individual sequences 61

Entropy for the sequences in the actcal data set

Entropy

F
re

qu
en

cy

0.0 0.2 0.4 0.6 0.8 1.0

0
50

0
10

00
15

00

Figure 5.11: Within sequence entropies - Activity calendar

region00 com2.00 sex

5587 Lake Geneva (VD, VS, GE) Industrial and tertiary sector communes woman

birthy jan00 feb00 mar00 apr00 may00 jun00 jul00 aug00 sep00 oct00 nov00

5587 1963 A B B C D D D D C C A

dec00

5587 A

The distribution of the within sequence entropies looks quite different for the
biofam data set as shown in Figure 5.12 obtained with the following command

> biofam.ient <- seqient(biofam.seq)

[>] computing within sequence entropy for 2000 sequences...

[=] entropy computed for 2000 sequences

> hist(biofam.ient,col="cyan",

xlab="Entropy",

main="Entropy for the sequences in the biofam data set")

We would like to compare the values of the entropies conditioned on the value of a
covariate. In order to do this, we first add a column with the sequence entropies to
the biofam data frame.

> biofam <- data.frame(biofam, seqient(biofam.seq))

[>] computing within sequence entropy for 2000 sequences...

We can check that the biofam data frame contains one more variable called Entropy
and summarize the distribution of the Entropy variable.

> names(biofam)

[1] "idhous" "sex" "birthyr" "nat_1_02" "plingu02" "p02r01"

[7] "p02r04" "cspfaj" "cspmoj" "a15" "a16" "a17"

[13] "a18" "a19" "a20" "a21" "a22" "a23"

[19] "a24" "a25" "a26" "a27" "a28" "a29"

62 Ch. 5 Describing and visualizing sequences

Entropy for the sequences in the biofam data set

Entropy

F
re

qu
en

cy

0.0 0.5 1.0 1.5

0
10

0
20

0
30

0
40

0
50

0
60

0

Figure 5.12: Within sequence entropies - biofam data set

[25] "a30" "Entropy"

> summary(biofam$Entropy)

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.0000 0.2987 0.3333 0.3548 0.4729 0.7028

Let us have a look at the sequences near the minimum, median and maximum
entropy. For that, we draw sets of sequences having an entropy lower or equal to
the 1st percentile, an entropy near the median, and an entropy greater than the
99th percentile. We first store the percentiles in the variables q1, q49, q51, q99 for
later usage.

> q1 <- quantile(biofam$Entropy,0.01)

> q49 <- quantile(biofam$Entropy,0.49)

> q51 <- quantile(biofam$Entropy,0.51)

> q99 <- quantile(biofam$Entropy,0.99)

Below, we extract three sets of sequences using the percentile values.

> ient.min <- biofam.seq[biofam$Entropy<=q1,]

> ient.med <- biofam.seq[biofam$Entropy>=q49 & biofam$Entropy<=q51,]

> ient.max <- biofam.seq[biofam$Entropy>=q99,]

Finally, we plot the three sets of sequences separately. We combine the three plots
in a single graph, using the par() function. Recall that the seqiplot() function
plots by default only the 10 first sequences, but this is enough. The result is shown
in Figure 5.13. It confirms that the more there are different states in the sequence,
the higher the entropy.

par(mfrow=c(2,2))

seqiplot(ient.min,

title="10 seq. with low entropy",

withlegend=FALSE)

5.3 Describing and visualizing individual sequences 63

10 seq. with low entropy
S

eq
ue

nc
es

 1
−

10

a15 a17 a19 a21 a23 a25 a27 a29

10 seq. with medium entropy

S
eq

ue
nc

es
 1

−
10

a15 a17 a19 a21 a23 a25 a27 a29

10 seq. with high entropy

S
eq

ue
nc

es
 1

−
10

a15 a17 a19 a21 a23 a25 a27 a29

N/N/N/N
Y/N/N/N
N/Y/*/N
Y/Y/N/N
N/N/Y/N
Y/N/Y/N
Y/Y/Y/N
//*/Y

Figure 5.13: Low, median and high sequence entropies - biofam data set

seqiplot(ient.med,

title="10 seq. with medium entropy",

withlegend=FALSE)

seqiplot(ient.max,

title="10 seq. with high entropy",

withlegend=FALSE)

seqlegend(biofam.seq)

We may want to plot the distribution of the entropy by birth cohorts. It does not
make sense to use the individual birth years as there are too many different values.
Thus, we want to first group the birth years into ten year classes. To do this, we
first look at the distribution of the birth years using the tab() function. Then, by
means of the cut() function, we add the new ageg cohort variable to the biofam
data set. The cut() function takes three arguments: The name of the variable from
which to create classes of values, the bins for creating the classes, and optionally
labels of the classes. The include.lowest=TRUE option tells the function that the
lowest value (1909) should be included in the first group.

> table(biofam$birthyr)

1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924
1 1 2 2 3 2 4 5 6 9 16 5 11 16 20 25

1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940

64 Ch. 5 Describing and visualizing sequences

26 24 19 32 31 44 43 36 53 39 38 45 55 65 48 47
1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956

56 57 69 51 73 72 70 77 60 73 73 74 94 83 92 73
1957

80
> biofam <- data.frame(biofam,

ageg=cut(biofam$birthy,c(1909,1918,1928,1938,1948,1958),
label=c("1909-18","1919-28","1929-38","1939-48","1949-58"),include.lowest=TRUE))

> table(biofam$ageg)

1909-18 1919-28 1929-38 1939-48 1949-58
35 194 449 620 702

Now we are ready to plot the entropy by ten year age cohorts. We choose the
boxplot() command. The result is shown in Figure 5.14. The Entropy ∼ ageg
part of the command is a formula syntax widely used in R. Here it means ‘plot the
entropy by age group’.

boxplot(Entropy ~ ageg,

data=biofam,

xlab="Birth cohort",

ylab="Sequences entropy",

col="cyan")

●

●

●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

1909−18 1919−28 1929−38 1939−48 1949−58

0.
0

0.
5

1.
0

1.
5

Birth cohort

S
eq

ue
nc

es
 e

nt
ro

py

Figure 5.14: Boxplot of the within sequence entropies by birth cohort - biofam data
set

The mean and median entropy are rising in the more recent birth cohorts. Figure
(5.14) shows that the entropy is also sligthly higher in the women family formation
history when compared to that of the men.

5.3.7 Sequence turbulence

Sequence turbulence is a measure proposed by Elzinga (Elzinga and Liefbroer, 2007;
Elzinga, 2006). It is based on the number φ(x) of distinct subsequences that can

5.3 Describing and visualizing individual sequences 65

●●●

masculin

0.
0

0.
5

1.
0

1.
5

Sex

S
eq

ue
nc

es
 tu

rb
ul

en
ce

Figure 5.15: Boxplot of the within sequence entropies by sex - biofam data set

be extracted from the distinct state sequence and the variance of the consecutive
times ti spent in the distinct states. For a sequence x, the formula is

T (x) = log2(φ(x)
s2t,max(x) + 1
st(x) + 1

)

where st is the variance of the state-duration for the x sequence and st,max is the
maximum value that this variance can take given the total duration of the sequence.
This maximum is computed as follow

st,max = (n− 1)(1− t̄)

where t̄ is the mean consecutive time spent in the distinct states, i.e. the sequence
duration divided by the number of distinct states in the sequence. As defined by
Elzinga, the measure assumes a data set in the sequence-permanence SPS format.
The number of distinct subsequences considered is that of the distinct state se-
quences, i.e. the sequence obtained by considering only one of several same consec-
utive states. In the example below, the x sequence comes from the actcal dataset and
contains 12 elements corresponding to the successive work statuses from January
to December 2000. The same sequence formatted in the ‘distinct-successive-state’
(DSS) format exhibits only 3 elements, as shown by the output of the seqdss()
function.

> data(actcal)

> actcal.seq <- seqdef(actcal,13:24)

[>] distinct states appearing in the data: A/B/C/D

[>] alphabet: 1=A 2=B 3=C 4=D

[>] 2000 sequences in the data set

[>] min/max sequence length: 12/12

> actcal.seq[2,]

Sequence

66 Ch. 5 Describing and visualizing sequences

[1] D-D-D-D-A-A-A-A-A-A-A-D

> seqdss(actcal.seq[2,])

[>] 1 sequences in the data set

[>] min/max sequence length: 3/3

Sequence

[1] D-A-D

We can compute the number of distinct subsequences with the seqsubsn() function.
With the DSS=FALSE option, the returned result is 76. With the default DSS=TRUE
option, the computation is made on the sequence of distinct successive states only
(‘D-A-D’) returning 7 as the number of distinct subsequences.

> seqsubsn(actcal.seq[2,],DSS=FALSE)

[1] 76

> seqsubsn(actcal.seq[2,],DSS=TRUE)

[1] 7

The seqST() function returns the sequence Elzinga’s turbulence measure for each
sequence of the provided sequence object. We begin with a small example taken
from Aassve et al. (2007). The original sequences are defined in SPS format by
couples of two character strings3. Hence we give the informat=’SPS’ option to the
seqdef() function for creating the sequence object.

> sp.ex1

[,1]

[1,] "(000,12)-(0W0,9)-(0WU,5)-(1WU,2)"

[2,] "(000,12)-(0W0,14)-(1WU,2)"

> sp.ex1 <- seqdef(sp.ex1,informat="SPS")

[>] SPS data converted into 2 STS sequences

[>] distinct states appearing in the data: 000/0W0/0WU/1WU

[>] alphabet: 1=000 2=0W0 3=0WU 4=1WU

[>] 2 sequences in the data set

[>] min/max sequence length: 28/28

Now sp.ex1 is a sequence object. Its content is displayed below in STS format.

> sp.ex1

Sequence

[1] 000-000-000-000-000-000-000-000-000-000-000-000-0W0-0W0-0W0-0W0-0W0-

0W0-0W0-0W0-0W0-0WU-0WU-0WU-0WU-0WU-1WU-1WU

[2] 000-000-000-000-000-000-000-000-000-000-000-000-0W0-0W0-0W0-0W0-0W0-

0W0-0W0-0W0-0W0-0W0-0W0-0W0-0W0-0W0-1WU-1WU

We use the seqST() function to compute the turbulence

> seqST(sp.ex1)

[>] extracting symbols and durations

[>] distinct states appearing in the data: 000/0W0/0WU/1WU

[>] alphabet: 1=000 2=0W0 3=0WU 4=1WU

[>] 2 sequences in the data set

[>] min/max sequence length: 3/4

[>] Computing turbulence for 2 sequences, please wait...

Turbulence

[1] 6.813988

[2] 5.292438

Let us now compute the turbulence of the sequences in the biofam data set. As
for the entropy, we add a new Turbulence variable with the values of the turbulences
to the data frame. Note how this time pass the output of the seqdef() function
‘on the fly’ to the seqST() function.

3see 5.2.1 for the syntax used to create the sp.ex1 data set

5.3 Describing and visualizing individual sequences 67

> biofam <- data.frame(biofam, seqST(biofam.seq))

[>] extracting symbols and durations

[>] distinct states appearing in the data: 0/1/2/3/4/5/6/7

[>] alphabet: 1=0 2=1 3=2 4=3 5=4 6=5 7=6 8=7

[>] 2000 sequences in the data set

[>] min/max sequence length: 1/5

[>] Computing turbulence for 2000 sequences, please wait...

To get a first idea of the turbulence distribution we summarize the created variable
with the summary() function. The mean turbulence is 4.8, with a minimum of 1
and a maximum of 8.807.

> summary(biofam$Turbulence)

Min. 1st Qu. Median Mean 3rd Qu. Max.

1.000 3.691 5.064 4.800 6.222 8.807

We get an histogram for the turbulence of the sequences with the command below,
yielding Figure 5.16. Let us mention that the user who does not like the ‘cyan’
color used in the graphic can indeed use any other color from the list returned by
the colors() function.

hist(biofam$Turbulence,

col="cyan",

xlab="Turbulence",

main="Turbulences for the sequences in the biofam data set")

Turbulences for the sequences in the biofam data set

Turbulence

F
re

qu
en

cy

2 4 6 8

0
10

0
20

0
30

0

Figure 5.16: Histogram of the sequence turbulences - biofam data set

The distribution of the turbulences resembles that of the entropy (see Figure 5.12
on page 62). With the following command we look for the most turbulent sequence.

> max.turb <- max(biofam$Turbulence)

> subset(biofam, Turbulence==max.turb)

idhous sex birthyr nat_1_02 plingu02 p02r01

68 Ch. 5 Describing and visualizing sequences

1098 61871 woman 1953 Switzerland german Protestant or Reformed Church

p02r04 cspfaj cspmoj a15 a16 a17 a18 a19 a20

1098 a few times a year other self-employed <NA> 0 0 0 0 1 1

a21 a22 a23 a24 a25 a26 a27 a28 a29 a30 Turbulence

1098 1 1 3 3 3 3 6 6 6 6 8.807355

Note the use of the subset() function in the previous command instead of the
equivalent command

biofam[biofam$Turbulence==max.turb,]

The sequence with maximum turbulence is not the same as that with maximum
entropy (c.f. Section 5.3.6). It contains four subsequences of equal length. This is
best shown using the SPS format.

> max.seq <- which(biofam$Turbulence==max.turb)

> print(biofam.seq[max.seq,],format=’SPS’)

[>] STS sequences converted to 1 SPS seq./rows

SPS sequence

[1] (0,4)-(1,4)-(3,4)-(6,4)

Nonetheless, the correlation between entropy and turbulence measures is reasonably
high, wheter we consider the Pearson correlation4 or the Spearman rank correlation.

> cor(biofam$Turbulence,biofam$Entropy)

[1] 0.8078864

> cor(biofam$Turbulence,biofam$Entropy, method=’spearman’)

[1] 0.731871

Figure 5.17 is obtained with the following command and shows the relationship
between the two measures.

plot(biofam$Turbulence,biofam$Entropy,

main="Turbulence vs. Entropy",

xlab="Turbulence",

ylab="Entropy")

As previously done with the entropy, we would like to have a look at some
sequences having low, medium and high turbulence. This is achieved by first storing
the values for the 1, 49, 51 and 99 percentiles

q1 <- quantile(biofam$Turbulence,0.01)

q49 <- quantile(biofam$Turbulence,0.49)

q51 <- quantile(biofam$Turbulence,0.51)

q99 <- quantile(biofam$Turbulence,0.99)

and creating three sequence objects containing sequences selected according to their
turbulence level

turb.min <- biofam.seq[biofam$Turbulence<=q1,]

turb.med <- biofam.seq[biofam$Turbulence>=q49 & biofam$Turbulence<=q51,]

turb.max <- biofam.seq[biofam$Turbulence>=q99,]

and next by plotting the first 10 sequences in each of the three object and a legend
for the states. The plot is shown in figure 5.18

par(mfrow=c(2,2))

seqiplot(turb.min,

title="10 seq. with low turbulence",

withlegend=FALSE)

4The ‘pearson’ method is the default for the cor() function, hence it is not necessary to specify
it as an option

5.3 Describing and visualizing individual sequences 69

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●

●

●

●

●

●

●
●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●●●

●

●●

●

●

●

●

●

●

●
●

●

●
●

●●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●
●

●

●●●
●●

●

●

●
●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●
● ●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●
●

●

●

●●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●●●

●

●

●

●

●
●

●

●

●●

●

●

●●
●

●

●

●

●
●●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

2 4 6 8

0.
0

0.
5

1.
0

1.
5

Turbulence vs. entropy

Turbulence

E
nt

ro
py

Figure 5.17: Correlation between within sequence turbulence and entropy - biofam
data set

seqiplot(turb.med,

title="10 seq. with medium turbulence",

withlegend=FALSE)

seqiplot(turb.max,

title="10 seq. with high turbulence",

withlegend=FALSE)

seqlegend(biofam.seq)

70 Ch. 5 Describing and visualizing sequences

10 seq. with low turbulence

S
eq

ue
nc

es
 1

−
10

a15 a17 a19 a21 a23 a25 a27 a29

10 seq. with medium turbulence

S
eq

ue
nc

es
 1

−
10

a15 a17 a19 a21 a23 a25 a27 a29

10 seq. with high turbulence

S
eq

ue
nc

es
 1

−
10

a15 a17 a19 a21 a23 a25 a27 a29

N/N/N/N
Y/N/N/N
N/Y/*/N
Y/Y/N/N
N/N/Y/N
Y/N/Y/N
Y/Y/Y/N
//*/Y

Figure 5.18: Low, median and high sequence turbulences - biofam data set

Chapter 6

Measuring similarities and
distances between sequences

This chapter presents the measures of similarity and distance between sequences
available in the TraMineR package. The seqdist() function is the main tool pro-
vided by the TraMineR package to compute distances between sequences. It can
compute the distance matrix, i.e. the distances between all pairs of sequences in the
data set, or the distance to a reference sequence, for example to the most frequent
sequence. The following metrics are available with seqdist:

• the Longest Common Prefix (LCP)

• the Longest Common Subsequence (LCS)

• the Optimal Matching distances (OM)

These metrics and the use of the seqdist() are described in the following sections.

6.1 Number of matching positions

The number of matching positions is a simple similarity measure. We get it for a
given couple of sequences with the function seqmpos() as illustrated below with the
famform data included in TraMineR.

> data(famform)

> famform.seq <- seqdef(famform)

[>] distinct states appearing in the data: M/MC/S/SC/U

[>] alphabet: 1=M 2=MC 3=S 4=SC 5=U

[>] 5 sequences in the data set

[>] min/max sequence length: 2/5

> famform.seq

Sequence

[1] S-U

[2] S-U-M

[3] S-U-M-MC

[4] S-U-M-MC-SC

[5] U-M-MC

>

> seqmpos(famform.seq[1,],famform.seq[2,])

[1] 2

> seqmpos(famform.seq[2,],famform.seq[4,])

[1] 3

71

72 Ch. 6 Measuring similarities and distances between sequences

6.2 Longest Common Prefix (LCP) distances

The length of the longest common prefix, LCP, is a simple similarity measure mea-
sure proposed by Elzinga (2008). The seqLCP() function returns the value of this
LCP measure for a given couple of sequences. Let us take an example with the
famform data set. As usual, we first load the data and create a sequence object
from it.

> data(famform)

> famform.seq <- seqdef(famform)

[>] distinct states appearing in the data: M/MC/S/SC/U

[>] alphabet: 1=M 2=MC 3=S 4=SC 5=U

[>] 5 sequences in the data set

[>] min/max sequence length: 2/5

> famform.seq

Sequence

[1] S-U

[2] S-U-M

[3] S-U-M-MC

[4] S-U-M-MC-SC

[5] U-M-MC

Now we compute the LCP for some of the sequences

> seqLCP(famform.seq[1,],famform.seq[2,])

[1] 2

> seqLCP(famform.seq[3,],famform.seq[4,])

[1] 4

> seqLCP(famform.seq[3,],famform.seq[5,])

[1] 0

The LCP for sequences 1 and 2 is 2, it is 4 for sequences 3 and 4 and 0 for sequences
3 and 5. Based on the LCP, Elzinga proposes as first measure of distance between
sequences x and y

dp(x, y) = |x|+ |y| − 2Ap(x, y)|
where Ap(x, y) is the LCP between sequences x and y. The LCP distances can
be computed with the seqdist() function by specifying the method=’LCP’ option.
The following example reproduces the results shown in the lower part of the matrix
in Table 4 in Elzinga (2008):

> seqdist(famform.seq,method="LCP")

[>] 5 sequences with 5 distinct events/states (M/MC/S/SC/U)

[>] 5 distinct sequences

[>] min/max sequence length: 2/5

[>] computing distances using LCP metric ... (0 minutes)

[>] creating distance matrix ... (0 minutes)

[,1] [,2] [,3] [,4] [,5]

[1,] 0 1 2 3 5

[2,] 1 0 1 2 6

[3,] 2 1 0 1 7

[4,] 3 2 1 0 8

[5,] 5 6 7 8 0

Elzinga suggests also a normalized LCP-metric that is insensitive to the length of
the sequences, namely

Dp(x, y) = 1− Sp(x, y)

with

Sp(x, y) =
Ap(x, y)√
| x | · | y |

This normalized metric is obtained with the option norm=TRUE

6.3 Longest Common Subsequence (LCS) distances 73

> seqdist(famform.seq,method="LCP",norm=TRUE)

[>] 5 sequences with 5 distinct events/states (M/MC/S/SC/U)

[>] 5 distinct sequences

[>] min/max sequence length: 2/5

[>] computing distances using LCP normalized metric ... (0 minutes)

[>] creating distance matrix ... (0 minutes)

[,1] [,2] [,3] [,4] [,5]

[1,] 0.0000000 0.1835034 0.2928932 0.3675445 1

[2,] 0.1835034 0.0000000 0.1339746 0.2254033 1

[3,] 0.2928932 0.1339746 0.0000000 0.1055728 1

[4,] 0.3675445 0.2254033 0.1055728 0.0000000 1

[5,] 1.0000000 1.0000000 1.0000000 1.0000000 0

Those who prefer similarity measures can easily get them by taking the complement
to one of the normalized distance values.

Sp(x, y) = 1−Dp(x, y)

> 1-seqdist(famform.seq,method="LCP",norm=TRUE)

[>] 5 sequences with 5 distinct events/states (M/MC/S/SC/U)

[>] 5 distinct sequences

[>] min/max sequence length: 2/5

[>] computing distances using LCP normalized metric ... (0 minutes)

[>] creating distance matrix ... (0 minutes)

[,1] [,2] [,3] [,4] [,5]

[1,] 1.0000000 0.8164966 0.7071068 0.6324555 0

[2,] 0.8164966 1.0000000 0.8660254 0.7745967 0

[3,] 0.7071068 0.8660254 1.0000000 0.8944272 0

[4,] 0.6324555 0.7745967 0.8944272 1.0000000 0

[5,] 0.0000000 0.0000000 0.0000000 0.0000000 1

One can check that these values are equal to those in the upper triangle of the
matrix in Table 4 of Elzinga (2008).

6.3 Longest Common Subsequence (LCS) distances

The Longest Common Subsequence, LCS, based distance is another metric of Elzinga
(2008) available through the seqdist() function. In the following example, we com-
pute the LCS distances 1 for the biofam.seq sequence object previously created from
the biofam data frame

> biofam.lcs <- seqdist(biofam.seq,method="LCS")

[>] 2000 sequences with 8 distinct events/states (0/1/2/3/4/5/6/7)

[>] 537 distinct sequences

[>] min/max sequence length: 16/16

[>] computing distances using LCS metric ... (0.11 minutes)

[>] creating distance matrix ... (0.01 minutes)

and print the distance matrix for the first 10 sequences

> biofam.lcs[1:10,1:10]

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]

[1,] 0 20 10 22 16 14 14 14 4 20

[2,] 20 0 12 10 8 30 30 14 22 6

[3,] 10 12 0 12 6 18 18 4 12 16

[4,] 22 10 12 0 6 22 22 12 22 14

[5,] 16 8 6 6 0 22 22 8 16 10

1Recall that you can get normalized distances with the norm=TRUE option.

74 Ch. 6 Measuring similarities and distances between sequences

[6,] 14 30 18 22 22 0 14 20 10 32

[7,] 14 30 18 22 22 14 0 20 14 32

[8,] 14 14 4 12 8 20 20 0 16 18

[9,] 4 22 12 22 16 10 14 16 0 22

[10,] 20 6 16 14 10 32 32 18 22 0

6.4 Optimal matching (OM) distances

Optimal matching generates edit distances that are the minimal cost, in terms of
insertions, deletions and substitutions, for transforming one sequence into another.
This edit distance has first been proposed by Levenshtein (1966) and has been
popularized in the social sciences by Abbott (Abbott and Forrest, 1986; Abbott,
2001). The algorithm implemented in TraMineR is that of Needleman and Wunsch
(1970).

The seqdist() function with method="OM" generates the optimal matching dis-
tances. In that case additional required arguments are:

• an insertion/deletion (indel) cost

• a substitution-cost matrix, giving the cost for substituting each state/event
with another.

Insertion/deletion cost. The indel cost is a single value specified by the user.

Substitution-cost matrix. The substitution-cost matrix is a squared matrix of
dimension ns × ns, where ns is the number of distinct states in the data (the
alphabet). The element (i, j) in the matrix is the cost of substituting state i with
state j. Several methods exist to generate the substitution-cost matrix:

• Assigning a constant value, in which case all substitution costs are set equal
to this constant (option method="CONSTANT").

• Using the transition rates between states observed in the sequence data (option
method="TRATE").

The transition rate between state i and state j is the probability of observing state
j at time t + 1 given that the state i has been observed at time t. For i 6= j, the
substitution cost is equal to

2− p(i | j)− p(j | i)

where p(i | j) is the transition rate between state i and state j. The transition rates
can be obtained by the function seqtrate().

The seqsubm() function returns a substitution-cost matrix generated with one
of the above two methods. With the method="CONSTANT" option you provide the
constant as cval argument while this argument is ignored with the method="TRATE"
option. An example with a constant substitution cost is given on page 75. In the
example below, the substitution-cost matrix is generated using the transition rates
in the data.

> couts <- seqsubm(biofam.seq,method="TRATE")

[>] creating substitution-cost matrix using transition rates ...

[>] computing transition rates for states 0/1/2/3/4/5/6/7 ...

> couts

0 1 2 3 4 5 6 7

0 0.000000 1.945416 1.984656 1.968180 1.999623 1.998931 1.988869 2.000000

6.4 Optimal matching (OM) distances 75

1 1.945416 0.000000 2.000000 1.916578 2.000000 1.996078 1.977362 1.999822

2 1.984656 2.000000 0.000000 1.989674 1.875000 2.000000 1.988880 1.990469

3 1.968180 1.916578 1.989674 0.000000 2.000000 2.000000 1.800558 1.986402

4 1.999623 2.000000 1.875000 2.000000 0.000000 1.937500 2.000000 2.000000

5 1.998931 1.996078 2.000000 2.000000 1.937500 0.000000 1.881944 2.000000

6 1.988869 1.977362 1.988880 1.800558 2.000000 1.881944 0.000000 1.993932

7 2.000000 1.999822 1.990469 1.986402 2.000000 2.000000 1.993932 0.000000

The alphabet is composed of 8 distinct states, so the substitution-cost matrix has
dimension 8× 8. We can check with the range() function that the minimum cost
is 0, for a substitution of one state by itself, and the maximum is 2, meaning that
the transition never occurs in the data set.

> range(couts)

[1] 0 2

Generating optimal matching distances. Optimal matching distances are
generated with the seqdist() function by specifying the ‘method="OM"’ option,
an insertion/deletion cost and a substitution cost matrix. In the following exam-
ple, we use the substitution cost matrix previously computed with the seqsubm()
command

> biofam.om <- seqdist(biofam.seq, method="OM", indel=3, sm=couts)

[>] 2000 sequences with 8 distinct events/states (0/1/2/3/4/5/6/7)

[>] 537 distinct sequences

[>] min/max sequence length: 16/16

[>] computing distances using OM metric ... (0.13 minutes)

[>] creating distance matrix ... (0.01 minutes)

The computer needed 0.13 minutes, i.e. 8 seconds to create the distance matrix of
size 2000× 2000. The necessary size to store the matrix is roughly 30 Mb2.

> object.size(biofam.om)/1024^2

[1] 30.51768

Here is the extract of the distance matrix for the 10 first sequences in the data set.
We use the round() function to get a more readable output

> round(biofam.om[1:10,1:10],1)

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]

[1,] 0.0 21.3 11.6 21.6 15.6 13.9 13.9 15.1 4.0 19.3

[2,] 21.3 0.0 15.4 17.6 11.7 29.4 29.5 13.3 21.3 7.7

[3,] 11.6 15.4 0.0 11.7 5.8 17.7 17.8 5.7 11.6 21.4

[4,] 21.6 17.6 11.7 0.0 5.9 21.4 21.8 11.6 21.6 23.6

[5,] 15.6 11.7 5.8 5.9 0.0 21.5 21.7 7.6 15.6 17.6

[6,] 13.9 29.4 17.7 21.4 21.5 0.0 13.9 19.6 9.9 31.4

[7,] 13.9 29.5 17.8 21.8 21.7 13.9 0.0 19.8 13.9 31.4

[8,] 15.1 13.3 5.7 11.6 7.6 19.6 19.8 0.0 15.1 21.0

[9,] 4.0 21.3 11.6 21.6 15.6 9.9 13.9 15.1 0.0 21.5

[10,] 19.3 7.7 21.4 23.6 17.6 31.4 31.4 21.0 21.5 0.0

LCS distance as a special case of OM distance. According to Elzinga (2008),
the LCS distance is equal to the Optimal Matching distance computed with an indel
cost of 1 and a constant substitution cost of 2. Let us verify it with the biofam data.
We begin by creating the substitution matrix with a constant cost of 2, using the
seqsubm() function with the method="CONSTANT" option

2The result of the object.size() function is in bytes, it is translated into megabytes by dividing
it by 10242

76 Ch. 6 Measuring similarities and distances between sequences

> ccouts <- seqsubm(biofam.seq, method="CONSTANT", cval=2)

[>] creating 8 x 8 substitution-cost matrix using 2 as constant value

> ccouts

0 1 2 3 4 5 6 7

0 0 2 2 2 2 2 2 2

1 2 0 2 2 2 2 2 2

2 2 2 0 2 2 2 2 2

3 2 2 2 0 2 2 2 2

4 2 2 2 2 0 2 2 2

5 2 2 2 2 2 0 2 2

6 2 2 2 2 2 2 0 2

7 2 2 2 2 2 2 2 0

and compute the OM distances

> biofam.om2 <- seqdist(biofam.seq,method="OM",indel=1,sm=ccouts)

[>] 2000 sequences with 8 distinct events/states (0/1/2/3/4/5/6/7)

[>] 537 distinct sequences

[>] min/max sequence length: 16/16

[>] computing distances using OM metric ... (0.1 minutes)

[>] creating distance matrix ... (0.01 minutes)

> biofam.om2[1:10,1:10]

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]

[1,] 0 20 10 22 16 14 14 14 4 20

[2,] 20 0 12 10 8 30 30 14 22 6

[3,] 10 12 0 12 6 18 18 4 12 16

[4,] 22 10 12 0 6 22 22 12 22 14

[5,] 16 8 6 6 0 22 22 8 16 10

[6,] 14 30 18 22 22 0 14 20 10 32

[7,] 14 30 18 22 22 14 0 20 14 32

[8,] 14 14 4 12 8 20 20 0 16 18

[9,] 4 22 12 22 16 10 14 16 0 22

[10,] 20 6 16 14 10 32 32 18 22 0

We can see that these displayed OM distances are the same as the extract of the
biofam.lcs matrix of LCS distances dispalyed in Section 6.3. However, since we
may not rely on human brain to compare the two 2000× 2000 matrices, we look for
a way of checking this more rigorously. This is done with the all.equal() function

> all.equal(biofam.om2,biofam.lcs)

[1] TRUE

Chapter 7

Analysing event sequences

The previous chapters dealt essentially with sequences of states. Here, the focus is
on sequences of transitions or events. TraMineR offers specific tools for such kind of
data that permit, among others, to mine for instance frequent event subsequences
(Studer et al., 2008; Agrawal and Srikant, 1995; Zaki, 2001). The TraMineR func-
tions intended for sequences of events start with the “seqe” prefix, which stands for
SEQuence of Events.

The concept of event sequence and its formalization were introduced by Agrawal
and Srikant (1995) who were mainly interested in frequent buying sequences. We
retain here the notation of Zaki (2001) but introduce a new terminology that we
think is more appropriate for social sciences. In this chapter, the term “sequence”
refers to a sequence of events rather than of states.

Hence, a sequence is considered to be an ordered list of transitions, each transi-
tion being just a set of distinct events (an event cannot appear more than once in
a same transition). A sequence α can be written down as (α1 → α2 → ... → αq),
where each αi is a transition. A sequence with a total of k events is called a k-
sequence. The distinction between transition and event is a way of accounting for
simultaneity of some events.

Agrawal and Srikant (1995) define a subsequence as follows: α is a subsequence
of β if each transition of α is a subset of β and the order of the transitions in α
respects that in β. We write it down as α � β. For instance, (B → AC) is a
subsequence of (AB → E → ACD) since B ⊆ (AB) — the event B belongs to the
transition (AB) — and (AC) ⊆ (ACD) — the events A and C form a subset of the
transition (ACD).

A subsequence is said frequent if it occurs in more than a given minimum number
of sequences. This minimum required number of sequences to which the subsequence
must belong is called minimum support. It should be set by the user. A subsequence
is said to be maximal if it is not included in any other frequent subsequence.

TraMineR goes beyond this definition by allowing to specify time constraints.
For instance, we can specify a window size (the maximal time span during which
a subsequence should occur) as well as maximum gaps (the maximum time be-
tween two transitions). Minimum and maximum ages can also be specified to study
particular period of the life course, such as the transition to adulthood for instance.

7.1 Creating event sequences

Let us introduce event sequence analysis with a small example. We are interested
in analysing frequent transitions occurring in the activity calendar (actcal data
set). More precisely, we consider the 8 events of the activity calendar between
January and December 2000 that are defined in Table 4.2 page 43. These events

77

78 Ch. 7 Analysing event sequences

are associated to state transitions sequences as described in Table 4.3. The time
stamped event data was derived from the state sequences using the process described
in Section 4.3.3. Let us just recall here the code used for creating the time stamped
event (TSE) data.

data(actcal)

transition <- seqetm(actcal[,13:24], method="transition")

transition[1,1:4] <- c("FullTime" , "Decrease,PartTime",

"Decrease,LowPartTime", "Stop")

transition[2,1:4] <- c("Increase,FullTime", "PartTime" ,

"Decrease,LowPartTime", "Stop")

transition[3,1:4] <- c("Increase,FullTime", "Increase,PartTime",

"LowPartTime" , "Stop")

transition[4,1:4] <- c("Start,FullTime" , "Start,PartTime" ,

"Start,LowPartTime" , "NoActivity")

actcal.tse <- seqformat(actcal,var=13:24, from=’STS’,to=’TSE’,

tevent=transition)

From the time stamped event data (in TSE format), we create an event sequence
object by means of seqecreate().

actcal.seqe <- seqecreate(id=actcal.tse$id, time=actcal.tse$time,

event=actcal.tse$event)

It may be useful to know the time span covered by an event sequence. There are
two ways to set this information. We can refer to a special event marking the end of
the sequence and use the time until the occurrence of this end event. In that case we
specify the end event in seqecreate() with the endEvent option. Alternatively, we
can set the total sequence duration explicitly with the seqesetlength() function.
It is not mandatory to set this time span.

> sl <- numeric()

> sl[1:2000] <- 12

># All sequences are of length 12

> seqesetlength(actcal.seqe,sl)

> actcal.seqe[1:10]

[1] (PartTime)-12.00

[2] (NoActivity)-4.00-(Start,FullTime)-7.00-(Stop)-1.00

[3] (PartTime)-12.00

[4] (LowPartTime)-9.00-(PartTime,Increase)-3.00

[5] (FullTime)-12.00

[6] (NoActivity)-1.00-(PartTime,Start)-11.00

[7] (NoActivity)-12.00

[8] (FullTime)-12.00

[9] (FullTime)-12.00

[10] (FullTime)-12.00

This last step will displays sequences in the form:

(e1,e2,...)-elapsedtime-(e2,...)-endtime

Where elapsedtime is the the time elapsed between two consecutive sets of events,
(e1,e2,...) is a transition that is a non empty list of simultaneous events and
endtime is the time elapsed between the last transition and the end of observation.
The string representing the second sequence means that the trajectory described
starts at time 0 with the “NoActivity” event, which is followed four months later
by the events “Start” and “FullTime”, and 7 more months later by the event ”Stop”,
which occurs 1 month before the end of the 12 months observation period.

7.2 Searching for frequent event subsequences 79

7.2 Searching for frequent event subsequences

The function seqefsub() searches for frequent event subsequences. It returns a list
containing itself two lists, namely subseq a list of frequent event subsequences and
support a list with the support of these subsequences (the support is the number
of event sequences that contain the subsequence). This function takes at least two
arguments: A list of event sequences and a minimum support expressed in number
of sequences (minSupport) or as a percentage by using the pMinSupport argument.

> fsubseq <- seqefsub(actcal.seqe,minSupport=100)

Step 1:

Adding sequences (size: 0)

Simplifying tree (size: 8)

Tree simplified (size: 6 [added: 6])

Step 2:

Adding sequences (size: 6)

Simplifying tree (size: 55)

Tree simplified (size: 7 [added: 1])

Step 3:

Adding sequences (size: 7)

Simplifying tree (size: 16)

Tree simplified (size: 7 [added: 0])

Counting subseq...(7)

Retrieving subsequences...OK

> fsubseq

$subseq

[1] "(FullTime)" "(NoActivity)" "(PartTime)"

[4] "(LowPartTime)" "(Stop)" "(Start)"

[7] "(NoActivity)-(Start)"

$support

[1] 929 639 427 307 180 179 131

Notice that the subsequences are in the same format as usual event sequences except
that they do not hold time information. Hence, the sequence ”(NoActivity)-(Start)”
means staying first without activity and then starting a new job.

We now use the preceding outcome to compute with the seqeapplysub() func-
tion the number of occurrences of each frequent subsequence. The seqeapplysub()
function takes three arguments: a list of subsequences, a list of sequences and a
method. The method specifies the information we want. Possibilities are count
(default), age, the age at first occurrence of a subsequence and presence which
returns a matrix with ones indicating the presence of the subsequence and zero
otherwise.

In the example below we show the content of the resulting matrix for subse-
quences 6 (Start) and 7 (NoActivity)-(Start). Rows of the matrix correspond to the
sequences and columns to the specified subsequences fsubseq$subseq.

> msubcount<-seqeapplysub(fsubseq$subseq, actcal.seqe, method="count")

> #First lines...

> msubcount[1:9,6:7]

(Start) (NoActivity)-(Start)

(PartTime) 0 0

(NoActivity)-4.00-(Start,FullTime)-7.00-(Stop) 1 1

(PartTime) 0 0

(LowPartTime)-9.00-(PartTime,Increase) 0 0

(FullTime) 0 0

(NoActivity)-1.00-(PartTime,Start) 1 1

(NoActivity) 0 0

(FullTime) 0 0

80 Ch. 7 Analysing event sequences

(FullTime) 0 0

7.3 Time constraints

The functions seqefsub() (searching frequent subsequences) and seqeapplysub()
accept time constraints. The following parameters can be set:

maxGap: The maximum time gap between two groups of events.

windowSize: The maximum window size.

ageMin: Minimum age at beginning of subsequences.

ageMax: Maximum age at beginning of subsequences.

ageMaxEnd: Maximum age at end of subsequences.

Each of these parameters is ignored when set equal to −1, which is their default
value. The following examples show how to set time constraints:

Using time constraints

Searching subsequences starting in summer (between June and September)

fsubseq <- seqefsub(actcal.seqe, minSupport=10, ageMin=6, ageMax=9)

fsubseq$subseq[1:10]

Searching subsequences occurring in summer (between June and September)

fsubseq <- seqefsub(actcal.seqe, minSupport=10, ageMin=6, ageMax=9,

ageMaxEnd=9)

fsubseq$subseq[1:10]

Searching subsequences enclosed in a 6 months period

and with a maximum gap of 2 months

fsubseq <- seqefsub(actcal.seqe, minSupport=10, maxGap=2, windowSize=6)

fsubseq$subseq[1:10]

7.4 Plotting frequencies of event subsequences

The seqefplot() function plots the frequencies of a set of subsequences. The
following example generates the plot shown in Figure 7.1.

loading data

data(actcal.tse)

creating sequences

actcal.seqe <- seqecreate(actcal.tse$id,actcal.tse$time,actcal.tse$event)

Looking for frequent subsequences

fsubseq <- seqefsub(actcal.seqe, pMinSupport=0.01)

Frequences of 15 first subsequences

seqefplot(fsubseq$subseq[1:15], actcal.seqe, col="cyan")

We may also specify a ‘group’ variable, in which case the seqefplot() function
provides separate plots of the frequencies of the subsequences by the factor levels of
the group variable. The next example generates for instance the plot in Figure 7.2
from which it appears clearly that starting a full-time job is typical for men, while
starting a part-time job is typical for women.

Plotting on 2 lines and 3 columns

seqefplot(fsubseq$subseq[1:6],actcal.seqe, group=actcal$sex,

mfrow=c(2,3), col="cyan")

7.5 Selecting event subsequences 81

0.
0

0.
1

0.
2

0.
3

0.
4

(F
ul

lT
im

e)

(N
oA

ct
iv

ity
)

(P
ar

tT
im

e)

(L
ow

P
ar

tT
im

e)

(S
to

p)

(S
ta

rt
)

(N
oA

ct
iv

ity
)−

(S
ta

rt
)

(S
ta

rt
,L

ow
P

ar
tT

im
e)

(L
ow

P
ar

tT
im

e)
−

(S
to

p)

(D
ec

re
as

e)

(I
nc

re
as

e)

(N
oA

ct
iv

ity
)−

(L
ow

P
ar

tT
im

e)

(N
oA

ct
iv

ity
)−

(S
ta

rt
,L

ow
P

ar
tT

im
e)

(F
ul

lT
im

e)
−

(S
to

p)

(S
to

p)
−

(S
ta

rt
)

Figure 7.1: Frequencies of 15 most frequent event subsequences

man woman

(FullTime)

0.
0

0.
2

0.
4

0.
6

man woman

(NoActivity)

0.
00

0.
15

0.
30

man woman

(PartTime)

0.
00

0.
10

0.
20

0.
30

man woman

(LowPartTime)

0.
00

0.
10

0.
20

man woman

(Stop)

0.
00

0.
04

0.
08

man woman

(Start)

0.
00

0.
04

0.
08

Figure 7.2: Frequencies of first 6 most frequent event subsequences by sex of
respondent

7.5 Selecting event subsequences

The function seqecontain() helps to select a set of event (sub)sequences. It checks
whether a given subsequence contains given events. For instance, we may want to
select all subsequences containing the event ”Fulltime”. The function returns a
logical vector with TRUE/FALSE answer for each subsequence.

looking for subsequence with FullTime

seqecontain(fsubseq$subseq, c("FullTime"))

To restrict the search to a subset of events, we may add the option exclude=TRUE.
In this case, the function returns false for any sequences that contains an event not
specified in the eventList argument.

82 Ch. 7 Analysing event sequences

7.6 Identifying discriminant event subsequences

The function seqecmpgroup() identifies subsequences that are significantly discrim-
inant with the selected test and orders them by decreasing discriminant power. The
following methods for testing the discrimination are implemented and can be set
through the method argument:

1. bonferroni determines discrimination on the basis of the Bonferroni corrected
p-value of the Chi-square test. With method=bonferroni, the function returns
the Bonferroni corrected p-values. The correction is based on the number of
tests (i.e. the number of subsequences). The parameter p.valuelimit can
be used to set the p-value threshold (default value is 0.05).

2. chisq determines discrimination on the p value without Bonferroni correction.
With method=chisq, the function returns the value of the Chi-square statistic.
Here again, p.valuelimit can be used to set the p-value threshold (default
value is 0.05).

seqecmpgroup() returns a list with three values: The names of the subsequences,
the column index numbers of the subsequences in the original matrix and the value
of the test statistic or its p-value. In the following example, we look for the most
discriminating event subsequences between men and women. The results are then
plotted (Figure 7.3).

Looking for subsequences that are present

in at least 1% (20) of the sequences

fsubseq <- seqefsub(actcal.seqe, pMinSupport=0.01)

Looking for the discriminating subsequences for sex

discr <- seqecmpgroup(fsubseq$subseq, actcal.seqe, group=actcal$sex,

method="bonferroni")

Plotting the eight most discriminating subsequences in 2 x 4 format

seqefplot(fsubseq$subseq[discr$index[1:8]], actcal.seqe,

group=actcal$sex, mfrow=c(2,4), col="cyan")

man woman

(FullTime)

0.
0

0.
2

0.
4

0.
6

man woman

(PartTime)

0.
00

0.
10

0.
20

0.
30

man woman

(LowPartTime)

0.
00

0.
05

0.
10

0.
15

0.
20

man woman

(NoActivity)

0.
00

0.
10

0.
20

0.
30

man woman

(Start,LowPartTime)

0.
00

0.
02

0.
04

0.
06

man woman

(Start)

0.
00

0.
04

0.
08

man woman

(NoActivity)−(Start,LowPartTime)

0.
00

0.
01

0.
02

0.
03

0.
04

man woman

(Decrease)

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

Figure 7.3: Eight most discriminating event subsequences between men and women

Appendix A

Installing and using R

This appendix gives a short introduction to R. It explains where and how R can be
obtained and describes its basic principles and operations. More detailed informa-
tion can be found on the Comprehensive R-project Archive Network (CRAN) http:
//www.r-project.org. You may for instance download one the following introduc-
tion manual in pdf format http://cran.r-project.org/doc/manuals/R-intro.
pdf. We also strongly recommend the introduction to R by Paradis (2005) available
at http://cran.r-project.org/doc/contrib/Paradis-rdebuts_en.pdf.

A.1 Obtaining and installing R

R is a free integrated suite of software facilities for data manipulation, calculation
and graphical display. It is available in precompiled binary form for Linux, MacOS
X and Windows, and more generally in source form that can be compiled under
many other operating systems. You can download R from the CRAN http://
cran.r-project.org/ (select a mirror close to you) where you find also installation
instructions.

A.2 R basics

Starting R. Although there exist menu driven graphical user interfaces for R, R is
originally a ‘command line’ environment. When starting R, you get a command line
prompt (showed in a R console under Windows) at which you can enter commands.

If you are using Linux, just launch a terminal and enter ‘R’ at the command
prompt. In Figure A.1 shows the screen display and command prompt as it appears
after launching R in a Linux console. Here, the greeting message is in French because
the authors of this manual run a French version of R.

To quit R, enter the command q(). You will be prompted for saving your
workspace. Answer ‘y’ if you want to save all your data and objects. Your workspace
will then be restored the next time you use R.

Writing and saving R program files. The best way of using R is to write com-
mand files. R command files usually have a ‘.R’ extension. You can add comments
in your program files. Starting with a double hashmark (’##’), everything to the end
of the line is a comment. Under MacOS X and Windows, the R environment comes
with a command editor that you can use to write, save and execute your programs.
Under Linux, you have to resort to a separate editor such as gedit to write and
save your programs. You may then copy/paste programs into the R console to run
them or alternatively use the source() command.

83

http://www.r-project.org
http://www.r-project.org
http://cran.r-project.org/doc/manuals/R-intro.pdf
http://cran.r-project.org/doc/manuals/R-intro.pdf
http://cran.r-project.org/doc/contrib/Paradis-rdebuts_en.pdf
http://cran.r-project.org/
http://cran.r-project.org/

84 Appendix A Installing and using R

R version 2.7.0 (2008-04-22)

Copyright (C) 2008 The R Foundation for Statistical Computing

ISBN 3-900051-07-0

R is free software and comes with ABSOLUTELY NO WARRANTY.

You are welcome to redistribute it under certain conditions.

Type ’license()’ or ’licence()’ for distribution details.

Natural language support but running in an English locale

R is a collaborative project with many contributors.

Type ’contributors()’ for more information and

’citation()’ on how to cite R or R packages in publications.

Type ’demo()’ for some demos, ’help()’ for on-line help, or

’help.start()’ for an HTML browser interface to help.

Type ’q()’ to quit R.

>

Figure A.1: R starting welcome message and command prompt

Objects and functions Functions in R take one or more arguments.

Getting help Within R, you can get help about a function with the help(function
name) command, including for all the functions provided by the TraMineR package.
Try for instance the following

> help(seqdist)

A.3 Data manipulation in R

A.3.1 Creating and printing objects

The operator ‘<-’ is used to assign a value to an R object and entering solely the
name of the object prints its value (on the output screen). In the next example, we
first create (or replace) the object ‘x’ by assigning it the value 2 and then display
its content

> x <- 2

> x

[1] 2

When printing the ‘x’ object, the output contains ‘[1]’ in front of the values of
x indicating that the line begins with the first element of the object. In this case, it
hasn’t much interest because x has only one element. It may be useful, however, for
objects containing more than one element, such as vectors, matrices or data frames
that we describe hereafter.

A.3.2 Vectors

In R, vectors are very important. Even objects containing one single value are
vectors

> z <- 4

> is.vector(z)

[1] TRUE

A.3 Data manipulation in R 85

Creating vectors with cbind(). The widely used c() (or cbind()) function
combines its arguments into a vector. In the following example we use this function
to create a vector with the previously created ‘x’ and ‘z’ objects

> c(x,z)

[1] 2 4

Filling vectors with number sequences. It is often useful to generate a vec-
tor of consecutive numbers. This is easily done by using the sequence generating
operator as shown in the following example.

> seq <- 1:50

> seq

[1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

[26] 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

The content of the seq vector is printed in two lines, and the ‘[26]’ appearing
in front of the second line indicates that the first element of this second line is 26th
element the vector (here the value of the 26th element is 26).

A.3.3 Data frames, matrices and lists

In R, several object types are available apart from vectors. The object types we will
have to deal with most of the time are data frames, matrices and lists. We briefly
describe those objects and some hints for manipulating them.

Data frames. Since we haven’t yet introduced sequential data, we consider for
illustrating purposes the classical iris data set that is distributed with R. We first
load it into memory with the data() command and display its content by typing
its name

> data(iris)

> iris

Sepal.Length Sepal.Width Petal.Length Petal.Width Species

1 5.1 3.5 1.4 0.2 setosa

2 4.9 3.0 1.4 0.2 setosa

3 4.7 3.2 1.3 0.2 setosa

4 4.6 3.1 1.5 0.2 setosa

5 5.0 3.6 1.4 0.2 setosa

6 5.4 3.9 1.7 0.4 setosa

7 4.6 3.4 1.4 0.3 setosa

8 5.0 3.4 1.5 0.2 setosa

9 4.4 2.9 1.4 0.2 setosa

10 4.9 3.1 1.5 0.1 setosa

.

.

.

141 6.7 3.1 5.6 2.4 virginica

142 6.9 3.1 5.1 2.3 virginica

143 5.8 2.7 5.1 1.9 virginica

144 6.8 3.2 5.9 2.3 virginica

145 6.7 3.3 5.7 2.5 virginica

146 6.7 3.0 5.2 2.3 virginica

147 6.3 2.5 5.0 1.9 virginica

148 6.5 3.0 5.2 2.0 virginica

149 6.2 3.4 5.4 2.3 virginica

150 5.9 3.0 5.1 1.8 virginica

86 Appendix A Installing and using R

This data set contains measurements about 150 iris flowers from 3 species, as
we learn it by issuing the help(iris) command

> help(iris)

which produces in a separate window

iris package:datasets R Documentation

Edgar Anderson’s Iris Data

Description:

This famous (Fisher’s or Anderson’s) iris data set gives the

measurements in centimeters of the variables sepal length and

width and petal length and width, respectively, for 50 flowers

from each of 3 species of iris. The species are _Iris setosa_,

versicolor, and _virginica_.

...

The summary() function returns basic statistics for all the variables in the data
set

> summary(iris)

Sepal.Length Sepal.Width Petal.Length Petal.Width

Min. :4.300 Min. :2.000 Min. :1.000 Min. :0.100

1st Qu.:5.100 1st Qu.:2.800 1st Qu.:1.600 1st Qu.:0.300

Median :5.800 Median :3.000 Median :4.350 Median :1.300

Mean :5.843 Mean :3.057 Mean :3.758 Mean :1.199

3rd Qu.:6.400 3rd Qu.:3.300 3rd Qu.:5.100 3rd Qu.:1.800

Max. :7.900 Max. :4.400 Max. :6.900 Max. :2.500

Species

setosa :50

versicolor:50

virginica :50

In R data frames, columns (variables) can be of mixed types. In the iris data set,
the variables Sepal.Length, Sepal.Width, Petal.Length and Petal.Width are all
numerical. The summary() function computes distribution indicators for them. On
the other hand, ‘Species’ is a categorical variable. In R this variable type is called
a factor, and the values a factor may take are called levels. The Species factor has
three levels

> levels(iris$Species)

[1] "setosa" "versicolor" "virginica"

Matrices. Matrices are multidimensional objects like data frames, however, they
do not allow mixing data types. For example, if we try to transform the iris
data frame into a matrix, all the elements, including numbers, will be converted
to character strings, since one column of the data is of the character type. The
function as.matrix() is used to convert the iris data frame into a matrix. There
are a lot of similar functions in R for converting from one object type to another

> as.matrix(iris)

Sepal.Length Sepal.Width Petal.Length Petal.Width Species

[1,] "5.1" "3.5" "1.4" "0.2" "setosa"

[2,] "4.9" "3.0" "1.4" "0.2" "setosa"

[3,] "4.7" "3.2" "1.3" "0.2" "setosa"

[4,] "4.6" "3.1" "1.5" "0.2" "setosa"

[5,] "5.0" "3.6" "1.4" "0.2" "setosa"

[6,] "5.4" "3.9" "1.7" "0.4" "setosa"

A.3 Data manipulation in R 87

[7,] "4.6" "3.4" "1.4" "0.3" "setosa"

[8,] "5.0" "3.4" "1.5" "0.2" "setosa"

[9,] "4.4" "2.9" "1.4" "0.2" "setosa"

[10,] "4.9" "3.1" "1.5" "0.1" "setosa"

...

Lists. A list is an object consisting of an ordered collection of objects. It is created
with the list() command. The list below contains for instance three components.

> list.ex <- list(name="Alice", age=40, children.at=c(22,24,25))

> list.ex

$name

[1] "Alice"

$age

[1] 40

$children.at

[1] 22 24 25

We access a component by issuing for instance list.ex$children.at or, since we
want here the 3rd component list.ex[[3]].

A.3.4 Accessing and extracting data

Row and column names. Data frames and matrices have rows and column
names (lists have elements names). The rownames() and colnames() functions can
be used to access, modify or print these labels. The column names are correspond
to what is known variable names in other statistical packages like Stata, SPSS or
SAS.

> colnames(iris)

[1] "Sepal.Length" "Sepal.Width" "Petal.Length" "Petal.Width" "Species"

Row names are names assigned to the rows of the data object.

> rownames(iris)

[1] "1" "2" "3" "4" "5" "6" "7" "8" "9" "10" "11" "12"

[13] "13" "14" "15" "16" "17" "18" "19" "20" "21" "22" "23" "24"

.

.

.

[133] "133" "134" "135" "136" "137" "138" "139" "140" "141" "142" "143" "144"

[145] "145" "146" "147" "148" "149" "150"

Default row names are the row numbers, as illustrated above for the iris data
set. Any character string can be used as row name. With the paste() command
that concatenates its arguments into a character string, we may for instance create
a vector of 150 names composed with the (French) string “fleur d’iris n.” and a
number from 1 to 150, and assign this vector as row names

> row.names(iris) <- paste("fleur d’iris n.",1:150)

> iris

Sepal.Length Sepal.Width Petal.Length Petal.Width

fleur d’iris n. 1 5.1 3.5 1.4 0.2

fleur d’iris n. 2 4.9 3.0 1.4 0.2

fleur d’iris n. 3 4.7 3.2 1.3 0.2

fleur d’iris n. 4 4.6 3.1 1.5 0.2

fleur d’iris n. 5 5.0 3.6 1.4 0.2

88 Appendix A Installing and using R

fleur d’iris n. 6 5.4 3.9 1.7 0.4

fleur d’iris n. 7 4.6 3.4 1.4 0.3

fleur d’iris n. 8 5.0 3.4 1.5 0.2

fleur d’iris n. 9 4.4 2.9 1.4 0.2

fleur d’iris n. 10 4.9 3.1 1.5 0.1

...

Indexing rows and columns. Elements of an R data frame or matrix is accessed
by specifying the row and/or column index. One solution is to give the row and
column numbers as indexes. The following command accesses the sepal length (first
column) of the first iris flower (first row) from the iris data set

> iris[1,1]

[1] 5.1

Alternatively, we may use the row and column names. The following example is
equivalent to the previous command

> iris[1,"Sepal.Length"]

[1] 5.1

It is also possible to use previously created row names

> iris["fleur d’iris n. 1","Sepal.Length"]

[1] 5.1

In R, there are almost as many ways of doing a same thing as there are stars
in the universe. An additional possibility is for instance to extract the first column
with the $ operator and to specify the first element of the resulting vector

> iris$Sepal.Length[1]

[1] 5.1

For accessing more than one element, we can use the number sequence generating
mechanism. For example, we display the first 10 rows of the iris data set by
issuing the following command in which the missing second argument means that
all columns should be selected.

> iris[1:10,]

Sepal.Length Sepal.Width Petal.Length Petal.Width Species

1 5.1 3.5 1.4 0.2 setosa

2 4.9 3.0 1.4 0.2 setosa

3 4.7 3.2 1.3 0.2 setosa

4 4.6 3.1 1.5 0.2 setosa

5 5.0 3.6 1.4 0.2 setosa

6 5.4 3.9 1.7 0.4 setosa

7 4.6 3.4 1.4 0.3 setosa

8 5.0 3.4 1.5 0.2 setosa

9 4.4 2.9 1.4 0.2 setosa

10 4.9 3.1 1.5 0.1 setosa

A.4 R libraries

When launching R, you have access to a set of basic functions. You may access
additional and more sophisticated functions by explicitly loading add-on packages
with the library() function. Some of these add-on packages (libraries) may be
installed by default on your system, which is for example the case of the foreign
library for importing data sets stored in various formats such as Stata, SAS or SPSS.
In this case, you just have to issue

> library(foreign)

A.5 Some other useful functions 89

to access the functions provided by the package.
In order to use add-on packages (like TraMineR) that are not installed, you

need indeed to first install them on your system. A large number of official and
contributed add-on packages are available on the CRAN http://cran.r-project.
org/src/contrib/PACKAGES.html. For installing any of these packages, you can
just issue an install.packages() command

> install.packages("package_name")

within an R console and choose a mirror close to you in the menu.
For installing other packages that are not distributed through the CRAN (like

TraMineR for the moment), you have to get the package source or binary file and
install it manually as described in Chapter 2. Once the package is installed, you will
be able to access its functions after issuing the suited library() command, e.g.

> library(TraMineR)

A.5 Some other useful functions

A.5.1 The apply function

The apply function permits to apply a function to every row (or every column) of
a matrix or data frame. This is a very useful function.

In the example below we create a 3 × 4 table by combining the three rows of
length 4. We then compute the mean value of each column (the 2nd dimension)
and then of each row (the 1st dimension).

> mat <- rbind(c(1,3,5,4),c(2,3,1,5),c(2,6,3,1))

> mat

[,1] [,2] [,3] [,4]

[1,] 1 3 5 4

[2,] 2 3 1 5

[3,] 2 6 3 1

> apply(mat,2,mean)

[1] 1.666667 4.000000 3.000000 3.333333

> apply(mat,1,mean)

[1] 3.25 2.75 3.00

A.5.2 The table function

For factor variables, i.e. categorical variables, the table() command gives the count
of each of its value. As seen before, the $ operator followed by the column name
permits to extract the corresponding column from a data frame or matrix. In the
next example we tabulate the Species variable with the table() function

> table(iris$Species)

setosa versicolor virginica

50 50 50

A.6 Creating and saving graphics

The pdf() and ps() commands open a ‘.pdf’ or ‘.postscript’ file that will contain
all the graphics plotted with plots commands (eg. plot(). The dev.off() must be
used to close the file. The next example shows how to store an histogram of 1000
random generated numbers drawn from the normal distribution in the myplot.pdf
file.

http://cran.r-project.org/src/contrib/PACKAGES.html
http://cran.r-project.org/src/contrib/PACKAGES.html

90 Appendix A Installing and using R

> pdf(file="**location**/myplot.pdf")

> hist(rnorm(1000))

> dev.off()

There are a lot fine tuning parameters that can be used to set the output page size,
font sizes, etc. Check the available options with ?pdf or ?ps. Note that there are
similarly png(), jpeg(), tiff() and some other functions for producing graphics
in other formats.

A.7 Performance and memory usage

In R, objects are stored in memory. The size and number of objects you can handle
is limited by the memory size. If you don’t further need an object, you can free
memory by deleting it with the command rm(objectname). For example, a sequence
data containing 4318 rows of 16 states needs 0.52 Mb (541kb).

Appendix B

Installing TraMineR

B.1 Installing from binary package

Binary versions of TraMineR are the easiest to install. Such binary versions are
available for Linux, MacOS X and Windows. Once the TraMineR package will be
available from the CRAN archive (which may not be the case at the time you read
this manual), the most straightforward way will be to install it from the CRAN.

B.1.1 Windows

Installing from the CRAN Once the TraMineR package is available from the
CRAN archive (it may not be the case at the time you reed this manual), the easiest
way to install it is from the Packages menu in R:

1. Run R, if it is not already running.

2. Select Install package(s) from CRAN ... from the Packages menu in R. A
window will open asking you to pick a CRAN mirror site for your session;
once the mirror is selected, a window will open displaying the various packages
available from the CRAN.

3. Using the mouse, select the package or packages that you want to install; if
you want to install more than one package, hold down the Control key while
you click on the additional packages.

4. When you are finished selecting packages, click the OK button.

Installing from a downloaded zip file Alternatively, you can install binary
packages from a previously downloaded zip file:

1. Download the zip file containing the package from http://mephisto.unige.
ch/pub/traminer/Windows

2. Run R, if it is not already running.

3. Select Install package(s) from local zip files ... from the Packages menu in R.

4. Navigate to the location of the zip file containing the package.

5. Click the Open button.

91

http://mephisto.unige.ch/pub/traminer/Windows
http://mephisto.unige.ch/pub/traminer/Windows

92 Appendix B Installing TraMineR

B.1.2 Linux

To install the TraMineR package into the standard library location under Linux,
you need to be the superuser, otherwise you will get a message like this one:

Avis dans install.packages("TraMineR") :

’lib = "/usr/local/lib/R/site-library"’ is not writable

Voulez-vous créer une bibliothèque personnelle

’~/R/i486-pc-linux-gnu-library/2.5’

If you don’t know what ‘superuser’ means or want the package to be installed in
your home directory or another location, answer ‘yes’ to the question. In this case,
other users of your computer will not be able to use the package, unless they also
install it.

Installing from the CRAN

1. Start R.

2. Install from the R command line with the install.packages() command.
A window will open asking you to pick a CRAN mirror site for your session;
once the mirror is selected, a window will open displaying the various packages
available from CRAN.

3. Using the mouse, select ‘TraMineR’ in the list; if you want to install more
than one package, hold down the Control key while you click on the additional
packages.

Installing from a downloaded tar.gz file

1. Download the tar.gz file containing the package from http://mephisto.unige.
ch/pub/traminer/Linux. There are binaries for 32 and 64 bit linux ver-
sions. The file names for the 32 bits binaries is TraMineR_0.*-*_R_i486-
pc-linux-gnu.tar.gz and for the 64 bits versions it is TraMineR_0.*-*_R_
x86_64-pc-linux-gnu.tar.gz.

2. Start R.

3. Install from the R command line with

install.packages(

’*path*/TraMineR_0.*-*_R_i486-pc-linux-gnu.tar.gz’, repos=NULL)

where ’*path*/’ is the path to the downloaded tar.gz file. The repos=NULL
argument must be given for a local install, i.e. one that is not done from a
CRAN repository.

B.2 Installing from source package

Though the major part of the package is written in R language, some time-consuming
functions (especially those computing distances between sequences) are written in C
for better performance. A C compiler is therefore requested for installing TraMineR
from source. The installation procedure remains however straightforward.

Note: TraMineR uses some functions provided by other optional R packages, e.g.
the RColorBrewer package for creating the color palettes in graphics, those pack-
ages must be installed on your system in order to compile.

http://mephisto.unige.ch/pub/traminer/Linux
http://mephisto.unige.ch/pub/traminer/Linux

B.2 Installing from source package 93

B.2.1 Windows

Under Windows you just need to have the Windows Rtools tool set installed. This
tool set includes a C compiler and other tools such as Perl. Thus, for installing from
source just proceed as follows:

1. Install the Rtools toolset which can be downloaded from the web page http:
//www.murdoch-sutherland.com/Rtools/installer.html.

2. Download the package TraMineR_0.*-*.tar.gz and remember the name of
the directory where the file is saved.

3. Open a DOS terminal (DOS command prompt) and type in

cd "C:\Program files\R\R-2.7.0\bin"

R CMD INSTALL "*path*\TraMineR_0.*-*.tar.gz"

The ‘cd’ DOS command changes the current directory to the folder where the
‘R.exe’ binary is installed and the second line installs the package. You should
indeed adapt the path to the download folder.

B.2.2 Linux

1. The GCC compiler and header files must be installed on your system.

2. Download the package ‘TraMineR_0.*-*.tar.gz’ and remember the directory
name where the file is saved

3. You must have superuser (root) access for installing the package on the stan-
dard library location. Open a terminal and type in (you will be asked for the
superuser password):

sudo R CMD INSTALL /*path*/TraMineR_0.*-*.tar.gz

http://www.murdoch-sutherland.com/Rtools/installer.html
http://www.murdoch-sutherland.com/Rtools/installer.html

Appendix C

Information about TraMineR
content

Below we show the content of the information window as it was obtained with
library(help=TraMineR) for version 0.4-25 of TraMineR. This information win-
dows indicates among others the version number of the installed TraMineR package
and the list of available functions and data sets. Indeed, since further versions
of TraMineR will most probably offer new features we strongly recommend that
you check the updated information window on your system after installing a new
version. You get with library(help=TraMineR).

Information on package ’TraMineR’

Description:

Package: TraMineR

Version: 1.0

Date: 2008-07-10

Title: Sequences and trajectories mining for social scientists

Author: Alexis Gabadinho <alexis.gabadinho@unige.ch>,

Matthias Studer <matthias.studer@unige.ch>,

Nicolas S. M\"{u}ller <nicolas.muller@unige.ch>,

Gilbert Ritschard <gilbert.ritschard@unige.ch>.

Maintainer: Alexis Gabadinho <alexis.gabadinho@unige.ch>

Depends: R (>= 2.4.0), RColorBrewer

Suggests: cluster

Description: This package is intended for sequence manipulation,

description and data mining in the field of social

sciences. In this field, sequences are sets of states or

events describing life histories, for example family

formation histories. It provides tools for translating

sequences from one format to another, statistical

functions for describing sequences and methods for

computing distances between sequences using several

metrics like optimal matching and some other metrics

proposed by C. Elzinga.

License: GPL (>= 2)

URL: http://mephisto.unige.ch/traminer

Packaged: Thu Jul 10 15:25:32 2008; Jean-Paul II

Built: R 2.6.1; i386-pc-mingw32; 2008-07-10 15:25:36; windows

Index:

94

95

actcal Example data set: Activity calendar from

the Swiss Household Panel

actcal.tse Example data set: Activity calendar from

the Swiss Household Panel (time stamped event

format)

alphabet Retrieve the alphabet of a sequence object

biofam Example data set: Family life states from

the Swiss Household Panel retrospective

biographical survey

famform Example sequences of family formation

read.tda.mdist Read a distance matrix produced by TDA.

seqLCP Longest common prefix of two sequences.

seqST Sequences turbulence

seqconc Concatenate vectors of states or events into a

character string.

seqdcenter Compute distance to center of a group

seqdecomp Convert a character string into a vector of

states or events.

seqdef Create a sequence object

seqdim Returns the dimension of a set of sequences

seqdist Compute distances between sequences

seqdplot Graphic presenting the states frequencies

seqdss Extract distinct states sequence from a

sequence object.

seqdur Extracts states durations from a sequence

object.

seqeapplysub Applying Subsequences to Event Sequences

seqecmpgroup Identifying discriminating subsequences

seqecontain Event sequence contain event

seqecreate Create event sequence objects.

seqefplot Plot frequencies of subsequences

seqefsub Searching for frequent subsequences

seqeid Retrieve id of an event sequence object.

seqelength Length of event sequences

seqetm Creating event transition matrix

seqformat Translation between sequence formats.

seqfplot Graphic presenting the frequency of sequences

seqfpos Search for the first occurrence of a given

element in a sequence

seqient Sequence entropy

seqiplot Visualization of individual sequences.

seqistatd States frequency for each individual sequence

seqlegend Plots a legend for the states in a sequence

object

seqlength Sequence length

seqmpos Number of matching positions between two

sequences.

seqnum Translate a sequence object’s alphabet into

numerical alphabet, ranging 0-(nbstates-1).

seqpm Find patterns in sequences

seqsep Adds separators to sequences stored as

character string.

seqstatd States frequency table and entropy

seqstatl List of distinct states or events (alphabet)

for a sequence data set.

seqsubm Create a substitution-cost matrix

seqsubsn Number of distinct subsequences in a sequence.

96 Appendix C Information about TraMineR content

seqtab Sequences frequency table

seqtrate Transition rates between states.

Index

<-, 84

actcal, 17–19, 23, 25, 31, 32, 36
all.equal(), 76
alphabet, 10, 23
alphabet, 36
alphabet(), 46
apply, 89
apply(), 55
as.matrix(), 86

biofam, 17, 19, 21, 30
bonferroni, 82
Bonferroni correction, 82
boxplot(), 64

c(), 32, 85
cbind(), 85
chisq, 82
cluster, 11
colnames(), 87
color palette, 37
colors(), 37, 67
convert.factors = FALSE, 29
cor(), 68
cpal, 37, 39
cut(), 63

data(), 17, 85
demo(), 9
dev.off(), 49, 89
distance

LCP, 72
LCS, 73
OM, 74

duration
in distinct state, 56
of an event sequence, 78

entropy, 49
at each time point, 49
within sequences, 58

event subsequences
discriminant, 82
frequent, 77, 79
plotting frequencies, 80

exclude=TRUE, 81
extended=TRUE, 38

factor, 86
famform, 20, 39
foreign, 29, 88
format, 46
format, SPS option, 38
from, 44

head(), 30
header=FALSE, 33
help about a library, 16
help() command, 84
hist(), 60

informat, 32–34, 66
install.packages(), 89, 92
iris, 85, 86

label, 39
labels, 37
legend, plotting separately, 45
library(), 16, 88, 89
library(help=TraMineR), 94
list(), 87

max(), 60
mean, 55
MVAD, 20, 21, 30
mvad, 11
myplot.pdf, 89

na.strings=", 33
names, 39
names(), 32
norm=FALSE, 60

object.size(), 75
ontology of sequence data formats, 24

par(), 62
paste(), 87
pbarw=TRUE, 51
pdf(), 49, 89
plot

97

98 INDEX

all individual sequences, 53
legend, 45
selected sequences, 53
sequence frequency, 50
state distribution, 47

plot(), 89
postscript(), 49
print, 38
print(), 38
ps(), 89

q(), 83

range(), 75
rbind, 32
read.csv, 30
read.delim, 30
read.dta(), 29, 30
read.fwf, 30
read.spss(), 29, 30
read.table, 30
rm(objectname), 90
round(), 75
row.names=1, 33
rownames(), 87
rowSums(), 53

sep, 41
seqconc(), 31, 40
seqdecomp(), 40, 41
seqdef, 32, 36
seqdef(), 16, 31–33, 35, 66
seqdist(), 71–73, 75
seqdplot(), 47
seqdss(), 56, 65
seqdur(), 56
seqeapplysub(), 79, 80
seqecmpgroup(), 82
seqecontain(), 81
seqecreate(), 16
seqefplot(), 80
seqefsub(), 79, 80
seqesetlength(), 78
seqetm(), 42, 43
seqfcheck(), 31
seqformat(), 31, 40, 43, 44
seqfplot(), 50
seqient(), 58–60
seqiplot(), 53, 54, 62
seqistatd, 55
seqistatd(), 59
seqLCP(), 72
seqlegend(), 45
seqlength(), 57

seqmpos(), 71
seqpm(), 57
seqST(), 66
seqstatd(), 47, 49
seqstatl, 36
seqstatl(), 46
seqsubm(), 74, 75
seqsubsn(), 66
seqtab(), 51
seqtrate(), 53, 74
sequence

definition, 10
formats, 25
object, 32
of events, 13, 77
of transitions, 13, 77

SHP, 18
shp0 bvla user.dta, 30
source(), 83
sp.ex1, 66
space=0, 55
start, 38, 39
state distribution, 47
state labels, attaching, 37
states, 36
subsequence

definition, 10
subsequences

of events, 79
subset(), 68
summary(), 60, 67, 86
suport

minimum, 77

tab(), 63
table(), 89
time reference, 24
tlim, 51, 54
to, 44
TraMineR installation files, 91, 92
transition rates, 53
turbulence, 64

var, 32
vsort, 55

which(), 60
withborder=FALSE, 55
withlegend=FALSE, 45

Bibliography

Aassve, A., F. Billari, and R. Piccarreta (2007). Strings of adulthood: A sequence
analysis of young british women’s work-family trajectories. European Journal of
Population 23 (3), 369–388.

Abbott (2001). Time Matters. On Theory and Methods. Chicago: Chicago Press.

Abbott, A. and J. Forrest (1986). Optimal matching methods for historical se-
quences. Journal of Interdisciplinary History 16, 471–494.

Agrawal, R. and R. Srikant (1995). Mining sequential patterns. In P. S. Yu and
A. L. P. Chen (Eds.), Proceedings of the International Conference on Data En-
geneering (ICDE), Taipei, Taiwan, pp. 487–499. IEEE Computer Society.

Brzinsky-Fay, C., U. Kohler, and M. Luniak (2006). Sequence analysis with Stata.
The Stata Journal 6 (4), 435–460.

Elzinga, C. and A. Liefbroer (2007). De-standardization of family-life trajectories
of young adults: A cross-national comparison using sequence analysis. European
Journal of Population/Revue européenne de Démographie 23 (3), 225–250.

Elzinga, C. H. (2006). Turbulence in categorical time series. Mathematical Popula-
tion Studies (submitted).

Elzinga, C. H. (2007). CHESA 2.1 User Manual. Amsterdam: Vrije Universiteit.

Elzinga, C. H. (2008). Sequence analysis: Metric representations of categorical time
series. Sociological Methods and Research. forthcoming.

Gauthier, J.-A. (2007). Empirical categorizations of social trajectories: A sequential
view on the life course. thèse, Université de Lausanne, Faculté des sciences sociales
et politique (SSP), Lausanne.

Levenshtein, V. (1966). Binary codes capable of correcting deletions, insertions,
and reversals. Soviet Physics Doklady 10, 707–710.

McVicar, D. and M. Anyadike-Danes (2002). Predicting successful and unsuccessful
transitions from school to work by using sequence methods. Journal of the Royal
Statistical Society. Series A (Statistics in Society) 165 (2), 317–334.

Müller, N. S., M. Studer, and G. Ritschard (2007). Classification de parcours de
vie à l’aide de l’optimal matching. In XIVe Rencontre de la Société francophone
de classification (SFC 2007), Paris, 5 - 7 septembre 2007, pp. 157–160.

Needleman, S. and C. Wunsch (1970). A general method applicable to the search
for similarities in the amino acid sequence of two proteins. Journal of Molecular
Biology 48, 443–453.

99

100 BIBLIOGRAPHY

Notredame, C., P. Bucher, J.-A. Gauthier, and E. D. Widmer (2006).
T-COFFEE/SALTT: User guide and reference manual. Technical re-
port, CNRS Marseille and PAVIE University of Lausanne. (available at
http://www.tcoffee.org/saltt/).

Paradis, E. (2005). R pour les débutants. F-34095 Montpellier: Institut des Sciences
de l’Evolution Université Montpellier II.

Rohwer, G. and U. Pötter (2002). TDA user’s manual. Software, Ruhr-Universität
Bochum, Fakultät für Sozialwissenschaften, Bochum.

Scherer, S. (2001). Early career patterns: A comparison of Great Britain and West
Germany. European Sociological Review 17 (2), 119–144.

Studer, M., A. Gabadinho, N. S. Müller, and G. Ritschard (2008). Approches de
type n-grammes pour l’analyse de parcours de vie familiaux. Revue des nouvelles
technologies de l’information RNTI E-11, II, 511–522.

Zaki, M. J. (2001). SPADE: An efficient algorithm for mining frequent sequences.
Machine Learning 42 (1/2), 31–60.

	Introduction
	Preliminary remarks about sequences
	A short example to begin with

	The TraMineR package
	Loading, using and getting help
	Data sets included in the TraMineR package
	The actcal data set
	The biofam data set
	Other data sets borrowed from the literature

	Performance and memory usage

	Definition and representation of sequence data
	Ontology
	States and events
	Single or multichannel
	Time reference: Internal and external clocks
	One or several rows per individual
	Ontology

	Identifying and defining some (common) data formats
	The `states-sequence' (STS) format
	The `state-permanence-sequence' (SPS) format
	The vertical `time-stamped-event' (TSE) format
	The spell (SPELL) format
	The `person-period' format
	The `shifted-replicated-sequence' format (SRS)

	Importing and handling sequence data in TraMineR
	Importing data sets into R
	Reading data from other statistical packages
	Reading data from text files
	Data storage in R
	Compressed and extended format

	Sequence objects
	Creating a sequence object
	Attributes of sequence objects
	Indexing and printing sequences
	Sequences of unequal length and missing values

	Converting between formats
	Converting to and from the SPS format
	Converting between compressed and extended formats
	Converting to TSE format
	Converting from SPELL format

	Describing and visualizing sequences
	General principle of TraMineR sequence plots
	Color palette representing the states
	Plotting the legend separately

	Describing and visualizing sequence data
	List of states present in sequence data
	State distribution
	Sequence frequencies
	Transition rates

	Describing and visualizing individual sequences
	Visualizing individual sequences
	State frequencies by sequence
	Extracting distinct states and durations
	Sequence length
	Finding sequences with a given subsequence
	Within sequence entropy
	Sequence turbulence

	Measuring similarities and distances between sequences
	Number of matching positions
	Longest Common Prefix (LCP) distances
	Longest Common Subsequence (LCS) distances
	Optimal matching (OM) distances

	Analysing event sequences
	Creating event sequences
	Searching for frequent event subsequences
	Time constraints
	Plotting frequencies of event subsequences
	Selecting event subsequences
	Identifying discriminant event subsequences

	Installing and using R
	Obtaining and installing R
	R basics
	Data manipulation in R
	Creating and printing objects
	Vectors
	Data frames, matrices and lists
	Accessing and extracting data

	R libraries
	Some other useful functions
	The apply function
	The table function

	Creating and saving graphics
	Performance and memory usage

	Installing TraMineR
	Installing from binary package
	Windows
	Linux

	Installing from source package
	Windows
	Linux

	Information about TraMineR content
	Bibliography

