
asuR – advanced statistics using R

“The aim of computing is insight, not numbers.”
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Introducing R

“S is a programming language and environment for all

kinds of computing involving data. It has a simple

goal: to turn ideas into software, quickly and faith-

fully.” John M. Chambers

• S is a language for “programming with data”.

John Chambers of Bell Labs has been its main developer for more than two

decades.

• R is an Open Source system originally written by Ross Ihaka and Robert

Gentleman at the University of Auckland in about 1994.

• R is not unlike S (actually they are very similar!)

• R is now developed by a small core team, for all details see:

www.r-project.org.
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Introducing R . . . continued

Commands to R are expressions or assignments.

expression

4/3 * pi * (27)^3 : [1] 82447.96

assignment

a <- 27

Everything within the R language is an object.
Normally R objects are accessed by their name, which is made up from letters, digits

0− 9 in non-initial position, or a period, “.”, that acts like a letter. R is case sensitive.

Every object has a class.

asuR, version 0.08, thomas.fabbro@unibas.ch 3

Introducing R . . .help & comment

getting help
All functions and data sets in R have a documentation! For information on a function or

data set,

?function-name,

which is equivalent to

help(function-name ).

To search all help pages for a specific term

help.search("term ").

Help pages can also be displayed in a HTML version, therefore

help.start().

writing comments
A line starting with # is treated as a comment and not processed.
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Introducing R . . .your workspace

Objects are normally stored in a workspace.

ls() lists all objects currently in your workspace

rm(object) removes object from your workspace

save(object, file=path/file) saves an object to a file

load(path/file) loads an object from a file

save.image() saves your workspace to a file called .RData in your working directory.

Happens also if you type q("yes").

getwd() shows the path of your current working directory

setwd(path) allows you to set a new path for your current working directory
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Introducing R . . .additional packages

The functionality of an R installation can be extended by packages. Additional packages

provide you functions, data sets, and the corresponding documentation. A growing

number of packages is available from CRAN

CRAN.r-project.org

library() shows all packages installed on your system

library(asuR) loads an already installed package (here asuR) (asuR is the package that

accompanies this course)

library(help=asuR) displays all functions, data sets, and vignettes in a package (here

asuR)

data() shows the data sets of all installed packages

data(package="asuR") shows data set(s) from a package, here asuR

data(pea) loads the data set “pea” to your workspace (therefore the package asuR has to

be loaded)

vignette() shows vignettes from all installed packages

vignette(package="asuR") shows vignette(s) from a package (here asuR)

vignette("coursenotes") opens the pdf file with the course notes
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Introducing R . . .vector

c() creates a vector of the specified elements (c for concatenate)
> genus <- c("Daphnia", "Boletus", "Hippopotamus", "Salmo", "Linaria",
+ "Ixodes", "Apis")
> species <- c("magna", "edulis", "amphibius", "trutta", "alpina",
+ "ricinus", "mellifera")
> weight <- c(0.001, 100, 3200000, 1000, 2.56, 0.001, 0.01)
> legs <- as.integer(c(0, 0, 4, 0, 0, 8, 6))
> animal <- c(TRUE, FALSE, TRUE, TRUE, FALSE, TRUE, TRUE)

length() returns the length of a vector

paste() takes two vectors and concatenates them as characters

name <- paste(genus, species)

seq() to generate sequences of numbers

seq(from=4, to=7) : [1] 4 5 6 7
4:7 # short form of the previous
seq(from=4, to=7, by=0.5) : [1] 4.0 4.5 5.0 5.5 6.0 6.5 7.0

rep() to replicate elements of a vector

rep(c(2,4,6), times=3) : [1] 2 4 6 2 4 6 2 4 6
rep(c(2,4,6), each=3) : [1] 2 2 2 4 4 4 6 6 6
rep(c(2,4,6), times=3, each=2) : [1] 2 2 4 4 6 6 2 2 4 4 6 6 2 2 4 4 6 6

sample() takes a random sample of a vector

sample(genus) : [1] "Boletus" "Daphnia" "Ixodes" "Salmo"
[5] "Hippopotamus" "Linaria" "Apis"
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Introducing R . . . factor

A special type of a vector that usually stores categorical variables.

factor() makes a factor out of a vector
> kingdom <- factor(c("animal", "fungi", "animal", "animal", "plant",
+ "animal", "animal"))

levels() provides a character vector with the levels of a factor

Internally a factor is stored as a set of codes and an attribute giving the corresponding

levels.

unclass(kingdom) : [1] 1 2 1 1 3 1 1
: attr(,"levels")
: [1] "animal" "fungi" "plant"

If you take a subset of a factor always all levels of a factor are included, whether they are

in the subset or not.

levels(kingdom[1:2]) : [1] "animal" "fungi" "plant"

To exclude unused levels from the subset we can use

levels(kingdom[1:2, drop=TRUE]) : [1] "animal" "fungi"
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Introducing R . . .data.frame

Used to store data. It is a list of variables, all of the same length, possibly of different

types.

data.frame() a function to generate data frames
> bio <- data.frame(name = I(paste(genus, species)), weight_g = weight,
+ leg_no = legs, animal = animal, kingdom = kingdom)

names() displays the names of the variables in a data frame

row.names() displays the row names

str() a useful summary of the structure of a data frame

summary() provides a summary of all variables in a data frame

attach() makes the variables of a data frame accessible by their name

detach() the inverse

write.table() to write a data frame to a text file
> write.table(bio, file = "~/temp/bio.txt", row.names = FALSE,
+ sep = "\t")

read.table() to read a data frame from a text file
> bio.new <- read.table(file = "~/temp/bio.txt", header = TRUE,
+ sep = "\t", row.names = "name", colClasses = c("character",
+ "numeric", "integer", "logical", "factor"))
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Introducing R . . .matrix & array

A matrix has all its arguments of the same type and always two dimensions. An array is

like a matrix but with a flexible number of dimensions.

matrix() a function to create a matrix from a vector

rbind() takes vectors and binds them as rows together

cbind() takes vectors and binds them as columns together
> mat <- matrix(1:12, nrow = 3, ncol = 4, byrow = TRUE)
> mat1 <- matrix(c(1, 5, 9, 2, 6, 10, 3, 7, 11, 4, 8, 12), nrow = 3,
+ ncol = 4)
> mat2 <- rbind(c(1:4), c(5:8), c(9:12))
> mat3 <- cbind(c(1, 5, 9), c(2, 6, 10), c(3, 7, 11), c(4, 8, 12))

dim() returns the dimensions

dimnames() to give a name to the columns and rows
> dimnames(mat) <- list(c("first row", "second row", "last row"),
+ paste("c_", 1:4, sep = ""))
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Introducing R . . . list

A list is a collection of components that can be from different classes and of different

length.

> organisms <- list(animals = list(genera = c("Daphnia", "Hippopotamus",
+ "Salmo", "Ixodes", "Apis"), publications = 110), plants = list(genera = "Linaria",
+ publications = 50), fungi = "Boletus")

$ to extract components by their name

organisms$animals$genera : [1] "Daphnia" "Hippopotamus" "Salmo" "Ixodes" "Apis"
# a character vector of length five

[[ to extract a component by its position

organisms[[1]][[1]] : [1] "Daphnia" "Hippopotamus" "Salmo" "Ixodes" "Apis"
# a character vector of length five

[ to extract a sub-vector

organisms[[1]][1] : $genera
: [1] "Daphnia" "Hippopotamus" "Salmo" "Ixodes" "Apis"
# a list of length one
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Introducing R . . . function

function-name <- function(argument1, argument2, ... ){

function.body

}

An example for calculating the t value according to

(X̄1 − X̄2)− (µ1 − µ2)

Sp

√
1
n1

+ 1
n2

∼ tn1+n2−2 with, S2
p =

(n1 − 1)S2
1 + (n2 − 1)S2

2

n1 + n2 − 2

> my.t <- function(mean1, mean2, s1, s2, n1, n2, mu.diff = 0) {
+ s.pooled <- ((n1 - 1) * s1^2 + (n2 - 1) * s2^2)/(n1 + n2 -
+ 2)
+ t <- ((mean1 - mean2) - (mu.diff))/(sqrt(s.pooled * (1/n1 +
+ 1/n2)))
+ cat(round(t, 2))
+ cat(paste(": compare to a t dist. with", n1 + n2 - 2, "df \n"))
+ }

The function can then be called with, e.g.,

my.t(mean1=24, mean2=18, s1=3, s2=4, n1=34, n2=50) : 7.43; compare to a t dist. with 82 df
my.t(mean1=24, mean2=18, s1=3, s2=4, n1=34, n2=50, mu.diff=4) : 2.48; compare to a t dist. with 82 df
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Introducing R . . .practicals I

exercise 1 Put n=10 and compare 1:n-1 and 1:(n-1).

exercise 2 How can you produce a vector like,

a) 1 1 2 2 3 3

b) 1 2 1 2 1 2

c) 1 1 2 2 3 3 1 1 2 2 3 3 1 1 2 2 3 3

exercise 3 How can you produce a character vector containing,

a) "trt:1" "trt:1" "trt:2" "trt:2" "trt:3" "trt:3"

b) "ind:1" "ind:2" "ind:1" "ind:2" "ind:1" "ind:2"

exercise 4 Make a data frame with a variable called “treatment” and “individual”

and use therefore the character vectors of the previous exercise.

a) Check the dimensions of the data frame you created.
b) What is the class of the two variables within the data frame?
c) Add to the existing data frame a column with values from 2 to 7.
d) Save the data frame to file called “experiment.Rdata”, remove the

data frame from your workspace, and reload it from the file.
e) Save the data frame to a tabulator separated text file called

“experiment.txt”, remove the data frame from your workspace, and

read it in again.
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indexing
Many data manipulations in R rely on indexing. Indexing is used to address a subsets of

vectors, matrices, or data frame. The general form for using an index is

object[index-vector ] .

Indexing is used to select a subset of an object,

new.object <- object[index-vector ] ,

to replace a subset of an object,

object[index-vector ] <- new.element ,

or to sort an object (see below for an example).

On the following pages we will see what types the index-vector can take (for vectors

and data frames & matrices respectively).

The examples below always apply to the following vector object

> x <- c(11, 44, 33, NA, 22)
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indexing . . .vectors

logical vector

• must be of the same length as the vector

• values corresponding to TRUE are included; corresponding to FALSE are omitted

(NA inserts an NA at the corresponding position)

x[c(TRUE, FALSE, FALSE, FALSE, TRUE)] : [1] 11 22
x[!is.na(x)] : [1] 11 44 33 22
x[x>=33] : [1] 44 33 NA
x[(x==33 | x==44) & !is.na(x)] : [1] 44 33

vector of positive integers (factors)

• the values of the integers must be smaller or equal to the length of the vector

• the corresponding elements are selected and concatenated in the order they

were selected

• for factors as index vector (works like: x[unclass(factor)])

x[c(1,2,5)] : [1] 11 44 22
x[1:3] : [1] 11 44 33
x[order(x)] : [1] 11 22 33 44 NA
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indexing . . .vectors . . . continued

vector of negative integers

• the absolute values of the integers must be smaller or equal to the length of the

vector

• the corresponding elements are excluded

x[c(-1,-2,-5)] : [1] 33 NA

empty

• all components are selected

• identical to 1:length(object)

x[] : [1] 11 44 33 NA 22

vector of character strings

• only applies if object has names

• the corresponding elements are selected and concatenated in the order they

were selected

names(x) <- c("first", "largest", "middle", "non.available", "second")
x[c("largest", "first")]

: largest first
: 44 11
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indexing . . .data frames & matrices

Data frames and matrices can be indexed by giving two indices ([rows,columns ]).

bio[bio$animal, ] # all rows where animal is TRUE
bio[bio$weight_g>1, "name"] # name of all organisms heavier >1g

Columns in a data frame are often selected with the $ operator

bio$names # equivalent to bio[,"names"]

matrix
An array (and therefore also a matrix) can be indexed by a m× k matrix. Each of the m

rows of this matrix is used to select one element.

> mat <- matrix(1:9, ncol=3) : [,1] [,2] [,3]
: [1,] 1 4 7
: [2,] 2 5 8
: [3,] 3 6 9

select <- rbind(c(2,1),c(3,1),c(3,2))
mat[select] : [1] 2 3 6

If you extract elements from a data frame or a matrix, the result is coerced to the lowest

possible dimension. This default behavior can be changed by adding drop=FALSE,

bio[,"kingdom"] # returns a vector
bio[,"kingdom", drop=FALSE] # returns a data frame



asuR, version 0.08, thomas.fabbro@unibas.ch 20

indexing . . .practicals II

exercise 1 Create the following matrix,

[,1] [,2] [,3] [,4]
[1,] 1 5 9 13
[2,] 2 6 10 14
[3,] 3 7 11 15
[4,] 4 8 12 16

a) Extract the third column.
b) Extract the diagonal elements.
c) Extract the anti diagonal elements.

exercise 2 Create a vector with all integers from 1 to 1000 and replace all even

numbers by their inverse.

exercise 3 Load the data frame “swiss” from the package datasets.

a) Read the associated documentation.
b) Sort the data frame by the variable “Agriculture”.
c) Add a factor called “religion” to the data frame which has the level

“catholic”, if “Catholic” is larger or equal to 50, and “protestant”

otherwise.
d) Sort the data frame by the variable “religion” and “Agriculture”
e) Sort the data frame by the provinces (row.names).
f) Put the rows of the data frame in a random order
g) Remove the column “Education”
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graphics

Graphical excellence is that which gives to the

viewer the greatest number of ideas in the short-

est time with the least ink in the smallest space.

Edward R Tufte

The graphics system of R is very powerful. You can get a sample gallery with

demo(graphics).

A very large gallery with many complex examples is at

http://addictedtor.free.fr/graphiques/.
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graphics . . .human graphical perception

Rank Aspect

1 Position along a common scale

2 Position on identical but nonaligned scales

3 Length

4 Angle

5 Slope

6 Area

7 Volume

8 Color hue (poor ordering, good discrimination)

(Cleveland, William S. & McGill, Robert 1985)

asuR, version 0.08, thomas.fabbro@unibas.ch 25

graphics . . .some ideas

general • make data stand out, avoid superfluity, decrease the ink to

information ratio
• show data (e.g. rug()), if too numerous, consider showing a random

sample
• induce the viewer to think about the substance rather than about

methodology
• directly show what is in the focus of your study

(e.g. show the difference between treatments and the corresponding

confidence interval instead of only the mean (and confidence intervals)

for each treatment)

scale • inclusion of zero on a axis has to be thought about carefully

asuR, version 0.08, thomas.fabbro@unibas.ch 26



graphics . . .error bars

error bars can show:

• sample standard deviation of the data

• estimate of the standard deviation of a statistic (often called standard error)

• confidence intervals for a statistical quantity
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graphics . . .technically
devices The output is always directed to a particular device that dictates the output

format.

graphics functions The functions that are available can be divided into two categories,

highlevel functions create a new figure,
lowlevel functions add something to an already existing figure.

Note: In R there are two distinct graphics systems, the traditional and the grid

system. All the following explanations hold for the traditional graphics system

only. Many details of both systems are explained in some detail by Murrell

(2005).
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graphics . . .devices
hardcopy devices to create a physical picture, e.g., pdf(), png(), jpeg(), postscript()

window devices to create a graphic on a window system, e.g., x11(), win.graph()

You can see the features compiled into your build of R with

capabilities()

To produce e.g. histogram in pdf format

pdf(file="~/Desktop/myhistogram.pdf", width=4, height=3)
hist(rnorm(100))
dev.off()

Have a look at the documentation of a device, e.g., ?pdf, to see possible customisations.
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graphics . . .highlevel functions

plot() scatterplots

pairs() scatterplot matrix

hist() histogram

boxplot() boxplot

qqnorm() normal quantile-quantile plot

qqplot() general quantile-quantile plot

barplot() barcharts

dotchart() dotplot (continuous vs. categorical)

stripchart() stripplots (one-dimentional scatterplot)

an example:

> y <- rnorm(100)
> qqnorm(y)
> qqnorm(y, xlab = "theoretical quantiles", ylab = "sample quantiles",
+ main = "normal quantile--quantile plot", sub = "(because I like it lower case)",
+ xlim = c(-3, 3), ylim = c(-3, 3))
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graphics . . . lowlevel functions

abline() adding a line definded by the form a + bx (h=, v=, for horizontal and vertical

lines)

lines() adding lines

qqline() adding a line to a normal quantile plot through the first and third quantile

points() adding points

box() adding box

text() adding text to the plot

mtext() adding text into the margin

title() adding a title

legend() adding a legend

axis() adding axis

an example, continued:

> qqline(y)
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graphics . . .customizing

You can customize every aspect of the display using graphical parameters.

settings within par() affect all subsequent graphical output

settings within a highlevel function affect the whole plot

settings within a lowlevel function affect only this element of a plot

an example, revisited:

> par(fg = "blue")
> y <- rnorm(100)
> qqnorm(y, col = "red")
> qqline(y, col = "green")
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graphics . . .settings within par() only

mfrow numbers of figures on a page. mfrow=c(2,3) creates a 2-by-3 layout, filled

row-by-row

mfcol numbers of figures on a page. mcol=c(2,3) creates a x-by-y layout, filled

column-by-column

pty aspect ratio of the plot region. pty="s" for a squared plotting region

mai size of figure margin in inches. mai=c(4,3,2,1) for a plot with 4,3,2,1 inches of

margin at the c(bottom, left, top, right), respectively.

mar like mai but in lines of text

omi size of outer margin in inches (if several figures are printed on one page)

oma size of outer margin in lines of text (if several figures are printed on one page)
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graphics . . .settings within par(), high-, or lowlevel
functions

bg background color

fg foreground color (axis, boxes, etc.; called from within par() also sets col)

col color of lines, symbols, etc.

col.axis color of axis annotation

col.lab color of axis labels

col.main color of main title

pch data symbol type e.g., 1=circel, 2=triangle, 3=plus sign, 4=times sign,

5=diamond, etc.

cex multiplier for the size of text

cex.axis multiplier for the size of axis tick labels

cex.lab multiplier for the axis label

cex.main multiplier for the main title

lty line type e.g., 0=blank, 1=solid, 2=dashed, 3=dotted, 4=dotdash, 5=longdash,

6=twodash, etc.

lwd line width
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graphics . . .color

There are three different ways to define a color

name you can see what color names are understood by typing colors(), e.g., "blue".

function rgb() with the inensities of red, green and blue, e.g., rgb(0,0,1).

hexadeximal string of the form "#RRGGBB", e.g., "#0000FF".

an example, revisited again:

> par(col = "blue")
> y <- rnorm(100)
> qqnorm(y, col = rgb(1, 0, 0))
> qqline(y, col = "#00FF00")
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graphics . . .practicals III

exercise 1 Load the data set “trees” from the package datasets to your workspace.

a) Produce a scatterplot of all variables (“Volume”, “Girth”, and

“Height”) against each other.
b) Produce a pdf-file (9cm x 13cm) with a scatterplot of “Volume”

against “Girth”.
c) Customize the labels of the x– and y–axis, the main title, the color

etc. to produce a nice and informative plot.

exercise 2 Load the data set “swiss” from the package datasets to your workspace.

a) Produce a histogram of the variable “Fertility”.
b) Produce side by side a boxplot of “Fertility” for “catholic” and

“protestant” (see the previous practicals).
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graphics . . .practicals III . . . continued

exercise 3 Reconstruct the following scatterplot with the variables from data set

“swiss”.

a) How can this graph be improved?
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summarising data
statistical parameters

summary(pea$length) : Min. 1st Qu. Median Mean 3rd Qu. Max.
: 56.00 58.00 60.50 61.94 65.00 76.00

see also:

mean(), median(), quantile(), min(), max(), var(), fivenum()

graphs

boxplots

histogram

density estimation

quantile-quantile plots

asuR, version 0.08, thomas.fabbro@unibas.ch 39

summarising data . . .data characteristics
shape symmetric, left-skewed or right-skewed, and as uni-modal, bi-modal or

multi-modal

location (also called measure of central tendency) Measures of location are the mean,

median, mode, and mid-range.

spread Measured by the variance, the standard deviation, the interquartile range, and

the range.

outliers Don’t just toss out outliers, as they may be the most valuable members of a

data set.

clustering Clustering means that data bunches up around certain values. It shows up

clearly in a dotplot.

stripchart(pea$length~pea$trt)
hist(pea$length)
rug(pea$length) # the function rug can be very useful to visualize

# clustering togeter with e.g., a histogram

granularity if only certain discrete values are used. Discrete data shows always some

granularity, but also continous data can show granularity, e.g., after rounding.

Granularity can also be detected in a dotplot.
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summarising data . . .boxplot

The boxplot was invented by Tukey. He recommends the following:

Drawing the box:

Find the median. Then find the median of the data values whose ranks are

less than or equal to the rank of the median. This will be a data value or it

will be half way between two data values.

Drawing the whiskers:

The maximum length of each whisker is 1.5 times the interquartile range

(IQR). To draw the whisker above the 3rd quartile, draw it to the largest

data value that is less than or equal to the value that is 1.5 IQRs above the

3rd quartile. Any data value larger than that should be marked as an outlier.

“Why 1.5 times the interquartile range?”

Tukey anwered: “because 1 is too small and 2 is too large”.
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summarising data . . .boxplot . . . continued

length
60 65 70 75

●

cont

●

gluc

●

fruc

●

glucfruc

●

sucr

with R

boxplot(your.sample)

bwplot(~length|trt, layout=c(1,5), data=pea) # using: library(lattice)
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summarising data . . .histogram

length
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gluc
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0.00
0.10
0.20

sucr

with R

hist(your.sample, freq=FALSE)
truehist(your.sample) # from package MASS

histogram(~length|trt, type="density", layout=c(1,5), data=pea) # library(lattice)
# used for the graph
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summarising data . . .histogram . . . continued

histograms depend on the bin number
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summarising data . . .histogram . . . continued

histograms depend on the starting point
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summarising data . . .density

uniform kernel
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summarising data . . .density . . . continued
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summarising data . . .density . . . continued

density plots are indepentent of the starting point
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with R

hist(your.sample, freq=FALSE) # adjust ylim if needed
lines(density(your.sample))

densityplot(~length|trt, layout=c(1,5), data=pea) # library(lattice)
# was used for the graph you see
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summarising data . . .quantile-quantile plot

normal quantile-quantile plot
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with R

qqnorm(your.sample)
qqline(your.sample)
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summarising data . . .quantile-quantile plot . . . continued

normal quantile quantile plots for different distributions
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densities and distributions
R has build–in functions starting with

d for density with the argument x (quantile)

p for probability with the argument q (quantile)

q for quantile with the argument p (probability)

r for random with the argument n (number of observations)

and ending with the name of a distribution

beta Beta

binom Binominal

cauchy Cauchy

chisq χ2

exp Exponential

f Fisher’s F

gamma Gamma

geom Geometric

hyper Hypergeometric

lnorm Lognormal

logis Logistic

nbinom Negative binomial

norm Normal, Gaussian

pois Poisson

t Student’s t

unif Uniform

weibull Weibull
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densities and distributions . . .practicals IV

exercise 1 Generate a sample of size 100 from a t−distribution with 4 degrees of

freedom.

a) Produce a normal QQ-plot of this sample and assess how straight the

produced plot is by adding a straight line. Interprete!
b) Produce a histogram of the sample.

exercise 2 Generate a sample of size 100 from a normal distribution (µ = 0, σ = 1).

a) Produce a normal QQ-plot of this sample.
b) Produce a histogram of the sample.

exercise 3 Produce a plot with all four plots side by side (pdf-file, 20cm x 20cm).

a) Adjust in all four plots the range displayed on the x- and y-axis.
b) Compare the sample from the normal distribution with the sample

from the t−distribution.

exercise 4 Load the package asuR. Generate a sample of random numbers, e.g.,

x <- rchisq(20, df=2). Use the function norm.test(x) and try to identify

your data sample among 8 samples from a normal distribution of the

same size.

a) How large must the sample be, that you can clearly identify it?
b) Load the data set swiss again. Can you distinguish the variable

“Fertilty” from a sample taken from a normal distribution? Interpret!
c) Can you distinguish the variable “Catholic” from a sample taken from

a normal distribution? Interpret!
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classical statistics

t.test() student’s t-test for comparing two sample means; (paired=logical)

pairwise.t.test() for pairwise comparisons among means with correction for multiple

testing

prop.test() test for given or equal proportions

pairwise.prop.test() pairwise comparisons for pairwise proportions with correction for

multiple testing

chisq.test() Pearson’s Chi-squared test for count data

fisher.test() Fisher’s exact test for count data

binom.test() an exact binomial test

mantelhaen.test() Cochran-Mantel-Haenszel test for three-dimensional contingency

tables

mcnemar.test() McNemar’s Chi-squared test on two-dimensional contingency tables

var.test() an F−test to compare two variances

cor.test() for testing an association between paired samples

bartlett.test() for testing the homogeneity of variances

fligner.test() for testing the homogeneity of variances
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classical statistics . . . continued

Non-parametric tests:

friedman.test() an alternative to analysis of variance based on ranks

kruskal.test() one-way analysis of variance with ranks

ks.test() Kolmogorov-Smirnov test; a non-parametric test for comparing both! the

location and scale of two samples

shapiro.test() Shapiro-Wilk normality test

wilcox.test() Wilcoxon signed rank test; an alternative for the paired t−test

the same function is also used to perform a “Mann-Whitney”-test; to test if the

median of two samples differ
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classical statistics . . .t-test

The t−test can be used to test if two samples were taken from a population with the

same mean. To use the t−test this two populations need to be normally distributed and

have an equal variance.

data(pea)
glucose <- pea[pea$trt=="gluc","length"]
fructose <- pea[pea$trt=="fruc","length"]
t.test(glucose, fructose)

my.t(mean1=mean(glucose), mean2=mean(fructose), # the function my.t was defined p.12
+ s1=sqrt(var(glucose)), s2=sqrt(var(fructose)),
+ n1=10, n2=10)
pt(1.4, df=18) # the probability for a larger value
1-pt(1.4, df=18) # the one-sided $p-$value
(1-pt(1.4, df=18))*2 # the two-sided $p-$value
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linear models in R
fitted-model <- model-fitting-function (formula , data-frame)

A list of model fitting functions,

aov() for analysis of variance

lm() for regressions and analysis of covariance

glm() for generalized linear models

lmer() for linear mixed effect models (library lme4)

lme() for linear mixed effect models (library nlme, “older”, but much better

documented, see book by (Pinheiro & Bates 2000))
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linear models in R . . . continued

A fitted model object contains the information from the analysis. Several functions are

available to extract this information, to inspect the distributional assumptions of the

fitting process, and to look for models that better fit to the data.

plot() for diagnostic plots

summary() for a summary of the analysis

summary.lm() for a

anova() computes an analysis of variance table (see below)

coef() for the coefficients

resid() for the residuals

fitted() for the fitted values

predict() to predict new means for new data

deviance() for the residual sum of squares

df.residual() for the residual degrees of freedom

step() stepwise (“backward” or “forward”) model selection

To function anova() can additionally be used to compare fitted model objects.
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model formula
A model formula is of the form

y ∼ model.

It describes how the response y is modelled by a linear predictor specified by the model.

Operators used to specify a model

+ include additive terms

- remove a term

* crossing of factors

^a crossing to the ath degree

: interaction

%in% and / “nested in”

| indicates grouping

I() operators inside are used in an arithmetic sense

By default a formulae produces a model matrix with an intercept. If you want to remove

it use -1.
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model formula . . . continued

Arithmetic expressions can be used directly within a formula, e.g, log(y) ~ x. If you use

operators that are already used symbolically in the model formulae (see above) you must

tell R explicitly that you want to use them in the arithmetic sense (with function I(),

meaning: “inhibit the interpretation”).

y ~ I(a-1) # subtracts 1 from a
y ~ a - 1 # removes the intercept
y ~ a + I(b+c) # two terms: a and (b+c)
y ~ a + b + c # three terms: a, b, and c

Model formulae are often long and cumbersome to handle. The operators * and ^ are in

this situations useful.

(a+b+c)^2 and a*b*c - a:b:c # are interpreted as: a + b +c + a:b + a:c + b:c
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analysis of variance
model <- aov(length ~ trt, data=pea)

BEFORE you interpret a model, inspect it!

plot(model)

You can also inspect your model with your own graphs!

res <- resid(model)
qqnorm(res)...etc!
norm(model) # from library(asuR)
inspect(model) # from library(asuR)
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contrasts & comparisons
For factors with more than two levels, comparisons among different levels are usually of

interest (also comparisons among means of different levels).

planned vs. unplanned (a-priori vs. a-posteriory) Planned comparisons are

chosen independently of the results of the experiment and before the experiment

has been carried out. Unplanned comparisons suggest themselves as a result of an

experiment and they include all possible pairs (#levels(#levels− 1)/2) of

comparisons. Therefore they are also called multiple comparisons. To test whether

comparisons are significant we need to distinguish these two cases!

orthogonality The number of orthogonal comparisons is restricted to #levels−1

(two contrasts are orthogonal if the product of their coefficients sum to zero)

> data(pea)
> boxplot(x = split(x = pea$length, f = pea$trt), xlab = "levels of the factor \"trt\"",
+ ylab = "length of pea sections")
> m0 <- lm(length ~ trt, data = pea)
> coefficients(m0)
> options("contrasts")
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contrasts & comparisons . . .setting contrasts manually

To set the contrasts manually you specify a vector with coefficients for a linear

comparisons. To compare the addition of sugar we can compare the control to the mean

of the four sugar treatments. Therefore we subtract the mean pea length of the four

sugar treatments from the length of the control.

> contr1 <- rbind("control-sugar" = c(1, -1/4, -1/4, -1/4, -1/4))
> m1 <- lm(length ~ trt, data = pea, contrasts = list(trt = mycontr(contr = contr1)))
> summary(m1)

To test whether a mixture of sugars is different from pure sugars we calculate a second

contrast.

> contr2 <- rbind("control-sugar" = c(1, -1/4, -1/4, -1/4, -1/4),
+ "pure-mixed" = c(0, 1/3, 1/3, -1, 1/3))
> m2 <- lm(length ~ trt, data = pea, contrasts = list(trt = mancontr(contr = contr2)))

We can control whether it is orthogonal to the first by checking whether the product of

the coefficients add up to zero.

(1× 0) + (−1/4× 1/3) + (−1/4× 1/3) + (−1/4×−1) + (−1/4× 1/3) = 0
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contrasts & comparisons . . .setting contrasts manually . . . continued

In this particular example the investigator was interested in two other contrast. One is

the difference between monosaccharides and disaccharides and the other the difference

between glucose and fructose.

> contr3 <- rbind("control-sugar" = c(1, -1/4, -1/4, -1/4, -1/4),
+ "pure-mixed" = c(0, 1/3, 1/3, 1, 1/3), "monosaccharides-disaccharides" = c(0,
+ 1/2, 1/2, 0, -1))
> m3 <- lm(length ~ trt, data = pea, contrasts = list(trt = mancontr(contr = contr3)))
> contr4 <- rbind("control-sugar" = c(1, -1/4, -1/4, -1/4, -1/4),
+ "mixed-pure" = c(0, 1/3, 1/3, 1, 1/3), "monosaccharides-disaccharides" = c(0,
+ 1/2, 1/2, 0, -1), "gluc-fruc" = c(0, 1, -1, 0, 0))
> m4 <- lm(length ~ trt, data = pea, contrasts = list(trt = mancontr(contr = contr4)))
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contrasts & comparisons . . .contrast options in R

By default R uses treatment contrasts. You can set the treatment contrasts

explicitly with

> options(contrasts = c("contr.treatment", "contr.poly"))

For the example with pea data you could set the treatment contrasts manually

> treatment.contrast <- rbind(c(0, 1, 0, 0, 0), c(0, 0, 1, 0, 0),
+ c(0, 0, 0, 1, 0), c(0, 0, 0, 0, 1))
> treatment.contrast.names <- list("control - gluc", "control - fruc",
+ "control - glucfruc", "control - sucr")
> m.treatment <- lm(length ~ trt, data = pea, contrasts = list(trt = mancontr(treatment.contrast,
+ contr.names = treatment.contrast.names)))

This shows that the treatment contrasts are not true contrasts. Every coefficient

represents a comparison of one level with level 1; ommiting level 1 itself, which is given as

intercept. For the data set “pea”, the first coefficient (Intercept) is the mean of the cont

treatment, the second the difference between cont and gluc, the third the difference

between cont and fruc, etc.

The same coefficients with an intercept equal to the mean of all treatments can be

obtained with:

> new.trt.cont <- rbind("contr-gluc" = c(1, -1, 0, 0, 0), "contr-fruc" = c(1,
+ 0, -1, 0, 0), "contr-glucfruc" = c(1, 0, 0, -1, 0), "contr-sucr" = c(1,
+ 0, 0, 0, -1))
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contrasts & comparisons . . .contrast options in R . . . continued

Three other useful contrast options and their meaning:

sum contrasts

> options(contrasts = c("contr.sum", "contr.poly"))

setting the sum contrasts manually:

> sum.contrast <- list(c(4/5, -1/5, -1/5, -1/5, -1/5), c(-1/5,
+ 4/5, -1/5, -1/5, -1/5), c(-1/5, -1/5, 4/5, -1/5, -1/5), c(-1/5,
+ -1/5, -1/5, 4/5, -1/5))
> sum.contrast.names <- list("control - mean of all", "gluc - mean of all",
+ "fruc - mean of all", "glucfruc - mean of all")
> m.sum <- lm(length ~ trt, data = pea, contrasts = list(trt = mancontr(contr = sum.contrast,
+ contr.names = sum.contrast.names)))

helmert contrasts

> options(contrasts = c("contr.helmert", "contr.poly"))

setting the helmert contrasts manually:

> helmert.contrast <- list(c(-1/2, 1/2, 0, 0, 0), c(-1/6, -1/6,
+ 1/3, 0, 0), c(-1/12, -1/12, -1/12, 1/4, 0), c(-1/20, -1/20,
+ -1/20, -1/20, 1/5))
> helmert.contrast.names <- list("gluc-contr", "fruc-mean(contr,gluc)",
+ "glucfruc-mean(contr,gluc,fruc)", "sucr-mean(contr,gluc,fruc,glucfruc)")
> m.helmert <- lm(length ~ trt, data = pea, contrasts = list(trt = mancontr(contr = helmert.contrast,
+ contr.names = helmert.contrast.names)))
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contrasts & comparisons . . .contrast options in R . . . continued

successive differences (from package MASS)

> options(contrasts = c("contr.sdif", "contr.poly"))

setting the successive differences contrasts manually:

> sdif.contrast <- list(c(-1, 1, 0, 0, 0), c(0, -1, 1, 0, 0), c(0,
+ 0, -1, 1, 0), c(0, 0, 0, -1, 1))
> sdif.contrast.names <- list("gluc-control", "fruc-gluc", "glucfruc-fruc",
+ "sucr-glucfruc")
> m.sdif <- lm(length ~ trt, data = pea, contrasts = list(trt = mancontr(contr = sdif.contrast,
+ contr.names = sdif.contrast.names)))
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contrasts & comparisons . . .multiple comparisons

Theory of p–values of hypothesis tests and of coverage of confidence intervals applies to

a-priory comparisons only!

The following example illustrates the problem:

> y <- rnorm(1000, sd = 1)
> x <- rep(1:100, each = 10)
> dat <- data.frame(y = y, x = as.factor(x))
> m <- aov(y ~ x, data = dat)
> summary(m)
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contrasts & comparisons . . . multiple comparisons . . .Tukey’s HSD

Student (WS Gosset) discovered the distribution of the t statistic when there are two

groups to be compared and there is no underlying mean difference between them. When

there are x groups, there are x(x− 1)/2 pairwise comparisons that can be made. Tukey

found the distribution of the largest of these t statistics when there are no underlying

differences. Because the number of groups is accounted for, there is only a 5% chance

that Tukey’s HSD (Honest Significant Difference) will declare something to be

statistically significant when all groups have the same population mean.

Although stated differently in several textbooks, Tukey’s HSD is no per se conservative!

If you test only a subset of the possible pairwise comparisons, it is of course conservative,

because it assumes that you compare all.

The calculation of Tukey’s HSD in R is straightforward:

> m0 <- aov(length ~ trt, data = pea)
> t0 <- TukeyHSD(m0)
> plot(t0)
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contrasts & comparisons . . . multiple comparisons . . .a paradox?

A researcher compares the treatments a, b, and c. With a multiple comparison procedure

no result achieves statistical significance. On the same planet there are three researcher

one makes an experiment to test treatment a vs. b and another b vs. c. They both find

no statistical significance. But the third researcher investigates the difference of a vs. c

finds a significant result. He does not have to make adjustments and can impress others

with his findings.
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contrasts & comparisons . . . multiple comparisons . . .conclusion

The issues (of multiple comparisons) are non–technical

and indeed there may be some concern that they

may be overlooked if attention is focused only

on technical aspects of multiple-testing procedures.

(Cook, Richard J. & Farewell, Vern T. 1996)

Further reading:

Sokal, R. R. & Rohlf, J. F. (1995): Biometry: the principles and practice of

statistics in biological research. Freeman, New York
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contrasts & comparisons . . .practicals V

exercise 1 Load the data frame “immer” from the package MASS. It has the

variables “Var” for variety, “Loc” for locality and “Y1” and “Y2” for the

yield in two successive years.

a) Summaries the data set graphically with at least 4 different plots.
b) Is there a significant difference in average yield (across Y1 and Y2)

between varieties?
c) Inspect the model you have fitted. What steps do you need to do?

What are you looking at?
d) You have an a priory strong interest to know whether there is a

significant difference in average yield between the locality “C” and

“D”. Is there a significant difference?
e) How many other comparisons can you make without adjusting for

multiple comparisons.
f) Select one full set of contrasts manually.
g) You are a priory interested to know wheter one of the varieties M, P,

T, or V has a higher average yield (across years) than the mean of all

varieties?
h) You have no a priory expectation for the different varieties of barley.

Compute and plot the simultaneous confidence intervals for all

pairwise differences in the average yield. Are there varieties that differ

significantly?
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linear models I
one–way ANOVA:
E[yij] = µ + αi

yij ∼ indep. N (µ + αi, σ
2)

two–way ANOVA:
E[yijk] = µ + αi + βj

yijk ∼ indep. N (µ + αi + βj, σ
2)

simple linear regression:
E[yi] = µ(xi) = α + βxi

yi ∼ indep. N (α + βxi, σ
2)

multiple linear regression:
E[yij] = β0 + β1x1i

+ β2x2j

yij ∼ indep. N (β0 + β1x1i
+ β2x2j

, σ2)
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regression
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regression . . .a regression session

par(pch=16)
data(swiss)
plot(Fertility ~ Education, data=swiss, col="blue")
m0 <- lm(Fertility ~ Education, data=swiss)
abline(m0)
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identify(swiss$Fertility ~ swiss$Education, )
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regression . . .a regression session . . . continued

plot(m0)
inspect(m0) # library(asuR)
norm(m0) # library(asuR)

# to see the influence of row 45
m0.s1 <- lm(Fertility ~ Education, data=swiss[row.names(swiss)!="V. de Geneve",])

summary(m0)
:Call:
:lm(formula = Fertility ~ Education, data = swiss)
:
:Residuals:
: Min 1Q Median 3Q Max
:-17.036 -6.711 -1.011 9.526 19.689
:
:Coefficients:
: Estimate Std. Error t value Pr(>|t|)
:(Intercept) 79.6101 2.1041 37.836 < 2e-16 ***
:Education -0.8624 0.1448 -5.954 3.66e-07 ***
:---
:Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
:
:Residual standard error: 9.446 on 45 degrees of freedom
:Multiple R-Squared: 0.4406, Adjusted R-squared: 0.4282
:F-statistic: 35.45 on 1 and 45 DF, p-value: 3.659e-07
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regression . . .a regression session . . . continued
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regression . . .assumptions

Description

1. Linearity
Follows directly from the definition of the model
Y = Xβ + ε

2. Computational
The predictor variables are linearly independent. This is needed to find a unique estimate of
β.
rank(X)=k

3. Distributional
a) X is non–random
b) X is measured without error

The errors ε1, ε2, . . . , εn

c) −are normally distributed
d) −are independent of each other
e) −have zero mean
f) −have a constant (but unknown) variance (σ2)
4. Implicit
a) a The observations are equally reliable
b) The observations have an equal influence

a
Only needed if assumption 3.a) is violated.
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regression . . . inspection

Name Assumptiona Expected Pattern Function Suggestion

Stud. residuals vs. each predictor 1, 3e,f) random scatter about zero rxp() transformation
missing/obsolete variable

Stud. residuals vs. predicted values 1, 3e,f) random scatter about zero ryp() transformation

Normal prob. plot of stud. residuals 3c) straight through origin nrp()

(slope: 1)
Index plot of stud. residuals 3d,e) random scatter about zero irp()

Index plot of the leverage 4b) random scatter and small ilp() transformation

Index plot of Hadi’s influence mea-
sure

4b) random scatter and small ihp() transformation

Potential-Residual plot 4b) random scatter prp() look for better model
(in lower,left corner) or better data

a
Numbered according to previous table
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regression . . .model selection

So far we assumed that the variables that go into the model equation are chosen in

advance. In many situations, however, the set of variables to be included in the model

equation is not a priori determined. Then the selection of predictor variables is an

important step.

There are several predictor variable procedures. Procedures where one variable at a time

is added or dropped are the backward elimination, the forward selection, or the

stepwise method.

• forward selection:

1) start with a model equation containing only a constant term

2) add the most significant variable until no other significant variable can be

added

• backward elimination:

1) start with the most complex model equation

2) drop the least significant variable until all variables are significant

• stepwise:

1) start with a model equation containing only a constant term

2) add the variable with the smallest p−value (if it is significant)

3) drop the variable with the largest p−value (if it is not significant)

repeat 2) and 3) until there is no variable to be added or dropped

This procedures should be used with caution and not mechanically! Without collinear

data they will give nearly the same result.
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regression . . . a regression session . . .revisited

f.min <- formula(Fertility ~ 1)
f.max <- formula(Fertility ~ Education*Agriculture*Examination*Catholic*Infant.Mortality)

m1 <- lm(Fertility ~ 1, data = swiss) # step 1
addterm(m1, scope=f.max, test="F")

m2 <- update(m1, .~.+Education) # step 2
dropterm(m2, test="F")
addterm(m2, scope=f.max, test="F")

m3 <- update(m2, .~.+Catholic) # step 3
dropterm(m3, test="F")
addterm(m3, scope=f.max, test="F")

m4 <- update(m3, .~.+Infant.Mortality) # step 4
dropterm(m4, test="F")
addterm(m4, scope=f.max, test="F")

m5 <- update(m4, .~.+Education:Catholic) # step 5
dropterm(m5, test="F")
addterm(m5, scope=f.max, test="F")

m6 <- update(m5, .~. + Agriculture) # last step
dropterm(m6, test="F")
addterm(m6, scope=f.max, test="F")

# automatic model selection with AIC: stepwise
step(m1, scope=list(upper=f.max, lower=f.min), direction="both")
# automatic model selection with AIC: foreward
step(m1, scope=list(upper=f.max, lower=f.min), direction="forward")
# automatic model selection with AIC: backward
m99 <- lm(f.max, data=swiss) # maximal model
step(m99, scope=list(upper=f.max, lower=f.min), direction="backward")
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regression . . .practicals VI

exercise 1 Load the data set “hills” from package MASS.

The aim of analysing this data set is to find a formula that allows to

predict the time of a race by the distance and the climb.

a) If you go on a walk how do you predict the time you need as a

function of distance and climb?
b) For a simpler interpretation, transform the variable “dist” in

kilometers (1mile=1.609km) and the variable “climb” in meters

(1feet=304.8mm).
c) Fit a multiple regression using the variable “dist” and “ climb” as

predictors (without interaction). Does the model meet your

expectations from exercise a)?
d) Inspect the model. Are there races with a high residual and/or

leverage? -which?
e) How many minutes of difference is between the predicted and the

observed time of the “Knock Hill” race.
f) If you study the coefficients of your model and their statistical

significance carefully, you find a result that is impossible on physical

grounds. Explain which coefficient is involved and why this result is

impossible?
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linear models II
a regression that is nonlinear in its parameters:
1) E[log(yi)] = α + βxi

log(yi) ∼ indep. N (log(α) + βlog(xi), σ
2)

2) log(E[yi]) = α + βxi

yi ∼ indep. N (e(α+βxi), σ2)

The decision between this two is made by checking the homoscedasticity,

in 1) log yi is homoscedastic,

in 2) yi is homoscedastic.
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linear models II . . .a second regression session

data(mytrees) # library(asuR)

m0 <- lm(log(Volume) ~ log(Girth)+ log(Height), data=mytrees)

E[yij] = β0 + β1x1i
+ β2x2j

yij ∼ indep. N (β0 + β1x1i
+ β2x2j

, σ2)

E[log V olumeij] = log Intercept + β1 log Girthi + β2 log Heightj
E[V olumeij] = Intercept ∗Girthβ1

i ∗Heightβ2
j

log V olumeij ∼ indep. N (Intercept ∗Girthβ1
i ∗Heightβ2

j , σ2)
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tapply & table
tapply(flowers$flower, flowers$alt, mean)

: high low
: 20.7804 999.6610

The function tapply() is used to apply a function, here mean(), to each group of

components of the first argument, here flower, defined by the levels of the second

component, here alt.

It is also possible to specify several grouping factors within a list,

tapply(plants$height, list(plants$family, plants$type), mean, na.rm=FALSE)

To get a contingency table (a table with the number of elements in each segment) you

can use,

tapply(plants$height, list(plants$family, plants$type), length)
table(plants$family, plants$type)

: herbaceous shrub tree
: Fabaceae 218 56 6
: Rosaceae 76 76 28
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linear models III
ANCOVA, analysis of covariance:
E[yij] = β0 + β1j

+ β2xi

yij ∼ indep. N (β0 + β1j
+ β2xi, σ

2)
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linear models III . . .an analysis of covariance session

plot(log(flower) ~ log(total), type="n", data=flowers)
points(log(flower) ~ log(total), data=flowers[flowers$alt=="high",], col="red")
points(log(flower) ~ log(total), data=flowers[flowers$alt=="low",], col="blue")
abline(lm(log(flower) ~ log(total), data=flowers[flowers$alt=="high",]),col="red")
abline(lm(log(flower) ~ log(total), data=flowers[flowers$alt=="low",]), col="blue")
identify(log(flowers$flower) ~ log(flowers$total))

# a model with two intercepts and two slopes
m1 <-lm(log(flower) ~ alt/log(total) -1, data=flowers)
# a model with two intercepts and one slope
altdiff <- rbind("high-low"=c(1,-1))
m2 <- lm(log(flower) ~ alt + log(total), data=flowers, contrasts=list(alt=mancontr(contr=altdiff)))
# are separate slopes needed?
anova(m1, m2)

#inspection
inspect(m2)

#different subsets
subset <- c(1,9)
m1.s1 <-update(m1, .~., subset=-c(subset))
m2.s1 <- update(m2,.~., subset=-c(subset))
anova(m1.s1, m2.s1)
print(coef(m2))
print(coef(m2.s1))
print(diff <- coef(m2.s1)-coef(m2))
summary(m2.s1)

asuR, version 0.08, thomas.fabbro@unibas.ch 89

linear models III . . .an analysis of covariance session . . . continued

#drawing a new plot with the fitted lines
plot(log(flower) ~ log(total), type="n", data=flowers)
points(log(flower) ~ log(total), data=flowers[flowers$alt=="high",], col="red", pch="h")
points(log(flower) ~ log(total), data=flowers[flowers$alt=="low",], col="blue", pch="l")
abline(-1.33038, 0.99920, col="red")
abline(-2.0019, 0.99920, col="blue", lty=2)
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linear models III . . .practicals VII

exercise 1 Load the data set “gala” from package asuR. Read the documentation.

a) Select the predictors for a regression model of the number of tortoise

species on the 30 Galapagos islands using stepwise model selection.
b) What predictors would you select with a backwards and forewords

model selection.
c) Inspect the model you found in a) carefully and describe possible

deviations from the model assumptions. (islands with high leverage?,

are this islands influential?, on which parameters? are there islands

with high residuals?)
d) Do you find a good transformation for the response variable or the

predictors that bring you closer to the model assumptions?

exercise 2 Load the data set “cathedral” from package asuR. Read the

documentation.

a) Perform an analysis of covariance.
b) Make a scatterplot of the data and add your final model line(s).
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Generalized Linear Models
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glm . . .basic structure

A generalized linear model is determined by:

• the form of the linear predictor, η (coding and selection of predictor variables)

η = zT
i β (e.g., α + βxi)

• the response or link function, h or g

µi = h(ηi) = h(α + βxi)

link function, g (the inverse of h):

g(µi) = νi = α + βxi

• the type of the exponential family which specifies the distribution of yi, given zi
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glm . . .continuous response: normal regression

ηi = α + βxi linear predictor

E[yi] = h(ηi) = ηi response function: identity

yi ∼ indep. N (α + βxi, σ
2) distribution: normal with constant variance

> m.lm <- lm(Fertility ~ Education, data = swiss)
> m.glm <- glm(Fertility ~ Education, data = swiss, family = gaussian(link = identity))
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glm . . .countinous response: normal regression with log
link

ηi = α + βxi linear predictor

E[yi] = h(ηi) = e(ηi) = eα · eβxi response function: exponential

yi ∼ indep. N (eα · eβxi, σ2) distribution: normal with constant variance

> m.glm.gl <- glm(Fertility ~ Education, data = swiss, family = gaussian(link = log))
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glm . . .countinous response: log link with a gamma
distribution

ηi = α + βxi linear predictor

E[yi] = h(ηi) = e(ηi) = eα · eβxi response function: exponential

yi ∼ indep. Γ{φ, φ/(α + βxi)} distribution

> m.glm.Gl <- glm(Fertility ~ Education, data = swiss, family = Gamma(link = log))
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glm . . . inspection

Plot the deviance residuals versus the estimated values of the linear predictor

> dep(your.model)

Questions:

A) is the relationship linear?

otherwise:

1. change the choice of predictors

2. change the transformations of the predictor

3. change the link function (but there are only few choices...)

4. do not transform the response in glm since this would change the distribution

of the response (you would do this in a lm)

B) is the variance constant?

if not:

1. change the variance function

2. use weights if you identify some features of the data that suggest a suitable

choice
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glm . . . inspection . . . continued

relationship between predictors and response

A partial residual plot allows to study the effect of the predictor in focus and taking the

other predictors into account. Partial residuals are calculated as:

e∗ij = ei + β̂jXij (1)

> rpp(your.model)

Question:

Is the relationship linear?

otherwise:

1. change the transformations of the predictor
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glm . . . inspection . . . continued

checking the link assumption

Plotting the linearized response against the linear predictor, η̂

> lep(your.model)

Question:

Is the relationship linear?

otherwise:

1. change the link function
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glm . . . inspection . . . continued

unusual points

> hnp(your.model)

Question:

are there points off the trend?

otherwise:

1. Is the data point correct?
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glm . . .binomial response with continuous covariate

odds: γ(π) = π
1−π , where π is the probability of success.

ηi = α + βxi linear predictor

E[yi] = πi = h(ηi) = exp(η)/(1 + exp(η)) link function g(): logit

yi ∼ indep. B(πi), withvar(y − i) = πi(1− πi) distribution: Bernoulli

π
1−π = exp(α + βxi), and therefore

eβ = γ(x+1)
γ(x)

This shows that the coefficient β can be interpreted in a natural way because eβ

corresponds to the factor by which odds, γ(x), increase (if β > 0) or decrease (if β < 0)

if x is increased by one unit.
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glm . . .binomial response with continuous
covariate . . . example

> model.glm <- glm(fail ~ temperature, data = oring, family = binomial)
> summary(model.glm)

: ...
: Coefficients:
: Estimate Std. Error z value Pr(>|z|)
: (Intercept) 15.0429 7.3786 2.039 0.0415 *
: temperature -0.2322 0.1082 -2.145 0.0320 *
: ...
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β = −0.2322, which means

that the odds decrease with

every degree Fahrenheit by

e−0.2322 = 0.793. An-

other helpful mark is the

temperature where half of

all O-rings fail −α/β =

−15.0429/−0.2322 = 64.8
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glm . . .binomial response with categorical covariate

There are three forms to specify a generalized linear models for this data:

1. y.matrix <- cbind(#success, #faillures)

model <- glm(y.matrix ~ ..., family=binomial)

2. with success as a logical vector or a two-level factor (the first level is treated as 0,

all others as 1!)

success <- c(TRUE, FALSE, TRUE, TRUE, TRUE, FALSE,...)

or

success <- factor(c(0,1,0,1,0,1,1,0,0,...))

model <- glm(success ~ ..., family=binomial)

3. y <- #success/#total

weight <- #success*#total

model <- glm(y ~ ..., family=binomial, weights=weight)
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glm . . .binomial response with categorical
covariate . . . example

Duration of unemployment:
≤ 6 months > 6 months

male 403 167

female 238 175

> data(unemployment, package = "asuR")
> my.contrast.matrix <- rbind("male-female" = c(1, -1))
> my.model.object <- glm(success ~ gender, data = unemployment,
+ family = binomial, contrasts = list(gender = mancontr(my.contrast.matrix)))
> summary(my.model.object)
> exp(0.5735)
> p <- c(female = 175/(238 + 175), male = 167/(403 + 167))
> odds <- p/(1 - p)
> odds["female"]/odds["male"]
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glm . . .practicals VIII

exercise 1 Describe the three elements that determine a generalized linear model?

exercise 2 Load the data set “gala” from package asuR again.

a) Fit a generalized linear model to the data by selecting an appropriate

distribution, a link function, the predictor variables and their

transformation. Discuss your selections.
b) Compare with the model that you selected in the previous practicals.

exercise 3 Load the data set “budworm” from package asuR.

a) Is there a difference in death rate between genders?
b) Do the genders respond differently to an increasing dose of toxin?
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random effects
fixed effect An effect that is attributable to a finite set of levels of a factor that occur

in the data and which are there because we are interested in them. The interest

in fixed effects lies in estimating the mean.

random effect An effect that is attributable to a (usually) infinite set of levels of a

factor, of which only a random sample are deemed to occur in the data. The

interest in random effects lies in estimating their variance. Random effects are

not defined on a continuum but they are generally real objects.

E[yijk | ai] = µ + ai + βj

yijk | ai ∼ indep. N (µ + ai + βj; σ2
a + σ2)
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random effects . . .nested random factors
E[ytijk | si, cij] = µ + βt + si + cij

ytijk | si, cij ∼ indep. N (µ + βt + si + cij; σ2
s + σ2

c + σ2)

m0 <- lmer(y ~ gen + (1|school/class), data=schoolclass)
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random effects . . .crossed random factors
E[ytijk | ri, cj] = µ + βt + ri + cj

ytijk | ri, cj ∼ indep. N (µ + βt + ri + cj; σ2
r + σ2

c + σ2)

m0 <- lmer(int ~ trt + (1|row) + (1|col), data=wellplate)
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test exam . . .practicals IX

exercise 1 Load the data set “flowers” form package asuR.

a) Sort the data set by the variable “alt” and within “alt” sort it by the

variable “total”.
b) Count the number of plants with flowers that are heavier than 20 mg

at high and low altitude.
c) Put the rows of the data set in a random order.
d) Produce a scatterplot of with the variable “total” on the x−axis and

the variable “flower” on the y−axis. Use a different plotting style for

plants from high and low altitude, that on a black and white print it

is easy to distinguish between them.
e) Produce a histogram with a density estimate for the total plant mass

of species from high altitude. Redo the same plot after taking the

logarithm of plant mass. Which data characteristics change (text)? Is

the data normally distributed (text)?
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test exam . . .practicals IX . . . continued

exercise 2 Load the data set “weight” from package asuR.

a) Calculate the mean and variance for all four combinations of protein

source and amount.
b) To study the weightgain in rats, fit an two-way analysis of variance

with an interaction term to the data.
c) (text) Inspect the model. Describe one diagnostic plot you are

looking at. Which assumption(s) can you inspect with this plot?

What pattern do you expect to see. Do you find this pattern? Are

there deviations from you expectation?
d) You do not remember how the contrasts option is set on your

computer anymore. Set the contrasts manually to compare the

weightgain for proteins from “Beef” and “Cereal”. What is the

estimate for the difference between the two protein sources?
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test exam . . .practicals IX . . . continued

exercise 3 Load the data set “BtheB” from package asuR. (bdi means: “Beck

Depression Inventory”)

a) Rearrange the data from the “wide form” in which it appears into the

“long form” in which each separate repeated measurement and

associated covariate values appear as a separate row in a data frame.

Make one column called drug, length, treatment, bdi.pre,

subject, time, bdi.
b) Construct the boxplots of each of the five repeated measures

separately for each treatment group. (You can run the example code

from the documentation of the data set to see how the result should

look; use the methods and functions we learned in the course to

construct similar plots)
c) Fit a linear mixed effect model where the subject has a random effect

on the intercept (using lmer() from library lme4).
d) Fit a linear mixed effect model where the subject has a random effect

on the intercept and the slope.
e) Test whether the more complex model is significantly better than the

simple one.
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bootstrap
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bootstrap . . .nonparametric bootstrap

> data(flowers)
> plantmass <- flowers[flowers$alt == "high", "total"]
> flowers.fun <- function(data, i) {
+ mean(data[i])
+ }
> b0.n <- boot(data = flowers[flowers$alt == "high", "total"],
+ statistic = flowers.fun, R = 99)
> plot(b0.n)
> print(b0.n)
> mean(plantmass) - qt(0.975, length(plantmass) - 1) * sqrt(var(plantmass))/sqrt(length(plantmass))
> mean(plantmass) + qt(0.975, length(plantmass) - 1) * sqrt(var(plantmass))/sqrt(length(plantmass))
> sqrt(var(plantmass))/sqrt(length(plantmass))
> boot.ci(b0.n, type = c("perc"), conf = 0.9)
> sort(b0.n$t)
> boot.ci(b0.n, type = c("basic"), conf = 0.9)
> boot.ci(b0.n, type = c("norm"), conf = 0.9)
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bootstrap . . .parametric

> flowers.fun <- function(data) {
+ mean(data)
+ }
> flowers.sim <- function(data, mle) {
+ rnorm(length(data), mean = mle[1], sd = mle[2])
+ }
> flowers.mle <- c(mean(plantmass), sqrt(var(plantmass)))
> b0.p <- boot(data = plantmass, statistic = flowers.fun, R = 99,
+ sim = "parametric", ran.gen = flowers.sim, mle = flowers.mle)
> plot(b0.p)
> print(b0.p)
> boot.ci(b0.p, type = c("perc", "basic", "norm"), conf = 0.9)
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bootstrap . . .application in linear regression

> fit.model <- function(data, i) {
+ l1 <- lm(log(flower) ~ log(total) + alt, data = data[i, ])
+ coef(l1)["altlow"]
+ }
> b0 <- boot(data = flowers, statistic = fit.model, R = 99)
> boot.ci(b0, type = c("norm", "perc", "basic"))
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solutions . . .practicals I

exercise 1 see the sequence of logical operators in the appendix
exercise 2 > rep(1:3, each = 2)

> rep(1:2, times = 3)
> rep(1:3, each = 2, times = 3)

exercise 3 > paste("trt:", rep(1:3, each = 2), sep = "")
> paste("ind:", rep(c(1, 2), times = 3), sep = "")

exercise 4 > experiment <- data.frame(treatment = paste("trt:", rep(1:3, each = 2),
+ sep = ""), individual = paste("ind:", rep(c(1, 2), times = 3),
+ sep = ""))
> dim(experiment)
> str(experiment)
> experiment <- cbind(experiment, 2:7)
> save(experiment, file = "~/Desktop/experiment.Rdata")
> rm(experiment)
> load(file = "~/Desktop/experiment.Rdata")
> write.table(experiment, file = "~/Desktop/experiment.txt")
> rm(experiment)
> experiment <- read.table(file = "~/Desktop/experiment.txt", header = TRUE)
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solutions . . .practicals II
exercise 1 > mat <- matrix(1:16, nrow = 4)

> mat[, 3]
> diagonal <- diag(mat)
> dia <- cbind(c(1:4), c(1:4))
> diagonal <- mat[dia]
> antidia <- cbind(c(1:4), c(4:1))
> antidiagonal <- mat[antidia]

exercise 2 > vec <- as.integer(1:1000)
> even.numbers <- seq(from = 2, to = 1000, by = 2)
> even.numbers <- vec[vec%%2 == 0]
> vec[even.numbers] <- 1/vec[even.numbers]
> vec[seq(from = 2, to = 1000, by = 2)] <- 1/(vec[seq(from = 2,
+ to = 1000, by = 2)])

exercise 3 > help(swiss)
> swiss[order(swiss$Agriculture), ]
> swiss <- cbind(swiss, religion = factor(NA, levels = c("catholic",
+ "protestant")))
> swiss$religion[swiss$Catholic >= 50] <- "catholic"
> swiss$religion[swiss$Catholic < 50] <- "protestant"
> swiss[order(swiss$religion, swiss$Agriculture), ]
> swiss[order(row.names(swiss)), ]
> order(row.names(swiss))[dim(swiss)[1]:1]
> order(row.names(swiss), decreasing = TRUE)
> swiss[sample(row.names(swiss)), ]
> swiss$Education <- NULL
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solutions . . .practicals III
exercise 1 > data(trees)

> pairs(trees)
> xxp(trees)
> pdf(file = "~/Desktop/trees_example.pdf", width = 13/2.54, height = 9/2.54)
> plot(trees$Volume ~ trees$Girth)
> plot(Volume ~ Girth, data = trees)
> plot(trees$Girth, trees$Volume)
> dev.off()

exercise 2 > hist(swiss$Fertility)
> plot(swiss$religion, swiss$Fertility)

exercise 3 > pdf("~/Desktop/swissdata.pdf", width = 13/2.54, height = 9/2.54)
> par(mar = c(4, 4, 4, 4))
> plot(Agriculture ~ Fertility, data = swiss, main = "swiss data (1888)",
+ xlab = "fertility", xlim = c(1, 100), ylim = c(1, 100), axes = FALSE,
+ ylab = "", col = "red")
> points(Examination ~ Fertility, data = swiss, pch = 3, xlim = c(1,
+ 100), col = "blue")
> axis(side = 1)
> axis(side = 2, col.axis = "red", col = "red")
> mtext(text = "agriculture", side = 2, line = 3, col = "red")
> axis(side = 4, col.axis = "blue", col = "blue")
> mtext(text = "examination", side = 4, line = 3, col = "blue")
> legend(x = 10, y = 90, legend = c("agriculture", "examination"),
+ col = c("red", "blue"), text.col = c("red", "blue"), pch = c(1,
+ 3))
> dev.off()
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solutions . . .practicals IV
exercise 1 > t.sample <- rt(100, df = 3)

> qqnorm(t.sample)
> qqline(t.sample)
> hist(t.sample, freq = FALSE)
> lines(density(t.sample))

exercise 2 > norm.sample <- rnorm(100)
> qqnorm(norm.sample)
> qqline(norm.sample)
> hist(norm.sample)

exercise 3 > pdf("~/Desktop/comparet_norm.pdf", width = 20/2.54, height = 20/2.54)
> par(mfrow = c(2, 2))
> qqnorm(t.sample)
> qqline(t.sample)
> qqnorm(norm.sample)
> qqline(norm.sample)
> hist(t.sample)
> hist(norm.sample)
> dev.off()
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solutions . . .practicals V
exercise 1 > m <- aov((Y1 + Y2)/2 ~ Loc + Var, data = immer)

> summary(m)
> co <- rbind("C-D" = c(1, -1, 0, 0, 0, 0))
> m1 <- aov((Y1 + Y2)/2 ~ Loc + Var, contrasts = list(Loc = mancontr(co)),
+ data = immer)
> tk <- TukeyHSD(m, which = "Var")
> plot(tk)
> densityplot(~(Y1 + Y2)/2 | Var, data = immer)
> tapply((immer$Y1 + immer$Y2)/2, immer$Var, mean)
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solutions . . .practicals VI
exercise 1 > data(hills)

> hills.si <- hills
> hills.si$dist <- hills.si$dist * 1.609
> hills.si$time <- hills.si$time/60
> hills.si$climb <- hills.si$climb * 0.3048
> n0 <- lm(time ~ dist + climb, data = hills.si)
> plot(n0)
> inspect(n0)
> influence.measures(n0)
> summary(n0)
> residuals(n0)["Knock Hill"]
> hills.si[row.names(hills.si) == "Knock Hill", "time"]
> n0.s1 <- update(n0, . ~ ., subset = -18)
> n1 <- lm(time ~ dist * climb, data = hills.si, subset = -18)
> inspect(n0)
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solutions . . .practicals IX
exercise 1 > data(flowers)

> flowers[order(flowers$alt, flowers$total), ]
> subset <- flowers[flowers$flower > 20, ]
> table(subset$alt)
> flowers[sample(row.names(flowers)), ]
> plot(flower ~ total, type = "n", data = flowers)
> points(flower ~ total, data = flowers[flowers$alt == "high",
+ ], col = "red", pch = "h")
> points(flower ~ total, data = flowers[flowers$alt == "low", ],
+ col = "blue", pch = "l")
> par(mfrow = c(1, 2))
> x <- flowers[flowers$alt == "high", "total"]
> hist(x, freq = FALSE, main = "untransformed")
> lines(density(x))
> hist(log(x), freq = FALSE, main = "log transformed")
> lines(density(log(x)))
> norm(log(x))
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solutions . . .practicals IX
exercise 2 > tapply(weight$weightgain, list(weight$source, weight$type), mean)

> tapply(weight$weightgain, list(weight$source, weight$type), var)
> m1 <- lm(weightgain ~ source * type, data = weight)
> levels(weight$source)
> newcontr <- rbind("beef-cereal" = c(1, -1))
> m1 <- lm(weightgain ~ source * type, data = weight, contrasts = list(type = mancontr(newcontr)))
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solutions . . .practicals IX
exercise 3 > data(BtheB)

> BtheB$subject <- factor(row.names(BtheB))
> nobs <- nrow(BtheB)
> BtheB.long <- reshape(BtheB, idvar = "subject", varying = c("bdi.2m",
+ "bdi.4m", "bdi.6m", "bdi.8m"), direction = "long")
> BtheB.long$time <- rep(c(2, 4, 6, 8), rep(nobs, 4))
> plot(bdi ~ time, data = BtheB.new[treatment == "TAU", ], xlab = "Time (in months)",
+ ylab = "BDI", main = "Treated as Usual", ylim = c(0, 55))
> plot(bdi ~ time, data = BtheB.new[treatment == "BtheB", ], xlab = "Time (in months)",
+ ylab = "BDI", main = "Beat the Blues", ylim = c(0, 55))
> btb.1 <- lmer(bdi ~ bdi.pre + time + treatment + drug + length +
+ (1 | subject), data = BthtB_long, na.action = na.omit)
> btb.2 <- lmer(bdi ~ bdi.pre + time + treatment + drug + length +
+ (time | subject), data = BthtB_long, na.action = na.omit)
> anova(btb1, btb.2)
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appendix . . .order, sort, rank, sample

data : [1] 0.6 0.5 0.2 0.1 0.9 0.4 0.3 0.8 0.7
sort(data) : [1] 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
order(data) : [1] 4 3 7 6 2 1 9 8 5
rank(data) : [1] 6 5 2 1 9 4 3 8 7
sample(data) : [1] 0.5 0.8 0.1 0.4 0.3 0.7 0.2 0.9 0.6

Application:

dat <- data.frame(trt=c("cold","hot","cold","cold","hot","hot"), growth=c(8.5,9.8,5.1,6.2,7.1,8.6))

Sort a data frame according to the treatment (variable “trt”):

dat[order(dat$trt),]

Put the rows of the data frame in a random order:

dat[sample(row.names(dat))],
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appendix . . . locigal operators

$ list extraction

@ slot extraction

[ [[ vector & list element extraction

^ exponentiation

- unary minus

: sequence generation

%% %/% %*% and other special operators %. . . %

* / multiply, divide

+ - ? addition, subtraction, documentation

< > <= >= == != comparison operators

! logical negation

& && logical operators

| || logical operators

~ formula

<<- assignment within a function

<- assignment
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appendix . . .missing, indefinite, infinite values

NA Not Available

The value NA marks a “not avalailable” or “missing” value. Missing values are

handeled differently by different functions. Many function have an argument

like na.rm=TRUE to remove missing values. Other functions ignore the total row

of a data frame if it contains missing values.

NaN Not a Number

1/0 - 1/0 : NaN

Inf Infinity

1/0 : Inf
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appendix . . .glm families

family accepted links

gaussian identity

log

inverse

binomial logit (logistic)

probit (normal)

cauchit

log

cloglog complementary log-log

Gamma inverse

identity

log

poisson log

identity

sqrt

inverse.gaussian 1/mu^2

inverse

identity

log

Note: Models with the same linear predictor, η, but with different link functions, g, can

be compared informally, but not tested, by comparing the residual deviance.
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appendix . . .recycling rule

In expressions that combine long and a short vectors, the shorter vectors are recycled

until they match the length of the longest one. Fractional recycling is allowed but will

print a warning message.

x <- c(2,3,4,5) # a vector of length 4
y <- 2 # a vector of length 1
z <- c(3,4,5) # a vector of length 3
x*y : [1] 4 6 8 10

# a vector of length 4
x*z : [1] 6 12 20 15

: Warning message:
: longer object length
: is not a multiple of shorter object length in: x * z
# a vector of length 4 (with a warning!)
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appendix . . . labelling axes

strings with a special meaning

\n new line

\t tabulator

For an overview of possible mathematical notation see:

demo(plotmath)

expression(paste("temperature (", degree,"C)"))

temperature (°°C)

expression(paste("conc. (", mg/mg[plain("dry mass")],")"))

conc. (mg mgdry mass)

expression(paste("my measurement: ", sqrt(frac(x,y))))

my measurement: 
x

y

expression(paste(y[i] − bold(z)[i]^T, bold(beta)))

yi −− zi
Tββ

figure Some examples of

the usage of the function

expression. If you need to

put labels on several lines it

is often easier to use several

calls to the low level func-

tion mtext() than creat-

ing one label that spans

over several lines.
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appendix . . .Satterthwaite

Table 1: ANOVA table for balanced data

df Mean Squares (MS) E(MS)

factor A A− 1

A∑
a=1

B∑
b=1

I(z̄a − z̄)2 / dfA σ2
R + Iσ2

B + IBσ2
A

factor B A(B − 1)

A∑
a=1

B∑
b=1

I(z̄ab − z̄a)
2 / dfB σ2

R + Iσ2
B

residual, R T − AB

A∑
a=1

B∑
b=1

I∑
i=1

(zabi − z̄ab)
2 / dfR σ2

R

where

factor A with the levels (a = 1, 2, . . . , A)

factor B with the levels (b = 1, 2, . . . , B) in every level of the factor A

and for every level of the factor B the replicates (i = 1, 2, . . . , I)

and T is the total number of measurements, z.
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appendix . . .Satterthwaite

Very often approximate intervals on sums of expected mean squares are constructed using

the Satterthwaite procedure (first proposed by Smith 1936 and later by Satterthwaite

1941 and Satterthwaite (1946)). It was developed to estimate the distribution of

sums of expected mean squares, where expected mean squares are a linear combination of

variance components. This approach is based on a chi-squared approximation of the

estimator for γ, γ̂ =
∑

i cis
2
i . One determines the value of m that equates the first two

moments of mγ̂/γ to those of a chi-squared random variable with m degrees of freedom.

m =
γ̂2∑
i

c2i s
4
i

ni

(2)

This approximation works well when the ni values are all equal or all large. However,

when differences among the ni are large, the Satterthwaite approximation can produce

unacceptably liberal confidence intervals. Lower intervals (upper bounds) are more

liberal than upper intervals (lower bounds). This approximation should not be used if

some ci are negative and some are positive (Burdick & Graybill 1992).
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appendix . . .some useful results

ŷi is determined by 1
hii

observations (hii is the leverage of the ith observation).

var(ei) = σ2(1− hii) (3)

internally studentized residuals:

e′i =
ei

s
√

1− hii

(4)

externally studentized residuals: (because if an error is very large then s will be too large)

e∗′i =
ei

s(i)

√
1− hii

(5)

where s(i) is calculated with all but the ith observations.

Because internally and externally studentized residuals are monotonously related you can

graphically not distinguish them.
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asuR exam
I would like to get a folder called your family name containing one file with R code that can be processed line by line
(your family name.R) and all graphical output (exercise xy.pdf ).
duration: 2 hours / materials: everything that is helpful

elegant R syntax (+1pt), clearly structured syntax with comments (+1pt)

exercise 1 The data set “plants” shows the height of all species of the Fabaceae and

Rosaceae growing in Switzerland together with their growth type.

a) Sort the data frame by family, type, and height (1pt).
b) Select the height of all herbaceous species from the family Fabaceae.

Store your selection that you can use it in the following examples

(1pt).
c) Construct a histogram with a density line of this selection (pdf

9× 13 cm; 1pt).
d) You can see that your selection is not at all normally distributed. Do

you find a transformation to normalize your selection? How can you

inspect whether your transformed selection is normally distributed;

use three different ways to inspect your transformed selection (2pt).
e) Construct a data frame from all Rosaceae that are of growth type

shrub and remove all unused levels for the factors family and type;

hint: you can see the levels of a factor with the function levels()

(2pt).
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asuR exam . . . continued

exercise 2 The data set ”houseflies” shows the mean duration of development (in

days) for 3 strains of houseflies for 2 different treatments.

a) Calculate the mean developmental time for all strain and treatment

combinations (2pt).
b) Use a stepwise model selection procedure to find a suitable model,

where the response variable duration is explained by the predictors

treatment and strain (1pt).
c) You have no a priory expectation for the developmental duration of

different houseflies strains. Are there two strains that differ

significantly from each other in the length of the developmental

period (text). Plot the simultaneous confidence intervals for all

pairwise differences (pdf 9× 13 cm; 2pt).
d) Draw three boxplots side by side to compare the duration of the

developmental among different housefly strains (pdf 9× 13 cm; 1pt).
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asuR exam . . . continued

exercise 3 The influence of soil nitrogen content on the growth of two different weed

species was studied (data set “growth).

a) Construct a scatter-plot of soil nitrogen content against weight gain.

Use a different colour and different plotting symbol for both species

(pdf 9× 13 cm; 2pt).
b) Make an analysis of covariance to describe the weight gain with

increasing nitrogen content for both species. Test whether a model

with a) different slopes and different intercepts, b) one slope and

different intercepts, or c) one slope and one intercept is needed to

describe the response of the two species (4pt).
c) Add the regression line(s) you estimated to the plot you have already

constructed under a) (2pt).
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