
A Users Guide to panel
Technical Report 12

Department of Statistics
University of Auckland

R. C. Gentleman
Department of Statistics
University of Auckland

June 9, 2006

Abstract

Documentation for the R/S/Splus function panel. Included are installation instructions, a
brief description of the problem and some problem solving hints. It is assumed that you know
how to program R/S/Splus and some experience with the foreign function interface would be
helpful. Panel uses some FORTRAN code and it calls EISPACK so you will need a FORTRAN
compiler and some means of loading the compiled code into R/S/Splus. In addition it is helpful
if you know about maximum likelihood estimation and stochastic processes. References for
these last two are Cox and Hinkley (1974) and Cox and Miller (1965).

1 Introduction

The function panel fits a multi–state Markov model to panel data. Such data arise in many areas
such as sociology, psychology and medical research. The basic situation is that individuals are
observed at some number of points in time such as yearly or monthly intervals. At those times the
subjects are interviewed (or examined) and their current state is determined. This may be voting
preference or it may be their current disease status. In some cases, particularly disease history,
a number of covariates may also be measured at each inspection time. Since individuals are not
under continuous surveillance not all transitions are recorded. The data really consist only of the

1

inspection times and the state of the individual at the inspection times. There are a great number
of examples of such data, see for example Kalbfleisch and Lawless (1985), Gentleman, Lawless,
Lindsey and Yan (1994), Gentleman (1994) and Bartholomew (1985).

The software was written to deal with the case where there are n individuals with the ith indi-
vidual inspected at times ti,0, . . . , ti,mi

. In situations where all individuals are inspected at the same
time points some computational savings would be possible but these have not been incorporated.
At each inspection time the individual is determined to be in one of k states, some of which may
be absorbing. The methodology is based on modeling the transition intensities, i.e. the instanta-
neous rate of change from one state to another. For a model with k states the transition intensities
can be described in terms of a k by k matrix called the transition intensity matrix which will be
denoted Q. Covariate information is included by modeling these transition intensities as functions
of the covariate (Kalbfleisch and Lawless, 1985). There are many similarities between multi–state
models and the proportional hazards model which can be exploited; especially when considering
time dependent covariates (Gentleman, 1994).

Section 2 presents the methodology used and defines the notation needed. In Section 3 the algo-
rithms, both computational and modeling, and data structures used in the function and associated
software are detailed. Also in this section several code examples are provided. All the examples
should be loaded into R/S/SPlus when you install panel. Section 4 discusses some of the issues
regarding the use of covariates. Finally Section 5 discusses the implementation, installation and
gives some hints on problem solving.

2 Methodology

2.1 Markov Processes

Let Y (t) be a stochastic process which indicates the state of an individual at time t. We do not
observe Y (t) continuously but rather for each individual we observe Y (t) at a finite set of points
{tij}mi

i=1. An important assumption is that the inspection times are probabilistically independent of
the underlying process Y (t). By that I mean that there is no information about the change of state
in the inspection time sequence. In the health care setting this assumption would be violated if the
inspection times coincided with hospital visits and the visits were caused by a change in disease
status.

The basis for inference in this setting is the probability that an individual in state l at time t1
is later in state k at time t2. In general this probability depends on the entire past history of the
individual but for a special class of models, the Markov models, it is assumed to depend only on
the previously observed state. While this assumption simplifies the situation greatly you should be

2

aware that it is a very strong assumption that is seldom met.

A multi-state model {Y (t) : t ≥ 0} is Markov[?] if

Pr{Y (t2) = v|Y (t1) = u, Y (t), 0 ≤ t < t1} = Pr{Y (t2) = v|Y (t1) = u}
= puv(t1, t2) (1)

for all u, v ∈ {1, 2, . . . , k} and t1 < t2. The transition intensity functions for the process are

quv(t) = lim
∆t↓0

Pr{Y (t + ∆t) = v|Y (t) = u}
∆t

, u 6= v, (2)

and for convenience we define quu(t) = −∑
v 6=u quv(t) with the k × k transition intensity matrix

Q(t) = (quv(t)). When none of the transition intensities quv(t) depend on time, the model is called
time homogeneous.

We assume henceforth that Q is specified in terms of a b × 1 vector θ of unknown parameters.
For example, the transition intensity matrix, Q, for the model in Figure ?? is

−θ1 θ1 0 0
θ2 −θ2 − θ3 − θ6 θ3 θ6

0 θ4 −θ4 − θ5 θ5

0 0 0 0

 . (3)

In this case the transition probabilities (??) are stationary, and we write puv(t1, t2) = puv(0, t2−
t1) = puv(t2 − t1) with P(t) = (puv(t)). P(t) can be estimated using the methods described in
Kalbfleisch and Lawless (1985). I have chosen to use the parameterization γ = log(θ) for reasons
given later.

Consider a time homogeneous Markov model with k × k transition intensity matrix Q and
transition probability matrix P(t). Assume that Q is specified in terms of a b × 1 vector θ of
unknown parameters. It is well known that (Cox and Miller, 1965):

P(t) = exp{Qt} =
∞∑

r=0

Qrtr

r!
. (4)

When Q is diagonalizable, i.e. Q has k linearly independent eigenvectors, an efficient means of
computing the transition probabilities, given the matrix of transition intensities, is as follows. Let
d1, d2, . . . , dk be the eigenvalues of Q and let A denote the k × k matrix of rank k whose vth

column is the right eigenvector corresponding to dv, then

Q = ADA−1,

3

with D = diag(d1, d2, . . . , dk). Thus,

P(t) = Adiag(ed1t, ed2t, . . . , edkt)A−1, (5)

where the dependence of Q, P(t), A and the dv’s on θ is suppressed for notational convenience.
Once A and D are obtained, transition probabilities may be rapidly computed from (??). Addi-
tional comments on computation are given in Kalbfleisch and Lawless (1985, 1989) and Gentleman
et al (1994).

2.2 Covariates

To include covariate information we are going to make the very simple assumption that P depends
not only on t but also on the value of a covariate, z, which may be vector valued. There are many
ways in which the covariate can affect the probability transition matrix. We will only consider
discrete covariates. The assumption that I have used is that there is a different P matrix for each
different combination of the covariates. These P matrices can be independent or linked, in terms of
their parameterization. When specifying the model in R/S/SPlus you must provide a function that
evaluates to give the Q matrices and one that gives the derivatives of the Q matrices with respect
to the parameters. It is essential that these be correct. A separate decomposition is computed for
each value of the covariate and for each transition the correct decomposition is used for the current
value of the covariate.

Consider the simple case where the covariate takes only two values and assume a general model
in which P(t; z = 0) and P(t; z = 1) are completely unrelated. To fit this we use two Q matrices,
one for the z = 0 transitions and the other for the z = 1 transitions.

Q(z = 0) =

−θ1 θ1 0 0
θ2 −θ2 − θ3 − θ6 θ3 θ6

0 θ4 −θ4 − θ5 θ5

0 0 0 0

 (6)

Q(z = 1) =

−θ7 θ7 0 0
θ8 −θ8 − θ9 − θ12 θ9 θ12

0 θ10 −θ10 − θ11 θ11

0 0 0 0

 . (7)

Notice that the parameters in Q(z = 1) are completely independent of those in Q(z = 0). Time
dependent covariates are easily handled. When an individual has covariate z = 0 the first Q
matrix controls the transitions and when z = 1 it is the second Q matrix. Various sub–models
can easily be examined and tested via the likelihood ratio test. For example, replacing θ7 by θ1 in
Q(z = 1) would allow us to test whether the transition intensities from state one to state two differ
for different values of z.

4

In the interest of simplicity I have assumed that there is only one discrete covariate. If you have
two or more you will need to arrange them so that there is only one. For example if variable one
comes at 2 levels and variable two comes at 3 levels then you should make up a composite variable
that has six level (one for each possible combination of the two variables).

An ordinal variable that comes at 3 levels could be handled (in a regression setting) by modeling
the Q matrix by

Q(z) = Qoexp(βz)

with z = 0, 1, 2 depending on the level of the covariate and Qo being a standard Q matrix. Pro-
vided that you provide correct functions for computing Q and its derivatives with respect to all the
parameters (including β) you can fit this model. See the third example in Section 3.

2.3 The Likelihood

The likelihood function for θ = (θ1, . . . , θb)
′, assuming a time homogeneous Markov process Yi(t)

observed intermittently at times

ti,0 < ti,1 < · · · < ti,mi−1
< ti,mi

, i = 1, ..., n individuals

with states
(yi

0, z
i
0), (yi

1, z
i
1), . . . , (yi

mi
, zi

mi
)

conditional upon the state occupied at ti,0, is

L(θ) =
n∏

i=1

mi∏
r=1

pyi
r−1,yi

r
(ti,r − ti,r−1; θ, zi

r).

Notice that while z may depend on t our assumption of time homogeneity of the probability
transition matrix is not violated. We make the assumption that if at inspection time t the individual
has covariate value z0 then the transition intensity matrix Q(z0) applies until the next inspection
time at which point the covariate may have changed. Unlike the proportional hazards model as-
sumptions do not have to be made regarding the covariate values of other individuals at inspection
times in order to be able to find the maximum likelihood estimates.

3 Data Structures and Algorithms

3.1 Data Structures

The data are stored as a list. The list has one node for each individual and each node has 4
components. Within a node the components are time, a vector of inspection times in whatever

5

units you are using, stage, a vector of stages occupied by the individual at the corresponding
inspection times, cov, a vector of covariate value(s) at the corresponding inspection times, and len,
the length of the time vector.

The covariate is used to index the array Q(z) so it is important that it be of type integer and it
should take values from 1 to the number of levels (ncov). If the covariate is of type factor you
should replace it with the levels of the factor rather than use the factor itself. In particular, Q[1, ,]
is the transition intensity matrix for the covariate level 1. To fit a model without covariates simply
make up a covariate vector for each individual that is always 1 and set ncov to 1.

To elucidate several of the points it is perhaps best to have a concrete example in mind. There-
fore, consider the following simple example from Gentleman, Lawless, Lindsey and Yan (1994).
The model has four disease states which are defined in terms of the individual’s CD4 level at the
time of inspection. Figure ?? portrays such a model used with HIV disease. The arrows indicate
the possible instantaneous transitions between the states. The assumption that instantaneous transi-
tions are only permitted between adjacent states reflects the belief that CD4 behaves approximately
like a continuous function of time.

An example of the first element from the data structure for this model is given below.

> t4iga.data[[1]]
$time:
[1] 586 680 771 866 968 1066 1166 1248 1397 1692 2038

$stage:
[1] 3 3 3 3 3 2 3 3 3 3 3

$cov:
[1] 2 2 2 2 2 3 2 1 2 2 2

$len:
[1] 11

This indicates, among other things, that at time 586 (days) the individual concerned was in stage
3 and had a covariate value of 2. There were 11 observations on this individual at times ranging
from 586 days to 2038 days. The individual was in state 3 at most inspection times appearing in
state 2 on the sixth inspection only. As indicated previously this does not imply that the individual
visited state 2 only once but rather that it was observed in state 2 only once. They may have visited
state 2 many times but never been observed there; in fact they could visit every non–absorbing
state many times between inspections.

Next we need to examine the panel function itself.

6

function(indata, qmatf, gamma, qderivf, npar, nstage, ncov, verbose = F,
tol = 0.001)

The arguments are as follows:

indata The data in the list structure described above.

qmatf A function which takes the parameter vector γ as an argument and returns the Q matrix.
This is a three–way array. The first dimension codes the levels of the covariate and within
each of these the two–way array is the Q matrix.

gamma The vector of parameter estimates. Recall that θi = exp(γi).

qderivf This is a function that takes the parameter vector γ as an argument and returns a four–way
matrix. The matrix contains the derivatives of the Q matrix with respect to each of the γi.
Since the Q matrix is three–way we need an extra dimension to handle this.

npar The number of parameters, ie. the length of γ.

nstage The number of states or stages.

ncov The number of levels of the covariate. Currently you can only have one covariate.

verbose If true the function prints out diagnostic information as it is running. This is essential for
debugging.

tol This is the tolerance on convergence. Setting it smaller means that more iterations (typically)
will be needed.

3.2 Some Examples

Working versions are stored in the test directory.

Let’s consider the model described in Figure 1 with a covariate which comes at two levels.
We will first let the two Q matrices be completely independent. This means that we will have 12
parameters. Here I will give the correct qmatf, qderivf for this model.

> qfun.basic <- function(gamma)
{

qarr <- array(0, dim = c(2, 4, 4))
theta <- exp(gamma)

7

qarr[1, 1, 1] <- - theta[1]
qarr[1, 1, 2] <- theta[1]
qarr[1, 2, 1] <- theta[2]
qarr[1, 2, 2] <- - theta[2] - theta[3] - theta[6]
qarr[1, 2, 3] <- theta[3]
qarr[1, 2, 4] <- theta[6]
qarr[1, 3, 2] <- theta[4]
qarr[1, 3, 3] <- - theta[4] - theta[5]
qarr[1, 3, 4] <- theta[5]
qarr[2, 1, 1] <- - theta[7]
qarr[2, 1, 2] <- theta[7]
qarr[2, 2, 1] <- theta[8]
qarr[2, 2, 2] <- - theta[8] - theta[9] - theta[12]
qarr[2, 2, 3] <- theta[9]
qarr[2, 2, 4] <- theta[12]
qarr[2, 3, 2] <- theta[10]
qarr[2, 3, 3] <- - theta[10] - theta[11]
qarr[2, 3, 4] <- theta[11]
return(qarr)

}

Notice that theta.in is exponentiated because we want the Q matrix in terms of θ but the
optimization in terms of γ. The dimensions of the return matrix are 2 (for the two levels of the
covariate) and 4 by 4. Since there are 4 stages the Q matrix is 4 by 4. The derivative matrix is
more complicated.

> qderivf <- function(gamma)
{

rmat <- array(0, c(12, 2, 4, 4))
theta <- exp(gamma)
rmat[1, 1, 1, 1] <- (- theta[1])
rmat[1, 1, 1, 2] <- theta[1]
rmat[7, 2, 1, 1] <- (- theta[7])
rmat[7, 2, 1, 2] <- theta[7]
rmat[2, 1, 2, 1] <- theta[2]
rmat[2, 1, 2, 2] <- (- theta[2])
rmat[8, 2, 2, 1] <- theta[8]
rmat[8, 2, 2, 2] <- (- theta[8])
rmat[3, 1, 2, 2] <- (- theta[3])
rmat[3, 1, 2, 3] <- theta[3]

8

rmat[9, 2, 2, 2] <- (- theta[9])
rmat[9, 2, 2, 3] <- theta[9]
rmat[4, 1, 3, 2] <- theta[4]
rmat[4, 1, 3, 3] <- (- theta[4])
rmat[10, 2, 3, 2] <- theta[10]
rmat[10, 2, 3, 3] <- (- theta[10])
rmat[5, 1, 3, 3] <- (- theta[5])
rmat[5, 1, 3, 4] <- theta[5]
rmat[11, 2, 3, 3] <- (- theta[11])
rmat[11, 2, 3, 4] <- theta[11]
rmat[6, 1, 2, 4] <- theta[6]
rmat[6, 1, 2, 2] <- (- theta[6])
rmat[12, 2, 2, 4] <- theta[12]
rmat[12, 2, 2, 2] <- (- theta[12])
return(rmat)

}

First we make up a big array that is filled with zeros. This is important since most of the entries
will be zero. The first dimension indicates the parameter, which has 12 levels in our example, the
second indicates the covariate, which has 2 levels in our example, and the last two dimensions
indicate the position in the relevant Q matrix.

The only non–zero entries in rmat are rmat[i, j, k, l] where Q(z = j)[k, l] = θi. The only
place that θ8 appears is in Q(z = 2) in row 2 columns 1 and 2 so in rmat the only entries of
the submatrix rmat[8,,,] that should be non–zero are the rmat[8,2,2,1] entry and the
rmat[8,2,2,2] entry. The first of these has θ8 as an entry, this is simply exp(γ8) and the
derivative of this with respect to γ8 is exp(γ8) = θ8 and that is what we put there. Since the sign
on rmat[8,2,2,2] is negative we need a negative θ8 in this entry.

For a second example, suppose that we assumed that the transitions to higher numbered states
were the only transitions affected by the covariate. That means that θ2 and θ4 would be the same in
the two matrices since they refer to transitions to lower states. Making this change and renumbering
the parameters so they go from θ1 to θ10 yields the following:

Q(z = 0) =

−θ1 θ1 0 0
θ2 −θ2 − θ3 − θ6 θ3 θ6

0 θ4 −θ4 − θ5 θ5

0 0 0 0

 (8)

Q(z = 1) =

−θ7 θ7 0 0
θ2 −θ2 − θ8 − θ10 θ8 θ10

0 θ4 −θ4 − θ9 θ9

0 0 0 0

 . (9)

9

The appropriate versions of the qfun and qderiv functions are given below.

> qfun.m2 <- function(gamma)
{

qarr <- array(0, dim = c(2, 4, 4))
theta <- exp(gamma)
qarr[1, 1, 1] <- - theta[1]
qarr[1, 1, 2] <- theta[1]
qarr[1, 2, 1] <- theta[2]
qarr[1, 2, 2] <- - theta[2] - theta[3] - theta[4]
qarr[1, 2, 3] <- theta[3]
qarr[1, 2, 4] <- theta[4]
qarr[1, 3, 2] <- theta[5]
qarr[1, 3, 3] <- - theta[5] - theta[6]
qarr[1, 3, 4] <- theta[6]
qarr[2, 1, 1] <- - theta[7]
qarr[2, 1, 2] <- theta[7]
qarr[2, 2, 1] <- theta[2]
qarr[2, 2, 2] <- - theta[2] - theta[8] - theta[10]
qarr[2, 2, 3] <- theta[8]
qarr[2, 2, 4] <- theta[10]
qarr[2, 3, 2] <- theta[4]
qarr[2, 3, 3] <- - theta[4] - theta[9]
qarr[2, 3, 4] <- theta[9]
return(qarr)

}

> qderiv.m2 <- function(gamma)
{

rmat <- array(0, c(10, 2, 4, 4))
theta <- exp(gamma)
rmat[1, 1, 1, 1] <- (- theta[1])
rmat[1, 1, 1, 2] <- theta[1]
rmat[2, 1, 2, 1] <- theta[2]
rmat[2, 1, 2, 2] <- (- theta[2])
rmat[2, 2, 2, 1] <- theta[2]
rmat[2, 2, 2, 2] <- (- theta[2])
rmat[3, 1, 2, 2] <- (- theta[3])
rmat[3, 1, 2, 3] <- theta[3]
rmat[4, 1, 3, 2] <- theta[4]

10

rmat[4, 1, 3, 3] <- (- theta[4])
rmat[4, 2, 3, 2] <- theta[4]
rmat[4, 2, 3, 3] <- (- theta[4])
rmat[5, 1, 3, 3] <- (- theta[5])
rmat[5, 1, 3, 4] <- theta[5]
rmat[6, 1, 2, 4] <- theta[6]
rmat[6, 1, 2, 2] <- (- theta[6])
rmat[7, 2, 1, 1] <- (- theta[7])
rmat[7, 2, 1, 2] <- theta[7]
rmat[8, 2, 2, 2] <- (- theta[8])
rmat[8, 2, 2, 3] <- theta[8]
rmat[9, 2, 3, 3] <- (- theta[9])
rmat[9, 2, 3, 4] <- theta[9]
rmat[10, 2, 2, 4] <- theta[10]
rmat[10, 2, 2, 2] <- (- theta[10])
return(rmat)

}

A third example has an ordinal covariate at three levels (coded 0, 1, 2) and we want to fit a
regression model to the upward transition out of state 1. This yields a model with 8 parameters,
the seven θi and the regression parameter, β.

The appropriate versions of the qfun and qderiv functions are given below.

> qfun.ord <- function(gamma)
{

qarr <- array(0, dim = c(3, 4, 4))
theta <- exp(gamma)
qarr[1, 1, 1] <- - theta[1]
qarr[1, 1, 2] <- theta[1]
qarr[1, 2, 1] <- theta[2]
qarr[1, 2, 2] <- - theta[2] - theta[3] - theta[4]
qarr[1, 2, 3] <- theta[3]
qarr[1, 2, 4] <- theta[4]
qarr[1, 3, 2] <- theta[5]
qarr[1, 3, 3] <- - theta[5] - theta[6]
qarr[1, 3, 4] <- theta[6]
qarr[2, ,] <- qarr[1, ,]
qarr[3, ,] <- qarr[1, ,]
qarr[2, 1, 2] <- qarr[2, 1, 2] * exp(gamma[7])

11

qarr[2, 1, 1] <- qarr[2, 1, 1] * exp(gamma[7])
qarr[3, 1, 1] <- qarr[3, 1, 1] * exp(2 * gamma[7])
qarr[3, 1, 2] <- qarr[3, 1, 2] * exp(2 * gamma[7])
return(qarr)

}

> qderiv.ord <- function(gamma)
{

rmat <- array(0, c(7, 3, 4, 4))
theta <- exp(gamma)
rmat[1, 1, 1, 1] <- (- theta[1])
rmat[1, 1, 1, 2] <- theta[1]
rmat[1, 2, 1, 1] <- (- theta[1] * exp(gamma[7]))
rmat[1, 2, 1, 2] <- theta[1] * exp(gamma[7])
rmat[1, 3, 1, 1] <- (- theta[1] * exp(2 * gamma[7]))
rmat[1, 3, 1, 2] <- theta[1] * exp(2 * gamma[7])
rmat[2, , 2, 1] <- theta[2]
rmat[2, , 2, 2] <- (- theta[2])
rmat[3, , 2, 2] <- (- theta[3])
rmat[3, , 2, 3] <- theta[3]
rmat[4, , 2, 4] <- theta[4]
rmat[4, , 2, 2] <- (- theta[4])
rmat[5, , 3, 3] <- (- theta[5])
rmat[5, , 3, 2] <- theta[5]
rmat[6, , 3, 4] <- theta[6]
rmat[6, , 3, 3] <- (- theta[6])
rmat[7, 2, 1, 1] <- (- theta[1] * exp(gamma[7]))
rmat[7, 2, 1, 2] <- theta[1] * exp(gamma[7])
rmat[7, 3, 1, 1] <- (-2 * theta[1] * exp(2 * gamma[7]))
rmat[7, 3, 1, 2] <- 2 * theta[1] * exp(2 * gamma[7])
return(rmat)

}

Some simulated data from this model has been included and is in the file simord.data. The data
and commands for this example are stored in the tests directory of the panel package.

> sim.fit<-panel(sim.ord,qfun.ord, gamma.ord, qderiv.ord, 7, 4, 3, T)

In Section 6 of Kalbfleisch and Lawless (1985) some data simulated from a three-state Markov
model is given. The transition intensity matrix they used (modulo a small typographic error) is

12

given by

Q =

 q11(z) exp(a12 + z1β1 + z2β2) exp(a13)
exp(a21 + z1β3 + z2β4) q22(z) exp(a23)

0 0 0

 .

They started 15 individuals in each of States 1 and 2 for each of four groups with regression
parameters (z1, z2) = (0,0), (0,1), (1,0) and (1,1). Individuals were followed for 5 transitions
at equidistant time intervals. The initial values, parameter estimates etc. from their Table 2 are
repeated in Table 1. The data is supplied in the bundle with panel as are these functions and you
should be able to simply execute the two commands below to fit this model.

> library("panel")
> klfitted <-panel(kldata,qfun.kl,theta.kl,qderivs.kl,8,3,4,T)

The qfun and qderiv functions for coding this model are given below.

Table 1: True Values, MLE’s and Estimated Standard Errors

Parameter True Value MLE Est’d SE
a12 = γ1 -2.30 -2.177 0.356
β1 = γ5 0.5 0.700 0.406
β2 = γ6 -0.50 -0.772 0.406
a13 = γ2 -2.30 -2.659 0.235
a21 = γ3 -1.90 -1.389 0.278
β3 = γ7 0.50 0.284 0.307
β4 = γ8 0.50 0.111 0.304
a23 = γ4 -2.30 -2.246 0.254

qfun.kl<- function(gamma)
{

rmat <- array(0, c(4, 3, 3))
theta<- exp(gamma)
rmat[1, 1, 1] <- (- theta[1] - theta[2])
rmat[1, 1, 2] <- theta[1]
rmat[1, 1, 3] <- theta[2]
rmat[1, 2, 1] <- theta[3]
rmat[1, 2, 2] <- (- theta[3] - theta[4])

13

rmat[1, 2, 3] <- theta[4]
rmat[2, 1, 1] <- (- theta[1] * theta[6] - theta[2])
rmat[2, 1, 2] <- theta[1] * theta[6]
rmat[2, 1, 3] <- theta[2]
rmat[2, 2, 1] <- theta[3] * theta[8]
rmat[2, 2, 2] <- (- theta[3] * theta[8] - theta[4])
rmat[2, 2, 3] <- theta[4]
rmat[3, 1, 1] <- (- theta[1] * theta[5] - theta[2])
rmat[3, 1, 2] <- theta[1] * theta[5]
rmat[3, 1, 3] <- theta[2]
rmat[3, 2, 1] <- theta[3] * theta[7]
rmat[3, 2, 2] <- (- theta[3] * theta[7] - theta[4])
rmat[3, 2, 3] <- theta[4]
rmat[4, 1, 1] <- (- theta[1] * theta[5] * theta[6] - theta[2])
rmat[4, 1, 2] <- theta[1] * theta[5] * theta[6]
rmat[4, 1, 3] <- theta[2]
rmat[4, 2, 1] <- theta[3] * theta[7] * theta[8]
rmat[4, 2, 2] <- (- theta[3] * theta[7] * theta[8] - theta[4])
rmat[4, 2, 3] <- theta[4]
return(rmat)

}

qderivs.kl<- function(gamma)
{

rmat <- array(0, c(8, 4, 3, 3))
theta <- exp(gamma)
rmat[1, 1, 1, 1] <- (- theta[1])
rmat[1, 1, 1, 2] <- theta[1]
rmat[1, 2, 1, 1] <- (- theta[1] * theta[6])
rmat[1, 2, 1, 2] <- theta[1] * theta[6]
rmat[1, 3, 1, 1] <- (- theta[1] * theta[5])
rmat[1, 3, 1, 2] <- theta[1] * theta[5]
rmat[1, 4, 1, 1] <- (- theta[1] * theta[6] * theta[5])
rmat[1, 4, 1, 2] <- theta[1] * theta[6] * theta[5]
rmat[2, 1, 1, 1] <- (- theta[2])
rmat[2, 1, 1, 3] <- theta[2]
rmat[2, 2, 1, 1] <- (- theta[2])
rmat[2, 2, 1, 3] <- theta[2]
rmat[2, 3, 1, 1] <- (- theta[2])
rmat[2, 3, 1, 3] <- theta[2]
rmat[2, 4, 1, 1] <- (- theta[2])

14

rmat[2, 4, 1, 3] <- theta[2]
rmat[3, 1, 2, 1] <- theta[3]
rmat[3, 1, 2, 2] <- (- theta[3])
rmat[3, 2, 2, 1] <- theta[3] * theta[8]
rmat[3, 2, 2, 2] <- (- theta[3] * theta[8])
rmat[3, 3, 2, 1] <- theta[3] * theta[7]
rmat[3, 3, 2, 2] <- (- theta[3] * theta[7])
rmat[3, 4, 2, 1] <- theta[3] * theta[7] * theta[8]
rmat[3, 4, 2, 2] <- (- theta[3] * theta[7] * theta[8])
rmat[4, 1, 2, 2] <- (- theta[4])
rmat[4, 1, 2, 3] <- theta[4]
rmat[4, 2, 2, 2] <- (- theta[4])
rmat[4, 2, 2, 3] <- theta[4]
rmat[4, 3, 2, 2] <- (- theta[4])
rmat[4, 3, 2, 3] <- theta[4]
rmat[4, 4, 2, 2] <- (- theta[4])
rmat[4, 4, 2, 3] <- theta[4]
rmat[5, 3, 1, 1] <- (- theta[1] * theta[5])
rmat[5, 3, 1, 2] <- theta[1] * theta[5]
rmat[5, 4, 1, 1] <- (- theta[1] * theta[6] * theta[5])
rmat[5, 4, 1, 2] <- theta[1] * theta[6] * theta[5]
rmat[6, 2, 1, 1] <- (- theta[1] * theta[6])
rmat[6, 2, 1, 2] <- theta[1] * theta[6]
rmat[6, 4, 1, 1] <- (- theta[1] * theta[6] * theta[5])
rmat[6, 4, 1, 2] <- theta[1] * theta[6] * theta[5]
rmat[7, 3, 2, 1] <- theta[3] * theta[7]
rmat[7, 3, 2, 2] <- (- theta[3] * theta[7])
rmat[7, 4, 2, 1] <- theta[3] * theta[7] * theta[8]
rmat[7, 4, 2, 2] <- (- theta[3] * theta[7] * theta[8])
rmat[8, 2, 2, 1] <- theta[3] * theta[8]
rmat[8, 2, 2, 2] <- (- theta[3] * theta[8])
rmat[8, 4, 2, 1] <- theta[3] * theta[7] * theta[8]
rmat[8, 4, 2, 2] <- (- theta[3] * theta[7] * theta[8])
return(rmat)

}

15

3.3 Optimization Algorithms

To avoid some problems with the optimization rather than work with the θi directly they are trans-
formed to θi = exp(γi). The main reason being that θi are constrained to be positive (requiring
constrained optimization) while the γi are not constrained and standard Newton–Raphson can be
employed. Contrary to popular belief this does not typically alleviate convergence problems and
can actually introduce some. If one of the θi is close to zero then the corresponding γi is close
to −∞ and the information matrix will not be stable. The reader is referred to Gentleman, Law-
less, Lindsey and Yan for information regarding the testing of hypotheses of the type Ho : θi = 0
since these are non–standard. You are testing whether the parameter lies on the boundary of the
parameter space.

The optimization algorithm used is a modified step size Newton–Raphson procedure. At each it-
eration the increase in the log likelihood predicted by the quadratic approximation is computed and
then the actual change in the log likelihood is computed. If these two differ substantially the step
size is halved and the comparison performed again. The purpose of such a procedure is to guard
against extremely large steps being taken in the wrong direction when the quadratic approximation
to the likelihood function is not good. The cost of this approach is that one computes the value of
the likelihood several times and for large data sets this computation can be time consuming.

In the examples that I have run the convergence is very good for the first few steps and then
slows down (sometimes by an extreme amount) subsequently. Convergence problems have always
been found to involve either an extremely small transition intensity or an error in coding on my
part. If the transition intensity is extremely small you will probably have to remove it from your
model or reparameterize it to stabilize the information matrix.

4 Covariates

The modeling of covariates in a multi–state Markov model is problematic. The form of the mathe-
matical relationship between the covariate and the transition intensities must be determined. Multi-
plicative models are easiest but may not necessarily be appropriate. In addition decisions regarding
the modeling of the covariates will have to be made. Should the covariate affect all transition in-
tensities or only specified subsets of the transition intensities. And, given several covariates which
should define the states and which should model the intensities.

The easiest model for the transition intensities is an exponential model. The form, qij(z) =
exp(z′βij), where qij(z) is the transition intensity from state i to state j for an individual with
covariate value z, was proposed by Kalbfleisch and Lawless (1985). This model has several com-
putational advantages over other models. In particular the estimated transition intensities will

16

always be positive while for other models some form of constrained estimation will be required.
However, it is not necessarily the case that a log linear model is appropriate in all situations and its
use should not be automatic.

Multi–state Markov models allow very general covariate models to be fit to the data. Covariates
can affect single transition intensities, all transition intensities, transition intensities that move
towards a healthier state, or virtually any other effect desired. The fitting of a general covariate
model allows us to examine the nature of the covariate effect. For example, in an HIV study, with
CD4 defining the states, the effect of AZT on transition intensities can easily be obtained. A model
which allows for one set of transition intensities for those on AZT and another set for those not on
AZT will allow us to compare them. One can see not only whether AZT has an effect but, to some
extent, the nature of the effect. One can gain evidence on whether, for example, the effect of AZT
is to increase the intensities of transitions towards a healthier state and to decrease the intensities
of transitions towards AIDS.

The covariates that are available will come in many forms. There are fixed covariates, such
as treatment or sex, and there are time dependent covariates such as blood glucose level or CD4
count. The issue of whether a variable should be used to define the stages for the Markov model
or should be used as a covariate affecting the transition intensities must be addressed. This is
similar to determining whether a covariate should be used to define strata or used as a covariate in
a proportional hazards model (Kalbfleisch and Prentice, 1980, p. 87). The answer to this question
will depend on the relative performance of the covariate in both roles. One method of assessing this
performance is suggested in Gentleman (1994). As is the case in the proportional hazards model,
inference will only really be possible for variables used as covariates and not for variables used to
define the states. We also note that the inference that is drawn will, in some sense, be conditional
on the observed covariate paths. The extent to which these are atypical usually cannot be judged
from the available data.

Some problems may be encountered with internal covariates. Kalbfleisch and Prentice (1980)
define these to be the output of a stochastic process that is generated by the individual. If the
covariate process is affected by treatment then it may be difficult to assess the value of the treatment
when the covariate is used to define states. For example, suppose that AZT is a good treatment for
HIV infection and that its effect is entirely through CD4. If CD4 is used to define the states the
treatment effect may be difficult to detect as it may be absorbed in the state effect. This suggests
that including covariates which are affected by the treatment is problematic and may disguise the
true treatment effect. It may also be the case that individuals under study monitor the values
of some variables themselves and attempt to alter the levels of the variable through various self–
administered interventions. If these variables are included in a model the conclusions drawn would
be suspect.

While there are many similarities between the multi–state Markov models with time dependent
covariates and the proportional hazards model with time dependent covariates there are also some

17

large differences and it is worth amplifying these. At each observed failure time covariate informa-
tion on all individuals still at risk is required in order to be able to fit a proportional hazards model.
This ensures that the partial likelihood can be determined at that time point. Lin and Ying (1994)
discuss various methods for dealing with incomplete covariate measurements for the proportional
hazards model. Under a multi–state Markov model there is no such requirement. Multi–state
Markov models assume that the waiting time in a state is exponentially distributed. The only data
required to form the likelihood are the inspection times and the states occupied at those times.
It is important to keep in mind that the times that individuals entered various states are typically
unknown. We only know which states were occupied at the inspection times. It is possible that
other non–absorbing states were visited between inspection times.

4.1 Basics of the Estimation Process

For the current estimate of the parameters the Q matrices are determined and their decomposition
computed. Then we loop over the list calling the FORTRAN subroutine CMPSCORE (contained
in dcscore.panel.f) once for each individual and compute their contribution to the score vector
and information matrix. Then the log likelihood is computed for the current parameter estimates
using the FORTRAN subroutine COMPLIKE. This is also done iteratively over individuals (see
the S function dclike.panel). Then the suggested improvement in θ is computed. The likelihood is
computed at this new point, l1, and the estimated value of the likelihood assuming that the quadratic
approximation given by the score and information are correct is computed, l2. If l1 and l2 are
similar then the step is taken and we loop back to the start to compute the score and information for
these values of θ. This process is iterated until convergence is attained. Convergence is measured
by the maximum of the score vector (in absolute value) being less than tol.

The computation of the score and likelihood is pretty inefficient in some ways since we loop
through the list of observations calling a FORTRAN subroutine in each iteration. Given the S/SPlus
problem with loops this can be pretty slow, the same problems don’t occur in R though. It would
be possible to store the data in a ragged array, keep track of the number of observations in some
other vector and use that to handle the looping in FORTRAN. This would probably make the whole
process much faster but I like the list data structure for other reasons and have adopted it.

4.2 Problems and Solutions

I have had relatively few problems with the software. I hope to expand this section as people use
the program and report difficulties to me at rgentlem@stat.auckland.ac.nz. Please use
the word panel in the subject line.

The only convergence problems that I have experienced were caused by one of two things.

18

Either there was one transition intensity that was several orders of magnitude different from the
others or (more commonly) I had not written either the qfun or qderiv functions correctly. If the
first situation eventuates you should think about whether such a transition is important for modeling
the situation. You will need to either remove this transition from the model or reparameterize it.
When I was originally fitting the AIDS data I started by allowing instantaneous transitions between
all states. This caused convergence problems and I gradually restricted allowable transitions to be
only between neighboring states.

Sometimes re parameterizing the problem can help when there are convergence problems. Scal-
ing the variables so that they are all of approximately the same order of magnitude should cure
some of the problems.

All software is Copyright Robert Gentleman, 1994. This software may be distributed under the
terms and conditions of the GNU GENERAL PUBLIC LICENSE. See the file, COPYING up one
directory.

References

[1] Cox, D.R. and Miller, H.D. The Theory of Stochastic Processes, Methuen, London, 1965.

[2] Gentleman, R. ‘The Use of Covariate Information in Multi–State Markov Models’, Depart-
ment of Statistics Technical Report, University of Auckland, 1994.

[3] Gentleman, R. C., Lawless, J. F., Lindsey, J. C., and Yan, P. ‘Multi–state Markov models
for analyzing incomplete disease history data with illustrations for HIV disease’, Statistics in
Medicine, 13, 805–821, (1994).

[4] Kalbfleisch, J.D. and Lawless, J.F. ‘The analysis of panel data under a Markov assumption’,
Journal of the American Statistical Association, 80, 863-871, (1985).

[5] Kalbfleisch, J.D. and Lawless, J.F. ‘Some statistical methods for panel life history data’,
Proceedings of the Statistics Canada Symposium on the Analysis of Data in Time, 185-192,
Ottawa: Statistics Canada, 1989.

[6] Kalbfleisch, J. D. and Prentice, R. L. (1980). The Statistical Analysis of Failure Time Data,
John Wiley and Sons.

[7] Lin, D. Y. and Ying, Z. ‘Cox Regression with incomplete covariate measurements’, Journal
of the American Statistical Association, 88, 1341–1349, (1994).

19

y
1

≥ 500 y
2

200− 499 y
3

< 200

y4
AIDS

-� -�

@
@

@@R

�
�

��	

Figure 1: A model with states defined by CD4 counts.

20

