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1 Introduction1

The gRain package is an R package, (R Development Core Team 2007) for efficient calculation2

of (conditional) probability distributions in graphical independence networks, hereafter denoted3

iNets. Such independence networks are sometimes also denoted probabilistic networks or Bayesian4

networks.5

The networks are restricted to consisting of discrete variables, each with a finite state space. The6

networks will typically satisfy conditional independence restrictions which enables the computa-7

tions to be made very efficiently.8

The gRain package is in its functionality similar to the GRAPPA suite of functions, (Green 2005)9

although there are important differences. The package implements the propagation algorithm of10

Lauritzen and Spiegelhalter (1988). For brevity we refer to Lauritzen and Spiegelhalter (1988) as11

LS.12

2 A worked example: chest clinic13

This section reviews the chest clinic example of LS (illustrated in Figure 1) and shows one way of14

specifying the model in gRain. Details of the steps will be given in later sections. Other ways of15

specifying a iNet are described in Section 8. LS motivate the chest clinic example as follows:16

“Shortness–of–breath (dyspnoea) may be due to tuberculosis, lung cancer or bronchitis,17

or none of them, or more than one of them. A recent visit to Asia increases the chances18

of tuberculosis, while smoking is known to be a risk factor for both lung cancer and19

bronchitis. The results of a single chest X–ray do not discriminate between lung cancer20

and tuberculosis, as neither does the presence or absence of dyspnoea.”21

asia

tub

smoke

lung

bronc

either

xray

dysp

Figure 1: Chest clinic example from LS.

2.1 Building a iNet22

A Bayesian network is a special case of graphical independence networks. In this section we outline
how to build a Bayesian network. The starting point is a probability distribution factorising
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accoring to a DAG with nodes V . Each node v ∈ V has a set pa(v) of parents and each node
v ∈ V has a finite set of states. A joint distribution over the variables V can be given as

p(V ) =
∏
v∈V

p(v|pa(v)) (1)

where p(v|pa(v)) is a function defined on (v, pa(v)). This function satisfies that
∑

v∗ p(v =23

v∗|pa(v)) = 1, i.e. that for each configuration of the parents pa(v), the sum over the levels of24

v equals one. Hence p(v|pa(v)) becomes the conditional distribution of v given pa(v). In practice25

p(v|pa(v)) is specified as a table called a conditional probability table or a CPT for short. Thus,26

a Bayesian network can be regarded as a complex stochastic model built up by putting together27

simple components (conditional probability distributions).28

Thus the DAG in Figure 1 dictates a factorization of the joint probability function as

p(V ) = p(α)p(σ)p(τ |α)p(λ|σ)p(β|σ)p(ε|τ, λ)p(δ|ε, β)p(ξ|ε). (2)

In (2) we have α = asia, σ = smoker, τ = tuberculosis, λ = lung cancer, β = bronchitis,29

ε = either tuberculosis or lung cancer, δ = dyspnoea and ξ = xray. Note that ε is a logical30

variable which is true if either τ or λ are true and false otherwise.31

2.2 Queries to iNets32

Suppose we are given evidence that a set of variables E ⊂ V have a specific value e∗. For example33

that a person has recently visited Asia and suffers from dyspnoea, i.e. α = yes and δ = yes.34

With this evidence, we are often interested in the conditional distribution p(v|E = e∗) for some of35

the variables v ∈ V \ E or in p(U |E = e∗) for a set U ⊂ V \ E.36

In the chest clinic example, interest might be in p(λ|e∗), p(τ |e∗) and p(β|e∗), or possibly in the37

joint (conditional) distribution p(λ, τ, β|e∗).38

Interest might also be in calculating the probability of a specific event, e.g. the probability of39

seeing a specific evidence, i.e. p(E = e∗).40

2.3 A one–minute version of gRain41

A simple way of specifying the model for the chest clinic example is as follows.42

1. Specify conditional probability tables (with values as given in Lauritzen and Spiegelhalter43

(1988)):44

> yn <- c("yes", "no")
> a <- cpt(~asia, values = c(1, 99), levels = yn)
> t.a <- cpt(~tub + asia, values = c(5, 95, 1, 99), levels = yn)
> s <- cpt(~smoke, values = c(5, 5), levels = yn)
> l.s <- cpt(~lung + smoke, values = c(1, 9, 1, 99), levels = yn)
> b.s <- cpt(~bronc + smoke, values = c(6, 4, 3, 7), levels = yn)
> e.lt <- cpt(~either + lung + tub, values = c(1, 0, 1, 0, 1, 0, 0,
+ 1), levels = yn)
> x.e <- cpt(~xray + either, values = c(98, 2, 5, 95), levels = yn)
> d.be <- cpt(~dysp + bronc + either, values = c(9, 1, 7, 3, 8, 2,
+ 1, 9), levels = yn)

45

46

2. Create the iNet from the conditional probability tables:47

> plist <- cptspec(list(a, t.a, s, l.s, b.s, e.lt, x.e, d.be))
> in1 <- newgmInstance(plist)
> in1

Independence network: Compiled: FALSE Propagated: FALSE

48

49
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3. The iNet can be queried to give marginal probabilities:50

> querygm(in1, nodes = c("lung", "bronc"), type = "marginal")

$lung
lung
yes no

0.055 0.945

$bronc
bronc
yes no
0.45 0.55

51

52

Likewise, a joint distribution can be obtained.53

> querygm(in1, nodes = c("lung", "bronc"), type = "joint")

bronc
lung yes no

yes 0.0315 0.0235
no 0.4185 0.5265

54

55

4. Evidence can be entered as:56

> in12 <- enterEvidence(in1, nodes = c("asia", "dysp"), states = c("yes",
+ "yes"))57

58

5. The iNet can be queried again:59

> querygm(in12, nodes = c("lung", "bronc"))

$lung
lung

yes no
0.09952515 0.90047485

$bronc
bronc

yes no
0.8114021 0.1885979

> querygm(in12, nodes = c("lung", "bronc"), type = "joint")

bronc
lung yes no

yes 0.06298076 0.03654439
no 0.74842132 0.15205354

60

61

3 Building and using iNets62

3.1 Compilation and propagation63

Before queries can be made to a iNet the iNet must be compiled (see Section B.1.1) and propagated64

(see Section B.1.2). These two steps are forced by the querygm function if necessary, but it is in65

some cases advantegous to do them explicitly.66

3.1.1 Compilation of an iNet67

Put briefly, compilation of an iNet involves the following steps: It is first checked whether the68

list of CPTs defines a directed acyclic graph DAG. If so, this dag is created; it is moralized and69

triangulated. The CPTs are transformed into potentials defined on the cliques of the triangulated70

graph. See Section B.1.1 for further details.71
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The triangulated graph together with the corresponding clique potentials constitute an iNet. Thus72

the list of CPTs is merely one way of constructing an iNet. Consider again Bayesian network of73

Section 2.3:74

> in1

Independence network: Compiled: FALSE Propagated: FALSE

> class(in1)

[1] "cpt-gmInstance" "gmInstance"

75

76

The class attributes show that the iNet derives from a list of CPTs. In Section ?? other ways of77

constructing an iNet are described.78

> in1c <- compilegm(in1)

Independence network: Compiled: TRUE Propagated: FALSE

> class(in1c)

[1] "compgmInstance" "cpt-gmInstance" "gmInstance"

79

80

To be able to answer queries the iNet must be propagated which means that the clique potentials81

must be adjusted to each other in a specific way. See Section B.1.2 for details.82

Default is that propagation are not carried out in connected with compilation but this can be83

changed by setting propagate="TRUE" in compilegm()84

3.1.2 Propagation of an iNet85

A compiled iNet can be propagated as follows. Note that there are various options to choose in86

this connection; see the documentation of gRain for details:87

> in1c <- propagate(in1c)

Independence network: Compiled: TRUE Propagated: TRUE

88

89

3.2 Queries and evidence90

3.2.1 Queries91

As illustrated in Section 2.3, queries can be made to a iNet using the querygm() function. The92

result is by default an array (or a list of array(s)). Setting return="data.frame" causes the result93

to be returned as a dataframe (or a list of dataframes):94
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> querygm(in1c, nodes = c("lung", "bronc"), return = "data.frame")

$lung
lung Freq

yes yes 0.055
no no 0.945

$bronc
bronc Freq

yes yes 0.45
no no 0.55

> querygm(in1c, nodes = c("lung", "bronc"), type = "joint", return = "data.frame")

lung bronc Freq
1 yes yes 0.0315
2 no yes 0.4185
3 yes no 0.0235
4 no no 0.5265

95

96

With type="marginal" the we get P (λ) and P (β). Setting type="joint" gives P (λ, β).97

Setting type="conditional" gives P (λ|β), i.e. the distribution of the first variable in nodes given98

the remaining ones:99

> querygm(in1c, nodes = c("lung", "bronc"), type = "conditional",
+ return = "data.frame")

lung bronc Freq
1 yes yes 0.07000000
2 no yes 0.93000000
3 yes no 0.04272727
4 no no 0.95727273

100

101

Omitting nodes implies that all nodes are considered.102

3.2.2 Entering evidence103

Suppose we want to enter the evidence that a person has recently been to Asia and suffers from104

dyspnoea. This can be done in one of two ways:105

> in1c2 <- enterEvidence(in1c, nodes = c("asia", "dysp"), states = c("yes",
+ "yes"))
> in1c2 <- enterEvidence(in1c, evlist = list(c("asia", "yes"), c("dysp",
+ "yes")))

106

107

The evidence itself is displayed with:108

> evidence(in1c2)

Evidence:
variable state

[1,] asia yes
[2,] dysp yes
Pr(Evidence)= 0.004501375

109

110

The probability of observing the evidence is:111

> pevidence(in1c2)

[1] 0.004501375

112

113

The marginal, joint and conditional (conditional) probabilities are now:114
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> querygm(in1c2, nodes = c("lung", "bronc"))

$lung
lung

yes no
0.09952515 0.90047485

$bronc
bronc

yes no
0.8114021 0.1885979

> querygm(in1c2, nodes = c("lung", "bronc"), type = "joint")

bronc
lung yes no
yes 0.06298076 0.03654439
no 0.74842132 0.15205354

> querygm(in1c2, nodes = c("lung", "bronc"), type = "conditional")

bronc
lung yes no
yes 0.07761966 0.1937688
no 0.92238034 0.8062312

115

116

Note that the latter result is the conditional distribution of lung given bronc – but also conditional117

on the evidence.118

3.2.3 Incremental specification of evidence119

Evidence can be entered incrementally by calling enterEvidence() repeatedly. If doing so, it is120

advantagous to set propagate=FALSE in enterEvidence() and then only call the propagate()121

function at the end.122

3.2.4 Retracting evidence123

Evidence can be retracted (removed from the iNet) with124

> in1c3 <- retractEvidence(in1c2, nodes = "asia")
> evidence(in1c3)

Evidence:
variable state

[1,] dysp yes
Pr(Evidence)= 0.004501375

125

126

Omitting nodes implies that all evidence is retracted, i.e. that the iNet is reset to its original127

status.128

3.3 Miscellaneous129

Summary Summaries of iNets are can be obtained:130
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> summary(in1)

Nodes : asia tub smoke lung bronc either xray dysp
Compiled: FALSE Propagated: FALSE

> summary(in1c)

Nodes : asia tub smoke lung bronc either xray dysp
Compiled: TRUE Propagated: TRUE
Number of cliques: 6
Maximal clique size: 3
Maximal number of configurations in cliques: NA

131

132

The summary() function can be a type argument. Possible values for type include "rip",133

"cliques", "configurations".134

Graphics The DAG in Figure 1 is obtained with plot(pn), while the triangulated indirected135

graph in Figure 2 is obtained with plot(pnc).136

Odds and ends The functions nodeNames and nodeStates returns the nodes and their states.137

A potential can be turned into a dataframe or a numerical variables with as.data.frame and138

as.numeric.139

Internally in gRain, a CPT is internally represented as a ctab object, see the package documen-140

tation for details.141

4 Fast computation of a joint distribution142

If interest is in fast computation of the latter joint distribution one can force these variables to be143

in the same clique of the triangulated moralized DAG as:144

> in1c2 <- compilegm(in1, root = c("lung", "bronc", "tub"), propagate = TRUE)145

146

Now compare the computing time of the of the objects, the second one being much faster:147

> system.time({
+ for (i in 1:50) querygm(in1c, nodes = c("lung", "bronc", "tub"),
+ type = "joint")
+ })

user system elapsed
5.25 0.00 5.28

> system.time({
+ for (i in 1:50) querygm(in1c2, nodes = c("lung", "bronc", "tub"),
+ type = "joint")
+ })

user system elapsed
0.05 0.00 0.05

148

149

5 Simulation150

It is possible to simulate data from an iNet. This uses the current clique, and thus generates151

values conditional on all evidence entered in tne iNet.152
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> simulate(in1c, nsim = 5)

asia tub smoke lung bronc either xray dysp
1 no no no no yes no no yes
2 no no no no yes no no no
3 no no yes no no no no no
4 no no no no no no no no
5 no no yes no yes no yes no

153

154

6 Prediction155

A predict method is available for iNets for predicting a set of “responses” from a set of “ex-156

planatory variables”. Two types of predictions can be made. The default is type="class" which157

assigns the value to the class with the highest probability:158

> mydata

bronc dysp either lung tub asia xray smoke
1 yes yes yes yes no no yes yes
2 yes yes yes yes no no yes no
3 yes yes yes no yes no yes yes
4 yes yes no no no yes yes no

> predict(in1c, response = c("lung", "bronc"), newdata = mydata, predictors = c("smoke",
+ "asia", "tub", "dysp", "xray"), type = "class")

$pred
$pred$lung
[1] "yes" "no" "no" "no"

$pred$bronc
[1] "yes" "yes" "yes" "yes"

$pevidence
[1] 0.0508475880 0.0111697096 0.0039778200 0.0001082667

159

160

The output should be read carefully: Conditional on the first observation in mydata, the most161

probable value of lung is "yes" and the same is the case for bronc. This is not in general the162

same as saying that the most likely configuration of the two variables lung and bronc is "yes".163

Alternatively, one can obtain the entire conditional distribution:164

> predict(in1c, response = c("lung", "bronc"), newdata = mydata, predictors = c("smoke",
+ "asia", "tub", "dysp", "xray"), type = "dist")

$pred
$pred$lung

yes no
[1,] 0.7744796 0.2255204
[2,] 0.3267670 0.6732330
[3,] 0.1000000 0.9000000
[4,] 0.3267670 0.6732330

$pred$bronc
yes no

[1,] 0.7181958 0.2818042
[2,] 0.6373009 0.3626991
[3,] 0.6585366 0.3414634
[4,] 0.6373009 0.3626991

$pevidence
[1] 0.0508475880 0.0111697096 0.0039778200 0.0001082667

165

166
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7 Alternative ways of specifying an iNet167

This section illustrates alternative ways of specifying an iNet.168

7.1 Defining variables and states – a gmData object169

We will in the following make use of a gmData object (as introduced by Dethlefsen and Højsgaard170

(2005)) for holding the specification of the variables in the iNet. Briefly, a gmData object is a171

graphical meta data object which is an abstraction of data types such as dataframes and tables.172

A gmData object needs not contain any real data; it can simply be a specification of variable names173

and their corresponding levels (and several other characterstics, for example wheter a categorical174

variable should be regarded as being ordinal or nominal).175

For the chest clinic example in Section 2 we build the gmData object as176

> chestNames <- c("asia", "smoke", "tub", "lung", "bronc", "either",
+ "xray", "dysp")
> gmd <- newgmData(chestNames, valueLabels = c("yes", "no"))
> gmd

varNames shortNames varTypes nLevels
asia asia a Discrete 2
smoke smoke s Discrete 2
tub tub t Discrete 2
lung lung l Discrete 2
bronc bronc b Discrete 2
either either e Discrete 2
xray xray x Discrete 2
dysp dysp d Discrete 2
To see the values of the factors use the 'valueLabels' function

177

178

7.2 Specification of conditional probabilities179

The CPTs can be created with reference to the gmData object as follows:180

> a <- cpt(~asia, values = c(1, 99), gmData = gmd)
> t.a <- cpt(~tub + asia, values = c(5, 95, 1, 99), gmData = gmd)
> s <- cpt(~smoke, values = c(5, 5), gmData = gmd)
> l.s <- cpt(~lung + smoke, values = c(1, 9, 1, 99), gmData = gmd)
> b.s <- cpt(~bronc + smoke, values = c(6, 4, 3, 7), gmData = gmd)
> e.lt <- cpt(~either + lung + tub, values = c(1, 0, 1, 0, 1, 0, 0,
+ 1), gmData = gmd)
> x.e <- cpt(~xray + either, values = c(98, 2, 5, 95), gmData = gmd)
> d.be <- cpt(~dysp + bronc + either, values = c(9, 1, 7, 3, 8, 2,
+ 1, 9), gmData = gmd)

181

182

Note: Instead of using formulae as in ~tub+asia we can write e.g. c("tub","asia").183

7.3 Building the iNet184

From a list of conditional probabilities and a corresponding gmData object we can build a iNet as185

above:186

> plist <- cptspec(list(a, t.a, s, l.s, b.s, e.lt, x.e, d.be))
> in1 <- newgmInstance(plist, gmData = gmd)187

188
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8 Building a iNet from data189

An iNet can be built from data in two different ways. Suppose we have data in the form of a190

dataframe of cases e.g. as generated by simulate in Section 5. We convert data into a table and191

the table into a gmData object:192

> chestSim <- simulate(in1c, nsim = 1000)
> gcs <- as.gmData(xtabs(~., chestSim))193

194

8.1 From a directed acyclic graph195

The directed graph in Figure 1 can be specified as:196

> g <- list(~asia, ~tub + asia, ~smoke, ~lung + smoke, ~bronc + smoke,
+ ~either + lung + tub, ~xray + either, ~dysp + bronc + either)
> dag <- newdagsh(g)

197

198

An iNet can be built from the graph and the gmData object. In this process, the CPTs are199

estimated from data in chestSim as the relative frequencies. To avoid zeros in the CPTs one can200

choose to add a small number, e.g. smooth=0.1 to all entries which are zero in the data:201

> in1x <- newgmInstance(dag, gmData = gcs)
> in1x <- compilegm(in1x, propagate = TRUE, smooth = 0.1)202

203

8.2 From a triangulated undirected graph204

Alternatively, an iNet can be built from an undirected (but triangulated) graph. The undirected205

graph in Figure 2 can be specified as:206

> g <- list(~asia + tub, ~either + lung + tub, ~either + lung + smoke,
+ ~bronc + either + smoke, ~bronc + dysp + either, ~either + xray)
> ug <- newugsh(g)

207

208

An iNet can be built from the graph and the gmData object. In this process, the clique potentials209

are estimated as the respective frequencies in the data:210

> in1y <- newgmInstance(ug, gmData = gcs)
> in1y <- compilegm(in1y, propagate = TRUE)211

212

9 Discussion and perspectives213
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A Working with HUGIN net files219

The HUGIN program (see http://www.hugin.com) is a commercial program for Bayesian networks.220

A limited version of HUGIN is freely available. With HUGIN, a BN can be saved in a specific format221
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known as a net file (which is a text file). A BN saved in this format can be loaded into R using222

the loadHuginNet function and a BN in R can be saved in the net format with the saveHuginNet223

function.224

HUGIN distinguishes between node names and node labels. Node names have to be unique; node225

labels need not be so. When creating a BN in HUGIN node names are generated automatically226

as C1, C2 etc. The user can choose to give more informative labels or to give informative names.227

Typically one would do the former. Therefore loadHuginNet uses node labels (if given) from the228

netfile and otherwise node names.229

This causes two types of problems. First, in HUGIN it is allowed to have e.g. spaces and special230

characters (e.g. “?”) in variable labels. This is not permitted in gRain. If such a name is found by231

loadHuginNet, the name is converted as follows: Special characters are removed, the first letter232

after a space is capitalized and then spaces are removed. Hence the label “visit to Asia?” in a net233

file will be converted to “visitToAsia”. Then same convention applies to states of the variables.234

Secondly, because node labels in the net file are used as node names in gRain we may end up with235

two nodes having the same name which is obviously not permitted. To resolve this issue gRain236

will in such cases force the node names in gRain to be the node names rather than the node labels237

from the net file. For example, if nodes A and B in a net file both have label foo, then the nodes in238

gRain will be denoted A and B. It is noted that in itself this approach is not entirely foolproof: If239

there is a node C with label A, then we have just moved the problem. Therefore the scheme above240

is applied recursively until all ambiguities are resolved.241

B iNets and the LS algorithm242

To make this paper self–contained, this section briefly outlines PNs and computations with PNs243

as given in LS. Readers familiar with the algorithm can safely skip this section. The outline is244

based on the chest clinic example of LS which is illustrated in Figure 1.245

B.1 Propagation246

The LS algorithm allows conditional distributions to be calculated in a very efficient way, i.e.247

without first calculating the joint distribution and then carry out the marginalizations. Efficient248

propagation in iNets is based on representing the joint distribution (1) in different forms. These249

forms are derived from modifying the DAG. We describe these steps in the following but refer to250

Lauritzen and Spiegelhalter (1988) for further details as well as for references.251

B.1.1 Compilation – from conditionals to clique potential presentation252

The key to the computations is to transform the factorization in (2) into a clique potential repre-253

sentation: First the DAG is moralized which means that the parents of each node are joined by a254

line and then the directions on the arrows are dropped. Thus the moralized graph is undirected.255

Next the moralized graph is triangulated if it is not already so. A graph is triangulated if it256

contains no cycles of length ≥ 4 without a chord. Triangulatedness can be checked using the257

Maximum Cardinality Search algorithm. If a graph is not triangulated it can be made so by258

adding edges, so called fill-ins. Finding an optimal triangulation of a given graph is NP–complete.259

Yet, various good heuristics exist. For graph triangulation we used the Minimum Clique Weight260

Heuristic method as described by Kjærulff (1990). Figure 2 shows the triangulated, moralized261

graph. We shall refer to the triangulated moralized DAG as the TUG.262

An ordering C1, . . . , CT of the cliques of a graph has the Running Intersection Property (also263

called a RIP ordering) if Sj = (C1∪ . . . Cj−1)∩Cj is contained in one (but possibly several) of the264

cliques C1, . . . , Cj−1. We pick one, say Ck and call this the parent clique of Cj while Cj is called265
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Figure 2: Triangulated moralized DAG – the chest clinic example from LS.

a child of Ck. We call Sj the separator and Rj = Cj \ Sj the residual, where S1 = ∅. It can be266

shown that the cliques of a graph admit a RIP ordering if and only if the graph is triangulated.267

The functions p(v|pa(v)) are hence defined on complete sets of the TUG. For each clique C we
collect the conditional probability tables p(v|pa(v)) into a single term ψC by multiplying these con-
ditional probability tables. Triangulation may have created cliques to which no CPT corresponds.
For each such clique the corresponding potential is identical equal to 1. Thereby we obtain the
clique potential representation of p(V ) as

p(V ) =
T∏

j=1

ψCj . (3)

As such, a DAG and a corresponding factorization as in (2) is just one way of getting to the268

representation in (3).269

B.1.2 Propagation – from clique potential to clique marginal representation270

The propagation algorithm works by turning the clique potential representation into a clique
marginal representation: To obtain the clique marginals p(Cj) we proceed as follows. Start with
the last clique CT in the RIP ordering. The factorization (3) implies that RT ⊥⊥ (C1∪· · ·∪CT−1)\
ST |ST . Marginalizing over RT gives

p(C1 ∪ · · · ∪ CT−1) = [
T−1∏
j=1

ψCj ]
∑
RT

ψCT
.

Let ψST
=

∑
RT

ψCT
. Then p(RT |ST ) = ψCT

/ψST
and we have

P (V ) = p(C1 ∪ · · · ∪ CT−1)p(RT |ST ) = {[
T−1∏
j=1

ψCj ]ψST
}ψCT

/ψST
.

Since ψST
is a function defined on ST and the RIP ordering ensures that ST is contained in one

of the cliques C1, . . . , CT−1, say Ck we can absorb ψST
into ψCk

by setting ψCk
← ψCk

ψST
. After

this absorption we have p(C1 ∪ . . . CT−1) =
∏T−1

j=1 ψCj
. We can then apply the same scheme to

this distribution to obtain p(RT−1|ST−1). Continuing this way backward gives

p(V ) = p(C1)p(R2|S2)p(R3|S3) . . . p(RT |ST ) (4)

where p(C1) = ψC1/
∑

C1
ψC1 . This is called a set chain representation.271

Now we work forward. Suppose C1 is the parent of C2. Then p(S2) =
∑

C1\S2
p(C1) and so

p(V ) = p(C1)p(C2)p(R3|S3) . . . p(RT |ST )/p(S2). Proceeding this way yields the clique marginal
representation

p(V ) =
T∏

j=1

p(Cj)/
T∏

j=2

p(Sj). (5)

13



Based on this representation, marginal probabilities of each node can be found by summing out272

over the other variables.273

B.2 Absorbing evidence274

Consider entering evidence E = e∗. We note that P (V \ E|E = e∗) ∝ p(V \ E,E = e∗). Hence275

evidence can be absorbed into the model by modifying the terms ψCj
in the clique potential276

representation (3): Entries in ψCj
which are inconsistent with the evidence E = e∗ are set to zero.277

We then proceed by carrying out the propagation steps above leading to (5) where the terms in278

the numerator then becomes p(Cj |E = e∗). In this process we note that
∑

C1
ψC1 is p(E = e∗).279

Hence the probability of the evidence comes at no extra computational cost280

B.3 Answering queries to BNs281

To obtain p(v|E = e∗) for some v ∈ V \ E, we locate a clique Cj containing v and marginalize282

as
∑

Cj\{v} p(Cj). Suppose we want the distribution p(U |E = e∗) for a set U ⊂ V \ E. If283

there is a clique Cj such that U ⊂ Cj then the distribution is simple to find by summing p(Cj)284

over the variables in Cj \ U . If no such clique exists we can obtain p(U |E = e∗) by calculating285

p(U = u∗, E = e∗) for all possible configurations u∗ of U and then normalize the result which is286

computationally demanding if U has a large state space. However, if it is known on beforehand287

that interest often will be in the joint distribution of a specific set U of variables, then one can288

ensure that the set U is in one clique in the TUG. The potential price to pay is that the cliques289

can become very large.290
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