
Trading with the portfolio package

by Jeff Enos, Daniel Gerlanc, and David Kane

October 31, 2008

Abstract

Given a set of current holdings and a target portfolio, that is, a set of
desirable holdings to which we would be willing to switch if trading were
free, and that our reasons for trading can be captured with one or more
rank orderings, the portfolio package provides a way to use multiple
measures of desirability to determine which trades or portions of trades
to do.

1 Introduction

What should we trade now? This question is much more difficult than it might
first appear, and yet thousands of individuals and firms controlling trillions of
dollars must answer it each day. Consider a simple example.

Imagine that the investment universe is restricted to 10 securities and that
our portfolio must hold 5 equal-weighted long positions. At any given point in
time, we will hold one of those portfolios. The simplest possible “trade” is to
do nothing, keeping the same portfolio in the next period that we hold in the
current one. A period can be 5 minutes or 5 months or any length of time.
The next simplest trade is a single position swap. Trade one of our 5 current
holdings for one of the 5 securities not in the portfolio. There are 25 such trades.
Continuing up the complexity scale, there are 100 trades in which we replace 2
securities in the portfolio with 2 securities not in the portfolio. Considering all
sets of possible trades, there are 252 options (including the option of no trading),
which is equal to the total number of possible portfolios,

(
10
5

)
.

In a world of perfect information, we would know the future returns for
each of the 10 securities in the universe. Given this information, and some
preferences with regard to risk and return, we could examine all 252 options
and determine which was best. Unfortunately, in a real world example with
thousands of securities in the universe and possibly hundreds in the portfolio,
there is no way to forecast results for each possible combination.

These difficulties are exacerbated by other complications.

� Ranking Trades: We may have multiple criteria for ranking the trades.
Some criteria may be more appropriate for ranking certain types of trades

1

1 INTRODUCTION 2

under specific circumstances. In the case where we have a large number of
criteria, how do we choose the most appropriate criterion for each trade?

� Liquidity: Even if it were simple to determine the ideal portfolio, it may
be difficult to get there. Imagine that moving to the ideal portfolio requires
that we trade one million shares of IBM; however, IBM typically trades
100,000 shares a day. How are we going to buy all the necessary shares in
one day? Even if we bought the entire day’s volume (an impossibility) it
would take we ten days to get the entire position.

� Trade Costs: Trading is not free so we will want to do less of it in the real
world than we might care to do in the theoretical world. Basic trading
costs (including commissions and spread) tend to enter the calculation
linearly. Trade twice as much and we pay twice the costs.

� Turnover: Turnover is the flip-side of holding period. In an ideal world,
holding period would be endogenous. We would select the holding period
which maximised the risk-adjusted return of the portfolio. But, in the real
world, almost all portfolios have targeted holding periods that should be
adhered to. We are only allowed a certain amount of turnover.

� Price Impact: Although commission/spread may be linear in trade vol-
ume, price impact is not. We are a participant in the market, and every
time we trade we affect the price. Price impact is generally small if we
trade a modest portion, say 10%, of volume. But if we trade more, then
the price will move against we. Over some range, price impact increases
more than linearly.

None of these problems is impossible to overcome, but all of them conspire to
make a general solution to the trading problem extremely difficult. Therefore,
we simplify.

The portfolio package makes three major simplifying assumptions. The
first is that we have created a “target” or “ideal” portfolio, a set of positions
that is desirable and to which we would be willing to switch if trading were free.
This assumption is implausible but it does serve to make the problem tractable.
If we only consider trades which move us closer to the target portfolio, it is
much easier to handle the other difficulties associated with turnover, liquidity
and the like. Instead of looking at all possible buys, for example, we only need
to analyse buys for securities in which the target portfolio has more shares than
current holdings. The second simplifying assumption is that different criteria
for trading can be captured with a rank ordering. We discard the information
used to create the ranks. The third simplifying assumption is that no one type
of trade is intrinsically better than another type of trade. All things equal, buys,
sells, covers, and shorts are equally good.

We divide the document into three sections. First, we create a trade list.
Second, we create a trade list in R. Third, we create a long-short trade list in
R.

2 A SIMPLE EXAMPLE 3

2 A simple example

Assume that we already have a small portfolio consisting of positions in various
equities. We have been given an additional $1,000 to invest in the portfolio,
and we must invest this $1,000 over the course of one trading day. This is
not a realistic scenario, but having a set amount of time in which to trade will
simplify our example. Throughout the document, we will refer to our present
holdings as the “current” portfolio. The “target portfolio” is an ideal set of
holdings that we would immediately switch to if trading were free as per the
first simplifying assumption. Note that in this simple example the only trades we
will be considering are buys. In subsequent we will introduce more complexity
in the form of buys, sells, covers, and shorts.

2.1 Current and target holdings

Our current portfolio consists of shares of 3 companies, IBM (International
Business Machines), GM (General Motors) and EBAY (EBay).

shares price

IBM 100 10

GM 100 30

EBAY 75 120

The shares column expresses how many shares of each stock are in the
portfolio, and the price column expresses the most recent price of that equity.1

The market value of the current portfolio can be calculated by summing the
products of the shares and prices.

As per the simplifying assumption, we provide a target portfolio.

shares price

GOOG 50 20

EBAY 75 120

IBM 100 10

GM 200 30

SCHW 100 50

MSFT 100 60

We would like to buy more shares of GM and take positions in SCHW
(Charles Schwab Inc.), MSFT (Microsoft), and GOOG (Google). The market
value of the target portfolio is $28,000.

2.2 Portfolio difference

The portfolio difference may be understood as the trades that would change
our current holdings into our ideal holdings. If trading were free, we would
immediately complete all these trades and reach our target portfolio. Alas,

1For simplicity, we use US dollars.

2 A SIMPLE EXAMPLE 4

trading is not free, and we will most likely not complete all the orders in one
day. Some of them probably require that we purchase a large portion of the daily
trading volume (over 10%), at which point the trade may become significantly
less desirable.

From the portfolio difference, we determine our candidate trades.

candidate trades: The complete set of trades we would have to make to
trade from our current portfolio to the target portfolio. If trading were
free, we would make all of these trades right now.

Below, we list the candidate trades.

side shares mv

GM B 100 3000

GOOG B 50 1000

MSFT B 100 6000

SCHW B 100 5000

The side column expresses what type of trade we will be making.2 All
the candidate trades are buys so the side column only contains B. The shares
column expresses the number of shares of each stock we must buy to reach the
target portfolio. The mv column expresses the effect that candidate will have on
the value of the portfolio. Buys, which increase the value of our portfolio, have
a positive value. Sells, which decrease the value of the portfolio, have a negative
value.

As the market value of the target portfolio ($28,000) is greater than the
market value of the original portfolio ($13,000), we would have to invest an
additional $15,000 to trade from our current portfolio to our target portfolio.
However, we only have $1,000 with which we may buy additional shares. There-
fore, we have to decide which subset of the candidate trades we will make.

2.3 Expressing preferences amongst trades

Part of our simplifying assumption is that we would instantly switch to the
target portfolio if trading were free. This implies that all of the candidate
trades are desirable. However, they are not all equally desirable. Some trades
are better than others. We want to determine which candidate trades or subsets
of the candidate trades yield the most utility on the margins.

If we had unlimited funds or could freely trade between our current and
target portfolios, we would not have to express preferences amongst trades.
However, in the real world, we must decide, given a set of possible trades, which
trades we should make first. One way to do this involves assigning each trade
a value of overall desirability, alpha. When we associate trades with alpha, we
say that we sort by alpha or use alpha as a sort.

2In later examples, S will represent a sell, X will represent a short and C will represent a
cover.

2 A SIMPLE EXAMPLE 5

alpha: a value, most likely generated by some sort of quantitative model,
which expresses the relative quality of the candidate trades. Serves to
determine from which candidate trade we would derive the most utility.

sort: a set of values associated with a set of positions. Higher values sug-
gest positive future performance and negative values suggest poor future
performance. Based on a sort we can determine what type of trade is
most desirable for each position. Therefore, we want to buy or cover po-
sitions with positive sort value and sell or short positions with negative
sort values.

Like portfolio construction, alpha generation is beyond the scope of this
document; we provide alpha values and will be using alpha as a sort. We
associate good buys with greater alpha values. In the table below, the candidate
at the head of the data frame has the highest alpha value and is therefore the
most desirable trade.

side alpha

MSFT B 1.5

SCHW B 1.2

GOOG B 1.1

GM B 1.0

Based on the alpha values, MSFT is the best trade, SCHW is the second
best trade, and GM is the worst trade with an alpha value of 1.

2.4 Preliminary ranks

We determine which trades are most desirable by generating an overall measure
of desirability for each trade. The first step in generating this value involves
creating a rank ordering of the trades for each sort we have created. A definition
of this term follows:

rank ordering: a linear, relational ordering of the candidates, where each
candidate is assigned a rank from the set 1, 2, 3 . . . n where n is the number
of candidate trades. Trade 1 provides the greatest utility and trade n
provides the least utility. In creating a rank ordering we discard cardinal
information such as alpha or one-day return and replace it with a whole
number ranking.

We rank and order the candidates by alpha below:

rank side alpha shares mv

MSFT 1 B 1.5 100 6000

SCHW 2 B 1.2 100 5000

GOOG 3 B 1.1 50 1000

GM 4 B 1.0 100 3000

2 A SIMPLE EXAMPLE 6

Notice that a rank ordering abstracts the underlying data. Whereas alpha
provides an absolute measure of desirability, rank expresses the relative desir-
ability amongst trades. We say that we lose cardinal information when we use
ranks.

cardinal information: The values used to create a rank ordering. The cre-
ation of ranks abstracts these values and replaces them with an ordering
that reflects the value of an element relative to other elements in the rank
ordering.

In some cases we may want to use more than one measure of desirability. We
may have more than one source of cardinal information. Imagine that we want
to use both alpha and one-day return as sorts. If we believe in one day reversal,
we would assign higher ranks to both orders to sell stocks with positive one-day
returns and to orders to buy stocks with negative one-day returns. However,
we associate more desirable buys with greater sort values. To account for this,
we have taken the inverse of all one-day return values. Therefore, if the return
one-day return for GM appears to be 0.10, it should really be −0.10. The table
below and to the left shows the one-day return values after we have taken their
inverse. The table to the right contains that actual one-day return values.

rank side ret.1.d rank side ret.1.d
GM 1 B 0.10 GM 1 B -0.10
GOOG 2 B 0.01 GOOG 2 B -0.01
MSFT 3 B -0.01 MSFT 3 B 0.01
SCHW 4 B -0.02 SCHW 4 B 0.02

GM has the highest rank according to one-day return because it has the
most negative return of all the buys, but for the portfolio package to properly
process our one-day reversal sort, we must take the inverse of all the one-day
return values.

2.4.1 The problem of multiple sorting criteria

When we combine the sorts in a single data frame, it is not clear which sort
values we should use. If we order by alpha we get the following set of ranks:

rank alpha ret.1.d

MSFT 1 1.5 -0.02

SCHW 2 1.2 -0.01

GOOG 3 1.1 0.01

GM 4 1.0 0.10

Ordering by one-day return yields another ordering:

2 A SIMPLE EXAMPLE 7

rank alpha ret.1.d

GM 1 1.0 0.10

GOOG 2 1.1 0.01

SCHW 3 1.2 -0.01

MSFT 4 1.5 -0.02

When we use multiple sorts, there is no obvious way in which we would order
the trades by desirability. When sorting by alpha, MSFT is the most desirable
trade, and when sorting by one-day return, GM is the most desirable trade.
We cannot easily compare or combine the two sorts because we do not know
what the exact relationship is between one-day reversal and alpha. Neither sort
is even on the same numeric scale. Should we alternate between using values
from alpha and one-day return? How would we decide how often to alternate
between the sorts? The way in which we express preferences amongst trades
in the portfolio package represents our answer to these questions. In sections
2.5 through 2.6 we discuss our method for ranking trades when we multiple
measures of desirability. In section 2.8 we will discuss the reasoning behind our
method of ordering trades.

2.5 Weighting sorts

As sorts express preferences amongst trades, weights express preferences amongst
sorts. By assigning each sort a weight, we express how important that sort is
relative to other sorts. To illustrate some weighting examples, let’s consider the
scenario in which we have assigned a weight of 1 to both the alpha and one-day
return sorts. By assigning the same weight to both sorts we assert that they
are equally important. Assigning a weight directly affects the sort rankings by
causing them to be divided by the weight. However, we have assigned both the
sorts a weight of 1 so the ranks remain the same.

rank side alpha shares mv

MSFT 1 B 1.5 100 6000

SCHW 2 B 1.2 100 5000

GOOG 3 B 1.1 50 1000

GM 4 B 1.0 100 3000

However, the ranks for one-day return remain the same because one-day
return has a weight of 1.

rank side ret.1.d shares mv

GM 1 B 0.10 100 3000

MSFT 2 B -0.02 100 6000

SCHW 3 B -0.01 100 5000

GOOG 4 B 0.01 50 1000

Having divided the original, raw ranks by weight, we now have weighted
ranks.

raw ranks: the original, linearly spaced ranks, built on the scale 1, 2, 3 . . . n

2 A SIMPLE EXAMPLE 8

weighted ranks: the raw ranks divided by the weights of the sorts.3

We now have two ranks associated with each candidate, one from the alpha
sort and another from the one-day return sort. To illustrate that we have
duplicate ranks for each sort, we bind the equally-weighted alpha and one-day
return sorts to form a single data frame.

rank sort side shares mv

MSFT.alpha 1 alpha B 100 6000

GM.ret.1.d 1 ret.1.d B 100 3000

SCHW.alpha 2 alpha B 100 5000

MSFT.ret.1.d 2 ret.1.d B 100 6000

GOOG.alpha 3 alpha B 50 1000

SCHW.ret.1.d 3 ret.1.d B 100 5000

GM.alpha 4 alpha B 100 3000

GOOG.ret.1.d 4 ret.1.d B 50 1000

The row names express the equity ticket symbols, and the string following
the period is the name of the sort that generated this rank. At each rank there
are two candidates, one of which has been associated with a rank from alpha
and the other which has been associated with a rank from one-day return. In
cases such as this where we have equally weighted sorts there will be a candidate
trade from each sort at every rank.

If we use n sorts, we will have n ranks associated with each candidate. We
only want one rank associated with each candidate. So that each candidate only
has one rank associated with it, we assign each rank the best rank generated for
it by any sort. We have done this in the data frame below.

rank shares mv

GM 1 100 3000

MSFT 1 100 6000

SCHW 2 100 5000

GOOG 3 50 1000

Both GM and MSFT have been assigned a rank of one. This occurs because
MSFT has been ranked 1 by the alpha sort and GM has been ranked 1 by the
one-day return sort. SCHW has been ranked 2 by the alpha sort and GOOG
has been ranked 3 by the alpha sort.

When we equally weight the sorts we are equally likely to use ranks from
one either sort. This behaviour is logical because assigning sorts equal weights
suggests that they are equally important. However, the sorts may not always be
equally important. In the next example we use a weighting scheme that causes
us to use one sort to the exclusion of the other.

Let’s say that we do not want to consider one-day return. To ignore all of
the one-day return values, we make alpha 10 times more important than one-
day return. Therefore, we will consider 10 ranks from alpha for every one rank

3Note that we are using the term ranks in several different contexts, a possibly abusive
notation.

2 A SIMPLE EXAMPLE 9

from one-day return. As there are only 4 candidate trades, we will choose the
rankings in alpha over the ranks in the one-day return sort.

rank side shares mv

MSFT.alpha 0.1 B 100 6000

SCHW.alpha 0.2 B 100 5000

GOOG.alpha 0.3 B 50 1000

GM.alpha 0.4 B 100 3000

GM.ret.1.d 1.0 B 100 3000

MSFT.ret.1.d 2.0 B 100 6000

SCHW.ret.1.d 3.0 B 100 5000

GOOG.ret.1.d 4.0 B 50 1000

Creating this unbalanced weighting causes us to stack the alpha ranks on
top of the one-day return ranks. Since we always assign the lowest rank from
all trades to a sort, we will consider the alpha ranks before any of the one-day
return ranks.

rank sort shares mv

MSFT 0.1 alpha 100 6000

SCHW 0.2 alpha 100 5000

GOOG 0.3 alpha 50 1000

GM 0.4 alpha 100 3000

Making the alpha 10 times as important as the one-day return sort causes
us to only use ranks from the alpha sort. We do not even consider the number
1 ranked one-day return trade until we examine all the alpha sorts ranked in
the top ten. As we only have 4 candidate trades, we do not consider any trades
from one-day return.

The last weighting we will consider falls somewhere in between the previous
two.

rank side shares mv

MSFT.alpha 0.67 B 100 6000

GM.ret.1.d 1.00 B 100 3000

SCHW.alpha 1.33 B 100 5000

GOOG.alpha 2.00 B 50 1000

MSFT.ret.1.d 2.00 B 100 6000

GM.alpha 2.67 B 100 3000

SCHW.ret.1.d 3.00 B 100 5000

GOOG.ret.1.d 4.00 B 50 1000

To weight the alpha sort by an additional 50%, we divide all the ranks in
alpha by 0.5. This causes us to consider 3 ranks from the alpha sort for every
2 rank from the one-day return sort.

rank shares mv

MSFT 0.67 100 6000

GM 1.00 100 3000

SCHW 1.33 100 5000

GOOG 2.00 50 1000

2 A SIMPLE EXAMPLE 10

We use three of the ranks from the alpha sort and one rank from the one-
day return sort. This is the weighting scheme that we will use in the rest of the
example.

We use three of the ranks from the alpha sort and one rank from the one-day
return sort. This is the weighting scheme that we use in the rest of the example.

To review, the ranking process has four steps. First, we ranked each trade
according to both alpha and one-day return to generate raw ranks. Second, we
weight these ranks. Third, we combined the alpha and one-day return ranks.
Fourth, we eliminated duplicates by associating each trade with the lowest rank
assigned to it by either alpha or one-day return. We call these ranks preliminary
ranks because they are not the final values we use to determine the desirability
of each trade. Nonetheless, we must generate preliminary ranks before we can
arrive at final ranks, the calculation of which we describe in the next section.

2.6 Generating synthetic ranks

If trade 1 is X better than the trade 2, then is trade 99 X better than trade
100? Most portfolio managers would argue that the difference in utility between
trade 1 and trade 2 is greater than the difference in utility between trade 99
and trade 100. However, with raw ranks, we make no assertion of how much
better one trade is than another trade. To express the tendency for us to derive
more utility from the most highly ranked trades, we synthesise yet another set
of values from the weighted ranks. We call these values synthetic ranks.4

synthetic ranks: values generated by mapping the weighted ranks to a trun-
cated normal distribution (> 85th percentile on N(0, 1)).

First, we re-rank the weighted ranks:

rank shares mv

MSFT 1 100 6000

GM 2 100 3000

SCHW 3 100 5000

GOOG 4 50 1000

Next, we evenly distribute the ranks on the interval interval [0.85, 1) such
that the best ranked trades are closest to 1 and the worst ranked trades are
closest to 0.85:

rank shares mv rank.s

MSFT 1 100 6000 0.97

GM 2 100 3000 0.94

SCHW 3 100 5000 0.91

GOOG 4 50 1000 0.88

We list the scaled ranks in rank.s. Next, we map to the a truncated normal
distribution.5

4We are abusing the term “ranks” by using it in several different contexts.
5> 85th percentile of N(0, 1)

2 A SIMPLE EXAMPLE 11

rank rank.s rank.t shares mv

MSFT 1 0.97 1.9 100 6000

GM 2 0.94 1.6 100 3000

SCHW 3 0.91 1.3 100 5000

GOOG 4 0.88 1.2 50 1000

The rank.t column lists the ranks mapped to the truncated normal distri-
bution. GM has the best rank and SCHW, has the lowest rank. We might
expect to see a rank.t of approximately 3.5 for the best ranked trade, but be-
cause we only have 4 candidates and the scaled values are evenly spaced on the
interval [0.85, 1), the normalised value of the best ranked trade is not as great
as it would be if we had 100 trades.

Recall that synthetic ranks express the tendency for there to be greater
differences in utility between adjacent, highly ranked trades (1, 2, 3 . . .) than
between adjacent, poorly ranked trades:

rank ∆ N(0, 1) ∆ > 85th of (0, 1) ∆
1 1 3.50 1.17 3.50 0.53
2 1 2.32 0.27 2.96 0.21
3 1 2.05 0.17 2.74 0.13
4 1 1.88 0.13 2.61 0.10
5 1 1.75 - 2.51 -
.
.

48 1 0.05 0.03 1.46 0.01
49 1 0.02 0.02 1.45 0.01
50 1 0.00 0.02 1.44 0.01
51 1 -0.02 0.02 1.43 0.01
52 1 -0.05 - 1.41 -

.

.
96 1 -1.64 0.11 1.06 0.00
97 1 -1.75 0.13 1.06 0.00
98 1 -1.88 0.17 1.06 0.00
99 1 -2.05 0.27 1.06 0.00

100 - -2.32 - - NA

Table 1: Creating synthetic ranks using a linear distribution, a normal distribu-
tion, and a truncated normal distribution. Delta columns express the difference
in utility between adjacent trades.

Table 1 expresses the differences amongst distributions we might use to rank
100 trades. The rank column contains the raw ranks for the 5 best trades, the
5 middle-ranked trades, and the 5 worst trades. In this example the ranks on
[1, 100] are spaced at intervals of one. The alpha difference between every trade
is the same. If we use raw rank as a measure of alpha, we derive the same utility

2 A SIMPLE EXAMPLE 12

from every trade. Trade 1 is one better than trade 2, and trade 99 is one better
than trade 100.

The normal distribution column (N(0, 1)) expresses what happens when we
normalise the raw ranks. The normal distribution correctly expresses our belief
that there is a large difference in alpha between the best ranked trades. However,
use of the normal distribution would incorrectly suggest that there are similarly
large alpha differences between the worst trades. We get these results when
using the normal distribution because the best and worst ranked trades form
the tails of the distribution. We do not want large differences in alpha amongst
the worst rank trades. The alpha differences decrease until we reach trade 50,
then increase again as we move towards the other tail of the distribution. We
want alpha to remain the same on the margin past the 50th trade.

To address the problems of a normal and linear distribution, we use a trun-
cated normal distribution, > 85th%ofN(0, 1). In the rightmost delta (∆) col-
umn, the alpha differences between the best ranked trades is over 50 times
greater than the alpha differences between the worst ranked trades. Every
trade ranked worse than 50 has a similar alpha difference. Although the subset
[0.85, 1) is slightly arbitrary, (we could have set the lower extreme to be 0.84,
0.85, or another similar value) it serves our purpose of expressing large differ-
ences in alpha and where we find the best buys, at one tail, and small differences
in alpha amongst the worst buys.

Recall the steps we have taken towards in generating our final measure of
rank, synthetic rank. First, we converted the sort values to raw ranks. Second,
we converted the raw ranks to weighted ranks. Third, we scaled the weighted
ranks to [0.85, 1) to generate scaled weights. Lastly, we mapped the scaled
weights to the truncated normal distribution. By only using the 85th percentile
and above, we express our belief that the differences in alpha between the best
ranked trades is much greater than the differences in alpha between the worst
ranked trades.

If the costs associated with trading any stock, all things being equal, were
the same, we would not care about the difference in utility between any trades.
We would move down the trade list from best to worst until we match the
allotted turnover. However, our trading influences prices and may reduce the
desirability of a trade.

2.7 Chunks, synthetic rank, and trade-cost adjustment

We want to know at what point the cost of trading an equity exceeds the utility
of trading that equity. In the portfolio package, we use synthetic rank to
represent utility. Determining the cost of purchasing an additional share is
impossible if our smallest trading unit is an entire order so we break each order
into chunks.

chunk: A portion of a candidate trade.

We break candidate trades into chunks by market value. Each chunk has a
market value of approximately $2000:

2 A SIMPLE EXAMPLE 13

side shares mv alpha ret.1.d rank.t chunk.shares chunk.mv

GM.1 B 100 3000 1.0 0.10 1.6 67 2010

GM.2 B 100 3000 1.0 0.10 1.6 33 990

GOOG.1 B 50 1000 1.1 0.01 1.2 50 1000

MSFT.1 B 100 6000 1.5 -0.02 1.9 33 1980

MSFT.2 B 100 6000 1.5 -0.02 1.9 33 1980

MSFT.3 B 100 6000 1.5 -0.02 1.9 33 1980

MSFT.4 B 100 6000 1.5 -0.02 1.9 1 60

SCHW.1 B 100 5000 1.2 -0.01 1.3 40 2000

SCHW.2 B 100 5000 1.2 -0.01 1.3 40 2000

SCHW.3 B 100 5000 1.2 -0.01 1.3 20 1000

The candidate trades are broken into 10 chunks. The number following
the period in the row name expresses the chunk number for that particular
equity. The chunks.mv column expresses the market value of each chunk. The
chunk.shares column expresses how many shares each chunk consists of.

2.7.1 Trade-cost adjustment of individual chunks

As we trade greater percentages of the average daily volume, the price of the
equity will increase. To reflect this phenomenon, we penalise the synthetic ranks
of the chunk as we trade greater percentages of the daily volume. We call this
penalty trade-cost adjustment.

trade-cost adjustment: Lowering a chunk’s rank because of trading volume.

To fix this idea, let’s first examine the daily volumes of our candidate trades.6

rank.t volume shares

GM 1.6 100 100

GOOG 1.2 2200 50

MSFT 1.9 2600 100

SCHW 1.3 2500 100

The trades we want to make for both MSFT, SCHW, and GOOG involve
less than 3% of the daily trading volume. However, we must trade 100% of
the daily trading volume of GM. We would probably not be able to purchase all
these shares in one day, and even if we could, we would affect prices significantly.
Moving into the position over several days would be better.

We use a trade-cost adjustment function to express how increasing trade
costs reduce the desirability of candidate trades. To better approximate utility,
we penalise synthetic ranks at the chunks level. Doing this allows us to better
determine at which point the cost of trading an additional chunk is greater
than the utility derived by trading an additional chunk. We perform trade-
cost adjustment on the chunks by keeping track of what percentage of the daily

6The volume column represents some measure of past trading volume such as the average
trading volume over the last 30 days. A daily measure of volume is not required; we would
use whatever measure is natural for the frequency with which we trade.

2 A SIMPLE EXAMPLE 14

volume we have traded with each additional chunk. The first chunk to cross the
threshold of 15% of the daily trading volume is penalised by a fixed amount. All
subsequent chunks are penalised by that amount, and any further chunks that
pass 30% or 45% percent of the daily trading volume receive further penalties.
The chunks of GM, an illiquid equity, have been trade-cost adjusted.

side mv alpha ret.1.d rank.t chunk.shares chunk.mv tca.rank

GM.1 B 3000 1.0 0.10 1.6 67 2010 1.6

GM.2 B 3000 1.0 0.10 1.6 33 990 -4.4

GOOG.1 B 1000 1.1 0.01 1.2 50 1000 1.2

MSFT.1 B 6000 1.5 -0.02 1.9 33 1980 1.9

MSFT.2 B 6000 1.5 -0.02 1.9 33 1980 1.9

MSFT.3 B 6000 1.5 -0.02 1.9 33 1980 1.9

The tca.rank column expresses the synthetic rank adjusted for trade-cost.
As the only candidate for which we want to purchase more than 15% of the daily
trading volume is GM, it is the only candidate for which we trade-cost adjust
the chunks. Every chunk of GM beyond the first has been trade-cost adjusted.
This will cause us to consider the chunks of other candidate trades before we
trade additional chunks of GM:

side mv alpha ret.1.d rank.t chunk.shares chunk.mv tca.rank

MSFT.1 B 6000 1.5 -0.02 1.9 33 1980 1.9

MSFT.2 B 6000 1.5 -0.02 1.9 33 1980 1.9

MSFT.3 B 6000 1.5 -0.02 1.9 33 1980 1.9

MSFT.4 B 6000 1.5 -0.02 1.9 1 60 1.9

GM.1 B 3000 1.0 0.10 1.6 67 2010 1.6

SCHW.1 B 5000 1.2 -0.01 1.3 40 2000 1.3

SCHW.2 B 5000 1.2 -0.01 1.3 40 2000 1.3

SCHW.3 B 5000 1.2 -0.01 1.3 20 1000 1.3

GOOG.1 B 1000 1.1 0.01 1.2 50 1000 1.2

GM.2 B 3000 1.0 0.10 1.6 33 990 -4.4

As MSFT is the best ranked candidate and does not receive a trade-cost
penalty, we would trade all the shares of MSFT before considering the other
candidates.7 Having completed all the trades of MSFT, we would consider the
first chunk of GM, the only chunk which has not been trade-cost adjusted. Sub-
sequently, we would trade all the chunks of SCHW and GOOG, the candidate
trades ranked 3 and 4. Lastly, we trade the penalised chunks of GM.

2.7.2 Synthetic rank and trade-cost adjustment of small portfolios

In this example, trade-cost adjustment decreases the desirability of the chunks
of GM in a non-trivial way. Although GM is ranked 2nd as a candidate trade,
every other candidate trade would be made before we completed all the chunks
of GM. When we consider such a small number of trades, we assume that all of

7Assuming that derived turnover is greater than the market value of all the candidate
trades.

2 A SIMPLE EXAMPLE 15

the trades are of approximately equal quality; the difference in utility between
candidate trades is fairly small. This occurs because the scaled ranks are evenly
distributed on [0.85, 1):

rank shares mv rank.s

MSFT 1 100 6000 0.97

GM 2 100 3000 0.94

SCHW 3 100 5000 0.91

GOOG 4 50 1000 0.88

When we only have 4 candidates, none of the scaled ranks will be very close
to 1, and consequently, none of the synthetic ranks will fall at the extreme tail
of the normal distribution:

rank shares mv rank.s rank.t

MSFT 1 100 6000 0.97 1.9

GM 2 100 3000 0.94 1.6

SCHW 3 100 5000 0.91 1.3

GOOG 4 50 1000 0.88 1.2

Consequently, the difference in utility between candidate trades will be small
when there are few candidate trades. Heuristically, this seems correct because
if we are making very few trades, we would most likely derive similar utility
from any of them.8 Therefore, it makes sense for us to trade the other three
candidates if the costs associated with trading GM are nontrivial.

2.7.3 Synthetic rank and trade-cost adjustment of large portfolios

Moving away from our example for a moment, imagine that we have a large
current and target portfolio, the trade list for which contains 100 candidate
trades. When we have a large portfolio, we tend to view the differences in
utility between candidates in the manner we described in section ??. When
evenly distribute the scaled ranks on the interval [0.85, 1), we have more ranks
at the extreme tail:

rank rank.s rank.t

IBM 1 1.00 3.0

GOOG 2 1.00 2.8

GM 3 1.00 2.6

MS 4 0.99 2.5

SCHW 5 0.99 2.4

MSFT 48 0.92 1.4

T 49 0.92 1.4

CVX 50 0.92 1.4

AET 96 0.86 1.1

AMD 97 0.86 1.1

DELL 98 0.85 1.1

EBAY 99 0.85 1.0

HPQ 100 0.85 1.0

8This does not exclude our expressing a preference amongst the sorts.

2 A SIMPLE EXAMPLE 16

The row names express the equity ticker symbols. rank is the raw rank.
rank.s is the scaled rank, and rank.t is the synthetic rank. The best ranked
trade IBM, has a scaled rank value very close to one, , and a synthetic rank
close to three. This indicates that the best rank falls at the tail of the normal
distribution. The worst ranked candidates not only have low synthetic ranks,
but they also have very small differences in synthetic rank. If we trade-cost
adjust one of the poorly ranked candidates we will most likely not trade it until
we have traded all other candidates not penalised by trade cost adjustment. On
the other hand, we would still trade IBM, GOOG, or GM, even if some of the
chunks had been trade-cost adjusted:

Here we have a subset of the hypothetical chunk table for the 100 candidate
example. For this example, the GOOG candidate has been broken up into 2
chunks and the IBM candidate has been broken up into 4 chunks. The ranks of
2nd, 3rd, and 4th chunks of IBM have been penalised for trade costs. Therefore,
we trade the first chunk of IBM, followed by all the chunks of GOOG. Subse-
quently, we trade the remaining chunks of IBM because the trade-cost adjusted
rank of its chunks is still greater than the un-penalised synthetic rank of the
next most desirable candidate, GM.

Let’s quickly review how we generate the final, synthetic ranks. The prelim-
inary values from which we draw the raw ranks are the sorts we define. In this
example, we defined sorts for alpha and one-day return. In creating raw ranks
abstract away the underlying values provided by the sorts. At this point, we still
have a different set of raw ranks for each sorts. To express preferences amongst
the sorts, we apply weights to the sorts. This step yields weighted ranks. From
the sets of weighted ranks, we associate with each candidate the best weighted
rank from any sort. Next, we scale the buys to the interval [0.85, 1). This step
yields scaled ranks. From scaled ranks, we generate synthetic ranks by mapping
the scaled ranks to a truncated normal distribution. Next, we break the candi-
dates into chunks and perform trade-cost adjustment as necessary. This yields
trade-cost adjusted ranks which are the final measure of a chunks desirability.

2.8 Sorting theory

Chooing the best candidate when we have multiple measures of desirability is
difficult. Consider the situation where we must choose ten stocks to trade.

Assuming that we use some type of formula to generate alpha, we might be
able to incorporate our other sorts into the formula for alpha. Instead of having
alpha and one-day return as distinct sorts, we would only have one sort, alpha,
which would also take one-day return into account. For this to work, however,
we would have to write a function that accounted for the the ordering of every
trade by every sort. Furthermore, this function would have to take into account
our preference for certain certain sorts over other sorts. To elaborate on the
difficulty of this creating such a function, let us consider the situation where we
must choose our ten favourite trades, in no particular order, using the data in
the table below.

Table 2 has a row for each of 15 candidates, their alpha and one-day return

2 A SIMPLE EXAMPLE 17

symbol raw rank alpha symbol raw rank ret.1.d
IBM 1 1.57 HPQ 1 -0.063
MS 2 1.26 SUNW 2 -0.056

EBAY 3 1.24 AET 3 -0.041
CBBO 4 1.21 YHOO 4 -0.036
SCHW 5 1.15 T 5 -0.014
PAYX 6 1.12 CVX 6 -0.011
HAL 7 1.12 GOOG 7 -0.011
AMD 8 1.10 PAYX 8 -0.002

MSFT 9 0.99 CBBO 9 0.003
CVX 10 0.96 HAL 10 0.009
AET 11 0.92 QCOM 11 0.011
HPQ 12 0.81 EBAY 12 0.014

QCOM 13 0.77 SCHW 13 0.029
GOOG 14 0.65 AAPL 14 0.036
YHOO 15 0.64 MS 15 0.041

Table 2: The alpha and one-day returns of candidates suggest different rank
orderings. All of the candidates are buys.

values, and the raw ranks we would generate from these values. All of the
candidates are buys so greater alpha values are better and lesser one-day return
values are better.

One portfolio manager might decide that she wants to make trades based
only on alpha. She chooses the top ten trades according to alpha. A second
portfolio manager may want to make trades based only on one-day return. She
chooses the top ten trades according to one-day return. The third portfolio
manager considers both alpha and one-day return and choose her favorite trades
by examining both.

Portfolio manager three believes in buying equities which have had price
decreases of greater than 4% during the previous trading day. Consequently,
she would buy HPQ, SUNW, and AET. She would fill her remaining orders
using the top 7 trades according to alpha.

How would the third portfolio manager write a function that expresses her
trading preferences? What if some days she acted like the first portfolio manager
and on other days like the second portfolio manager? How would she account
for a change in preference for one of the sorts?

Our solution allows any of these portfolio managers to express her trading
preferences without having to write a function that relates the different mea-
sures of desirability. Instead, she would use the weighting function that the
portfolio package provides. She would examine the trade list created using
different weighting schemes and adjust the weights until the utility derived from
the last candidate traded was greater than the cost of the first trade not made.

For example, the portfolio manager may decide that YHOO is a better re-
versal trade than the last alpha trade and revise the weighting scheme so that

2 A SIMPLE EXAMPLE 18

she makes one less alpha trade and one more reversal trade.

symbol raw rank alpha symbol raw rank ret.1.d
IBM 1 1.57 HPQ 1 -0.063
MS 2 1.26 SUNW 2 -0.056

EBAY 3 1.24 AET 3 -0.041
CBBO 4 1.21 YHOO 4 -0.036
SCHW 5 1.15 T 5 -0.014
PAYX 6 1.12 CVX 6 -0.011
HAL 7 1.12 GOOG 7 -0.011
AMD 8 1.10 PAYX 8 -0.002

MSFT 9 0.99 CBBO 9 0.003
CVX 10 0.96 HAL 10 0.009
AET 11 0.92 QCOM 11 0.011
HPQ 12 0.81 EBAY 12 0.014

QCOM 13 0.77 SCHW 13 0.029
GOOG 14 0.65 AAPL 14 0.036
YHOO 15 0.64 MS 15 0.041

Table 3: Portfolio manager 3 revises her trading preferences.

What ultimately matters is the last candidate we decide to trade and the first
candidate we decide not to trade. By using rank orders instead of underlying
values, we do not have to combine the different sorts. Instead, we can express
our preferences for different, possibly unrelated criteria through the use of a
weighting scheme we provide in portfolio.

2.9 Pairing trades

Let us return to discussing trade list construction. In practise, most equity
portfolios must be maintained at a specific market value. One logical way to
achieve this result would be to pair desirable buys and sells of equal market
value, and this is what we do in the portfolio package. We call these pairings
of buys and sells a swap:

swap: A pairing of a buy and sell or short and cover of similar market market
value and desirability.

We have already created the framework to create this swaps; we break the
candidates into chunks of similar market value and then rank these chunks
individually. If our candidate trades included buys and sells, we would simply
match the most desirable buys with the most desirable sells. However, our
candidate trades are all buys, and we want to increase the market value of our
portfolio by $1,000.

2 A SIMPLE EXAMPLE 19

2.9.1 Dummy chunks

If we want to increase the market value of the portfolio, we must buy more than
we sell. Therefore, we do not want to pair a buy with a sell. We just want buys.
The situation where we just want buys or sells is a special case. The portfolio
package is structured so that we must also trade in pairs. To work within the
package framework we introduce the concept of dummy chunks:

dummy chunk: A fake buy or sell chunk that we pair with a real buy or
sell chunk in situations where we want to increase or decrease the market
value of the portfolio.

As our example only contains buys, we have paired every buy with a dummy
sell.9

tca.rank.enter tca.rank.exit rank.gain

MSFT.1,NA.0 1.9 10000 -9998

MSFT.2,NA.0 1.9 10000 -9998

MSFT.3,NA.0 1.9 10000 -9998

MSFT.4,NA.0 1.9 10000 -9998

GM.1,NA.0 1.6 10000 -9998

SCHW.1,NA.0 1.3 10000 -9999

In the table above, the row names express the chunk ticker symbols that
form the swap. To the left of the comma is an enter chunk, and to the right of
the comma is an exit chunk.10 The exit chunks all have a symbol NA.0 because
they are dummy sells. The tca.rank.enter column expresses the trade-cost
adjusted rank of the enter chunk, the buy, and the tca.rank.exit column
expresses the trade-cost adjusted rank of the exit chunk, the dummy sell. The
rank.gain column expresses the difference in trade-cost adjusted rank between
the enter and the exit, the buy and dummy sell.

We have spent considerable time discussing the generation of all types of
ranks for buys, but we have not yet discussed ranking sells. For sells, better
ranks are more negative. Therefore, a great sell might have a synthetic rank of
-3.5. In section ??, we discuss how we generate the ranks for the sells. For now,
just note that better sells have more negative ranks.

Recall that our goal is to make the trades which yield the most utility.
In spending our $1,000, we want to trade the best chunks. So that we make
the best buys when increasing the market value of the portfolio, we assign the
dummy sells an arbitrarily high rank. In the table above, the dummy sells have
a trade-cost adjusted rank of -10,000. We match the best the buys and sells by
calculating rank gain. As no real sells will yield the same rank gain that the
pairing of buy and a dummy sell yields, we create pairs with all the dummy sells

9We only show the head of the swaps table.
10Enter chunks are either a buy or short. A buy allows us to take a long position and a

short allows us to take a short position. Exit chunks are either sells or covers. A sell allows
us to exit a long position and a cover allows us to exit a short position.

2 A SIMPLE EXAMPLE 20

before even considering other sells. As there are no sells in this example, all the
swaps consist of a buy and a dummy sell.

Let’s quickly review why we create swaps. We want to maximise utility
by making the candidate trades or portions of candidate trades that yield the
greatest utility. Generally, we want to maintain the portfolio equity at a constant
level. A logical way to do this involves pairing buys and sells of similar market
value. To maximise utility, we should pair the most best ranked buys and
sells. In special cases, we want to increase or decrease the market value of our
portfolio. In order to do this, we must make more of one type of trade. However,
this would require that we have swaps that contain only a buy or sell. Since we
cannot have a swap of only one trade, we introduce dummy trades. As dummy
trades have an arbitrarily high synthetic rank they pair with the best buys and
sells to ensure that we choose the most useful candidates in changing the market
value of the portfolio.

2.10 Accounting for turnover

Note: this and subsequent sections need to account for change in turnover appli-
cation. Now all swaps are done such that the total market value of trades goes
up to but doesn’t exceed the turnover amount. In the meantime I have adjusted
the example’s turnover to $2,000 so that at least one chunk is done, although
now Sweave chunks will be inconsistent with the text.

As we stated earlier, holding period would be endogenous if we could always
set it to maximise risk-adjusted return. However, most real world portfolios have
a set holding period and consequently, a set turnover. There is no real concept
of turnover or holding period in this example. We have $1,000 to invest in our
portfolio over the course of a single day. Although this additional investment
does not represent turnover, we can view our $1,000 as representing a daily
turnover of $1,000. We want to make the best ranked trades until the cumulative
market value of these trades exceeds the money we have to invest. Analogously,
we would say that we want to make the best ranked trades until we exceed
turnover.

As our turnover in this example is $2000, all of our trades will not have a
market value greater than $2000:

tca.rank.enter tca.rank.exit rank.gain

MSFT.1,NA.0 1.9 10000 -9998

MSFT is the the best ranked trade. Consequently, we choose swaps of MSFT
before choosing other swaps. We make 1 because each swap has a value of
approximately $2000, and our turnover is $2000.

2.11 Actual orders

We do not want to submit two orders for 8 shares of MSFT. Before submitting
the trade list, we must roll-up the swaps into larger orders. We first remove the

3 CREATING A LONG-ONLY TRADELIST IN R 21

dummy chunks:

side mv alpha ret.1.d rank.t chunk.shares chunk.mv tca.rank

MSFT.1 B 6000 1.5 -0.02 1.9 33 1980 1.9

Then we combine the chunks to form a single order per candidate:

side shares mv alpha ret.1.d rank.t

MSFT B 33 1980 1.5 -0.02 1.9

We now have an order for 33 shares of MSFT, which is the sum of the
chunks of MSFT. Having discussed in words the process of trade list creation,
we describe, step-by-step, the process of building a tradelist object in R.

3 Creating a long-only tradelist in R

To create a tradelist, we need four main pieces. The first two pieces necessary
to create a tradelist are portfolio objects. One of these portfolios is our
current portfolio.

Our current portfolio is a superset of the previous holdings. The major
difference between the two portfolios is that the current portfolio in this example
includes positions that we sell. This portfolio, named p.current, consists of
6 positions and has a market value of $47,750.

> p.current.shares

shares price

IBM 100 10

GM 100 30

EBAY 75 120

DELL 50 110

QCOM 75 190

AMD 150 100

The target portfolio is a superset of the previous target portfolio. It contains
6 positions and has a market value of $47,500.

> p.target.shares

shares price

GOOG 50 20

EBAY 75 120

IBM 100 10

GM 200 30

SCHW 100 50

MSFT 100 60

AMD 100 100

QCOM 50 190

3 CREATING A LONG-ONLY TRADELIST IN R 22

We calculate the portfolio difference to determine the candidate trades.11

> sub.candidates

orig target side shares mv

AMD 150 100 S 50 -5000

DELL 50 0 S 50 -5500

GM 100 200 B 100 3000

GOOG 0 50 B 50 1000

MSFT 0 100 B 100 6000

QCOM 75 50 S 25 -4750

SCHW 0 100 B 100 5000

The candidate buys are the same as before and we have 3 candidate sells.
The market value is signed and expresses the net effect a candidate has on the
dollar value of a portfolio.

3.1 Assigning weights

We assign weights to the sorts by creating a list.

> sorts <- list(alpha = 1, ret.1.d = 1.1)

We assign a weight of 1 to alpha and a weight of 1.1 to one-day return.

3.2 Passing additional information to tradelist

The fourth item is a data frame. The portfolio package requires that this data
frame contain columns for id, volume, price.usd, and the sorts:

> sub.data

id volume price.usd alpha ret.1.d

IBM IBM 2100 10 -0.76 -0.003

GOOG GOOG 2200 20 1.10 0.010

GM GM 100 30 1.00 0.100

SCHW SCHW 2500 50 1.20 -0.010

MSFT MSFT 2600 60 1.50 -0.020

AMD AMD 3000 100 -0.94 0.010

DELL DELL 3100 110 -0.15 0.070

EBAY EBAY 3200 120 -0.32 0.001

QCOM QCOM 3900 190 -0.36 -0.005

volume expresses some measure of average trading volume. price.usd is
the most recent price of the security in US dollars. We must also include the
sorts we define in sorts, alpha and ret.1.d.

11The data frame is a subset of the candidates data frame. We often take subsets of data
frames so that they fit better on the page. If we do so we indicate this by prepending the
name of the data frame with sub.

4 THE TRADELIST ALGORITHM 23

3.3 Calling new

We use p.current, p.target, the sorts, and data as arguments to new.

> tl <- new("tradelist", orig = p.current, target = p.target,

+ chunk.usd = 2000, sorts = sorts, turnover = 30250, data = data)

In this call, the new method for tradelist accepts 8 parameters:12 The first
argument, "tradelist", specifies the name of the object that we want to create.
The argument to the orig parameter, p.current, is the current portfolio. The
argument to the target parameter, p.current, is the target portfolio. The
sorts parameter accepts the sorts list we created earlier. We create chunks
with a granularity of of $2,000. The data parameter accepts the data frame we
created earlier with columns for id, volume, price.usd, and the sorts.

The turnover parameter accepts an integer argument which expresses the
maximum market value all orders made in one session. In the previous example
we only had $1,000 with which we could buy stocks. In this example, we can
both buy and sell equities. We might sell an equity and use the proceeds to buy
another equity. However, the turnover restriction applies to sells just as much
as buys. If we have a turnover of $1,000, we may make $1,000 worth of buys,
$1,000 worth of sells, or something in between. For this example, we have set the
turnover equal to the unsigned market value of all the candidate trades. This
means that we take the absolute value of all market values, which is $30,250.
Having set turnover to this value, we complete every candidate trade.

We have demonstrated how to create a simple tradelist in R. In the next
section we examine the tradelist that we have constructed. In doing so, we
learn how the tradelist generation algorithm works.

4 The tradelist algorithm

The tradelist code provides an algorithm, divisible into seven smaller steps,
that generates a set of trades that will move the current, original portfolio to-
wards an ideal, target portfolio. The seven steps in the algorithm correspond
to the following methods of the tradelist class: calcCandidates, calcRanks,
calcChunks, calcSwaps, calcSwapsActual, calcChunksActual, and calcActual.

The user never needs to directly call any of these methods when using the
portfolio package. A call to the new method of the tradelist class invokes
the initialize method of tradelist. The initialize method then calls
the seven methods serially. The first step of the tradelist algorithm involves
determining which types of orders we must make in order to trade towards the
target portfolio.

4.1 The calcCandidates method

As stated in our simplifying assumption, we only consider trades that bring us
closer to the target portfolio. To determine candidate trades we calculate which

12The new method of tradelist can accept more parameters, but they are optional.

4 THE TRADELIST ALGORITHM 24

positions have changed. If a position has changed, we determine what type of
trade the candidate is (buy or sell) by taking the portfolio difference to generate
a list of candidate trades.

> tl@candidates

id orig target side shares mv

AMD AMD 150 100 S 50 -5000

DELL DELL 50 0 S 50 -5500

GM GM 100 200 B 100 3000

GOOG GOOG 0 50 B 50 1000

MSFT MSFT 0 100 B 100 6000

QCOM QCOM 75 50 S 25 -4750

SCHW SCHW 0 100 B 100 5000

Given the data stored in the candidates data frame and the data data
frame, the portfolio package can generate the trade list.

4.2 The calcRanks Method

Ranking the trades is possibly the most complicated task delegated to the
tradelist class. When the rank-generating algorithm returns, the ranks data
frame tradelist will contain the synthetic rank, rank.t, for each trade.

4.2.1 Interpretation of sort values

When we define a sort, we express our preference for purchasing different stocks.
Lesser values express a preference for selling or shorting a position and greater
values express a preference for buying or covering a position. In the previous
example we only saw positive alpha values because all the candidates were buys.
If the values were not positive, we might question why the trade was even a
candidate. Recall our first simplifying assumption that all of the candidates are
desirable and the portfolio package only helps us to determine which are the
most desirable.

In real life, we want to create a sort using meaningful values that express
our trading preferences. One such value is one-day return.

4.2.2 Creating raw ranks for a long-only portfolio

The first step in creating ranks is generating raw ranks. We break the trades
into separate data frames by side and rank the trades within each side because
one type of trade is no than another type of trade.

$B

id orig target side shares mv ret.1.d rank

GM GM 100 200 B 100 3000 0.10 1

GOOG GOOG 0 50 B 50 1000 0.01 2

SCHW SCHW 0 100 B 100 5000 -0.01 3

MSFT MSFT 0 100 B 100 6000 -0.02 4

4 THE TRADELIST ALGORITHM 25

$S

id orig target side shares mv ret.1.d rank

QCOM QCOM 75 50 S 25 -4750 -0.005 1

AMD AMD 150 100 S 50 -5000 0.010 2

DELL DELL 50 0 S 50 -5500 0.070 3

The $B data frame shows the buys ranked with other buys and the $S data
frame shows the sells ranked with other sells. The most desirable buys are
those associated with the greatest values in ret.1.d. The most desirable sells
are those associated with the least value in ret.1.d. Therefore, GM ranked 1
amongst buys, is the most desirable buy, and QCOM, ranked 1 amongst sells,
is the most desirable sell.13

4.2.3 Interleaving

We now have two tables of ranks and there are still multiple trades at each rank:
a buy and sell ranked number one, number two and so on. Combining the two
tables of ranks by type leaves us with duplicates:

orig target side shares mv ret.1.d rank

GM 100 200 B 100 3000 0.100 1

QCOM 75 50 S 25 -4750 -0.005 1

GOOG 0 50 B 50 1000 0.010 2

AMD 150 100 S 50 -5000 0.010 2

SCHW 0 100 B 100 5000 -0.010 3

DELL 50 0 S 50 -5500 0.070 3

MSFT 0 100 B 100 6000 -0.020 4

We argue that there is no natural way to choose between the best buy and
best sell. To deal with this ambiguity, we always break ties in rank between a
buy and sell by assigning the buy the higher rank. In the following table, we
create new raw ranks to eliminate the duplicates.

orig target side shares mv alpha rank

MSFT 0 100 B 100 6000 1.50 1

AMD 150 100 S 50 -5000 -0.94 2

SCHW 0 100 B 100 5000 1.20 3

QCOM 75 50 S 25 -4750 -0.36 4

GOOG 0 50 B 50 1000 1.10 5

DELL 50 0 S 50 -5500 -0.15 6

GM 100 200 B 100 3000 1.00 7

Notice that each candidate has a unique rank and that the rows alternate
between buy and sell candidates. The best ranked candidate trade is a buy

13We have taken the inverse of all the one-day return values so that the portfolio package
interprets them correctly. If we believe one-day reversal, the best buys have negative one-day
returns and the best sells have positive one-day returns. Buy low, sell high. However, the
portfolio package interprets greater values as indicative of the best buys and lesser values as
indicate of the best sells.

4 THE TRADELIST ALGORITHM 26

because we broke the tie for first between the best ranked buy and sell by
assigning the buy the higher rank. This pattern repeats throughout the data
frame because we have ties at every rank except the last. We call this process
of alternating between the best ranked buys and sells interleaving.

interleaving: The process of breaking the trades up by side and ranking
them with other trades of the same type, thereby yielding multiple trades
at each rank. We always break ties in rank with the following ordering:
Buys, Sells, Covers, Shorts (B, S, C, X).

4.2.4 Weighted ranks

Having interleaved the candidates, we divide the new raw ranks by the weight
assigned to one-day return, 1.1.

id orig target side shares mv ret.1.d rank

GM GM 100 200 B 100 3000 0.100 0.83

QCOM QCOM 75 50 S 25 -4750 -0.005 1.65

GOOG GOOG 0 50 B 50 1000 0.010 2.48

AMD AMD 150 100 S 50 -5000 0.010 3.31

SCHW SCHW 0 100 B 100 5000 -0.010 4.13

DELL DELL 50 0 S 50 -5500 0.070 4.96

MSFT MSFT 0 100 B 100 6000 -0.020 5.79

We assigned alpha a weight of 1 so the ranks remain the same.

> tl@rank.sorts[["alpha"]]

id orig target side shares mv alpha rank

MSFT MSFT 0 100 B 100 6000 1.50 1

AMD AMD 150 100 S 50 -5000 -0.94 2

SCHW SCHW 0 100 B 100 5000 1.20 3

QCOM QCOM 75 50 S 25 -4750 -0.36 4

GOOG GOOG 0 50 B 50 1000 1.10 5

DELL DELL 50 0 S 50 -5500 -0.15 6

GM GM 100 200 B 100 3000 1.00 7

We combine the alpha and one-day return ranks into a single data frame.

id orig target side shares mv rank

1 AMD 150 100 S 50 -5000 2.0

2 AMD 150 100 S 50 -5000 3.6

3 DELL 50 0 S 50 -5500 6.0

4 DELL 50 0 S 50 -5500 5.5

5 GM 100 200 B 100 3000 7.0

6 GM 100 200 B 100 3000 0.9

7 GOOG 0 50 B 50 1000 5.0

8 GOOG 0 50 B 50 1000 2.7

9 MSFT 0 100 B 100 6000 1.0

10 MSFT 0 100 B 100 6000 6.4

4 THE TRADELIST ALGORITHM 27

11 QCOM 75 50 S 25 -4750 4.0

12 QCOM 75 50 S 25 -4750 1.8

13 SCHW 0 100 B 100 5000 3.0

14 SCHW 0 100 B 100 5000 4.5

To remove duplicates, we assign each candidate the best weighted rank as-
sociated with it by any sort.

orig target side shares mv

GM 100 200 B 100 3000

MSFT 0 100 B 100 6000

QCOM 75 50 S 25 -4750

AMD 150 100 S 50 -5000

GOOG 0 50 B 50 1000

SCHW 0 100 B 100 5000

DELL 50 0 S 50 -5500

And we re-rank the candidates.

target side shares mv rank.t

GM 200 B 100 3000 1.9

MSFT 100 B 100 6000 1.6

QCOM 50 S 25 -4750 -1.8

AMD 100 S 50 -5000 -1.4

GOOG 50 B 50 1000 1.3

SCHW 100 B 100 5000 1.2

DELL 0 S 50 -5500 -1.2

4.2.5 Mapping to the truncated normal distribution

Having weighted the ranks we create synthetic ranks from a truncated normal
distribution. When we only have buys, we scale the weighted ranks to [0.85, 1).
This gives us the positive tail of the normal distribution. We associate more
negative values with better sells so we want to map sells to the negative tail of
the normal distribution. To do this, we scale sells to the interval (0, 0.15].

side alpha ret.1.d rank rank.ws

QCOM S -0.36 -0.005 1.8 0.037

AMD S -0.94 0.010 2.0 0.075

DELL S -0.15 0.070 5.5 0.112

SCHW B 1.20 -0.010 3.0 0.880

GOOG B 1.10 0.010 2.7 0.910

MSFT B 1.50 -0.020 1.0 0.940

GM B 1.00 0.100 0.9 0.970

We map the scaled ranks to the normal distribution.

> tl.ranks

4 THE TRADELIST ALGORITHM 28

id orig target side shares mv alpha ret.1.d rank.t

QCOM QCOM 75 50 S 25 -4750 -0.36 -0.005 -1.8

AMD AMD 150 100 S 50 -5000 -0.94 0.010 -1.4

DELL DELL 50 0 S 50 -5500 -0.15 0.070 -1.2

SCHW SCHW 0 100 B 100 5000 1.20 -0.010 1.2

GOOG GOOG 0 50 B 50 1000 1.10 0.010 1.3

MSFT MSFT 0 100 B 100 6000 1.50 -0.020 1.6

GM GM 100 200 B 100 3000 1.00 0.100 1.9

rank.t expresses the synthetic rank. All of the sells have a negative rank.t
because they have been mapped to the negative tail of the normal distribution,
while all of the buys have a positive rank.t because they have been mapped to
the other tail. As described in section 2.7.3, the synthetic ranks do not fall at
the extreme tail of the normal distribution.

4.3 The calcChunks Method

Having calculated synthetic ranks, the portfolio package creates the chunks
table. We defined the market value of each chunk by specifying the chunk.usd
parameter in the call to new. The addition of sells does not have a dramatic
effect on the manner in which we generate the chunk table besides contributing
negative trade-cost adjusted ranks.

> sub.chunks

side rank.t chunk.shares chunk.mv tca.rank

AMD.1 S -1.4 20 -2000 -1.4

AMD.2 S -1.4 20 -2000 -1.4

AMD.3 S -1.4 10 -1000 -1.4

DELL.1 S -1.2 18 -1980 -1.2

DELL.2 S -1.2 18 -1980 -1.2

DELL.3 S -1.2 14 -1540 -1.2

GM.1 B 1.9 67 2010 1.9

GM.2 B 1.9 33 990 -4.1

GOOG.1 B 1.3 50 1000 1.3

MSFT.1 B 1.6 33 1980 1.6

MSFT.2 B 1.6 33 1980 1.6

MSFT.3 B 1.6 33 1980 1.6

MSFT.4 B 1.6 1 60 1.6

QCOM.1 S -1.8 11 -2090 -1.8

QCOM.2 S -1.8 11 -2090 -1.8

QCOM.3 S -1.8 3 -570 -1.8

SCHW.1 B 1.2 40 2000 1.2

SCHW.2 B 1.2 40 2000 1.2

SCHW.3 B 1.2 20 1000 1.2

Most chunks have an unsigned market value of approximately $2,000. The
only chunks of market value significantly less than $2,000 are the final chunks
of a candidate. These chunks are the remainders left after dividing the rest of
the order into $2,000 chunks.

4 THE TRADELIST ALGORITHM 29

If we order the chunks by tca.rank, the second chunk of GM has been
severely penalised for trade costs.

> head(sub.chunks[order(sub.chunks[["tca.rank"]]),])

side rank.t chunk.shares chunk.mv tca.rank

GM.2 B 1.9 33 990 -4.1

QCOM.1 S -1.8 11 -2090 -1.8

QCOM.2 S -1.8 11 -2090 -1.8

QCOM.3 S -1.8 3 -570 -1.8

AMD.1 S -1.4 20 -2000 -1.4

AMD.2 S -1.4 20 -2000 -1.4

GM has a more negative tca.rank than any of the buys or sells, indicating
that this is the last chunk we would trade.

4.4 The calcSwaps Method

The calcSwaps works in as it did in the previous example, the main difference
being that we pair real buy chunks with real sell chunks. We determine which
trades to pair for a swap by calculating rank gain.

rank gain: The difference in tca.rank between a buy and a sell. As the
most desirable buys have a very positive tca.rank and the most desirable
sells have a very negative tca.rank, the best swaps have great rank.gain
values.

Buys with high tca.rank have been matched with sells with low tca.rank.

> swaps.sub

side.enter tca.rank.enter side.exit tca.rank.exit rank.gain

GM.1,QCOM.1 B 1.9 S -1.8 3.7

MSFT.1,QCOM.2 B 1.6 S -1.8 3.3

MSFT.2,QCOM.3 B 1.6 S -1.8 3.3

MSFT.3,AMD.1 B 1.6 S -1.4 3.0

MSFT.4,AMD.2 B 1.6 S -1.4 3.0

GOOG.1,AMD.3 B 1.3 S -1.4 2.8

SCHW.1,DELL.1 B 1.2 S -1.2 2.4

SCHW.2,DELL.2 B 1.2 S -1.2 2.4

SCHW.3,DELL.3 B 1.2 S -1.2 2.4

GM.2,NA.0 B -4.1 S 10000.0 -10004.1

We have paired almost all of the buy chunks with real sell chunks. The only
buy we have not paired with a real sell chunk is the second chunk of GM. As
the target portfolio ($47,500) has approximately the same market value as the
current portfolio ($47,750), we will not introduce any dummy chunks to account
for over or under-investment. We pair GM with a dummy chunk only because
we have run out of real sell chunks to match it with. As we would rather make
swaps which contain a real buy and sell chunk, we assign the dummy sell chunk
a poor tca.rank which yields a low rank.gain value. Consequently, we will
not consider this trade until we have considered all of the other trades.

4 THE TRADELIST ALGORITHM 30

4.5 The calcSwapsActual Method

The remaining steps of the tradelist algorithm clean up the tradelist for
final use. In the calcSwapsActual method we remove the most poorly ranked
swaps that exceed turnover. When we created the tradelist, we set turnover
to be $30,250, the unsigned market value of all the candidate trades. A turnover
of $30,250 will allow us to complete every trade.

> sub.swaps.actual

side.enter tca.rank.enter side.exit tca.rank.exit rank.gain

GM.1,QCOM.1 B 1.9 S -1.8 3.7

MSFT.1,QCOM.2 B 1.6 S -1.8 3.3

MSFT.2,QCOM.3 B 1.6 S -1.8 3.3

MSFT.3,AMD.1 B 1.6 S -1.4 3.0

MSFT.4,AMD.2 B 1.6 S -1.4 3.0

GOOG.1,AMD.3 B 1.3 S -1.4 2.8

SCHW.1,DELL.1 B 1.2 S -1.2 2.4

SCHW.2,DELL.2 B 1.2 S -1.2 2.4

SCHW.3,DELL.3 B 1.2 S -1.2 2.4

Right now, turnover does not cause any swaps to be dropped because it is
greater than the unsigned market value of all the candidate trades, which is
$30,250.

We can cause some swaps to be dropped by setting turnover to a value less
than $30,250.

> tl@turnover <- 30250 - tl@chunk.usd

When we set turnover to a value equal to one chunk less (2000 than the differ-
ence in market value between the original and target portfolios, the calcSwapsActual
method excises the swap with the lowest tca.rank.

> sub.swaps.actual

side.enter tca.rank.enter side.exit tca.rank.exit rank.gain

GM.1,QCOM.1 B 1.9 S -1.8 3.7

MSFT.1,QCOM.2 B 1.6 S -1.8 3.3

MSFT.2,QCOM.3 B 1.6 S -1.8 3.3

MSFT.3,AMD.1 B 1.6 S -1.4 3.0

MSFT.4,AMD.2 B 1.6 S -1.4 3.0

GOOG.1,AMD.3 B 1.3 S -1.4 2.8

SCHW.1,DELL.1 B 1.2 S -1.2 2.4

SCHW.2,DELL.2 B 1.2 S -1.2 2.4

We have removed the third chunk of GM from the list.

4 THE TRADELIST ALGORITHM 31

4.6 The calcChunksActual Method

Our tradelist is almost complete, but first we must change the swaps back
into chunks. In addition, we do not want to include any orders for dummy
chunks, so we will remove those when we turn the swaps back into chunks.

> sub.chunks.actual

side alpha ret.1.d rank.t tca.rank chunk.shares chunk.mv chunk

GM.1 B 1.00 0.100 1.9 1.9 67 2010 1

MSFT.1 B 1.50 -0.020 1.6 1.6 33 1980 1

MSFT.2 B 1.50 -0.020 1.6 1.6 33 1980 2

MSFT.3 B 1.50 -0.020 1.6 1.6 33 1980 3

MSFT.4 B 1.50 -0.020 1.6 1.6 1 60 4

GOOG.1 B 1.10 0.010 1.3 1.3 50 1000 1

SCHW.1 B 1.20 -0.010 1.2 1.2 40 2000 1

SCHW.2 B 1.20 -0.010 1.2 1.2 40 2000 2

SCHW.3 B 1.20 -0.010 1.2 1.2 20 1000 3

QCOM.1 S -0.36 -0.005 -1.8 -1.8 11 -2090 1

QCOM.2 S -0.36 -0.005 -1.8 -1.8 11 -2090 2

QCOM.3 S -0.36 -0.005 -1.8 -1.8 3 -570 3

AMD.1 S -0.94 0.010 -1.4 -1.4 20 -2000 1

AMD.2 S -0.94 0.010 -1.4 -1.4 20 -2000 2

AMD.3 S -0.94 0.010 -1.4 -1.4 10 -1000 3

DELL.1 S -0.15 0.070 -1.2 -1.2 18 -1980 1

DELL.2 S -0.15 0.070 -1.2 -1.2 18 -1980 2

DELL.3 S -0.15 0.070 -1.2 -1.2 14 -1540 3

dummy.quality

GM.1 <NA>

MSFT.1 <NA>

MSFT.2 <NA>

MSFT.3 <NA>

MSFT.4 <NA>

GOOG.1 <NA>

SCHW.1 <NA>

SCHW.2 <NA>

SCHW.3 <NA>

QCOM.1 <NA>

QCOM.2 <NA>

QCOM.3 <NA>

AMD.1 <NA>

AMD.2 <NA>

AMD.3 <NA>

DELL.1 <NA>

DELL.2 <NA>

DELL.3 <NA>

All of the dummy chunks have been removed.

5 A LONG-SHORT EXAMPLE 32

4.7 The Final Step: Actual Orders

In the last step of tradelist generation, we“roll-up” the actual chunks for each
security to form one order per security.

> tl.actual

side shares mv alpha ret.1.d rank.t

AMD S 50 -5000 -0.94 0.010 -1.4

DELL S 50 -5500 -0.15 0.070 -1.2

GM B 67 2010 1.00 0.100 1.9

GOOG B 50 1000 1.10 0.010 1.3

MSFT B 100 6000 1.50 -0.020 1.6

QCOM S 25 -4750 -0.36 -0.005 -1.8

SCHW B 100 5000 1.20 -0.010 1.2

No rows for chunks remain in the actual data frame.

5 A Long-Short Example

For the most part, the portfolio package treats one-sided and long-short port-
folios similarly. The major difference is that we now have to take four types of
trades into consideration, buys, sells, shorts, and covers.

5.1 Current and target portfolios

Our current portfolio is a superset of the holdings in the previous example. This
example’s current portfolio includes positions that we will short and cover. The
current portfolio, p.current, consists of 11 positions and has a market value of
$16,780.

> p.current.shares

shares price

IBM 100 10

GM 100 30

AMD 150 100

DELL 50 110

EBAY 75 120

QCOM 75 190

HPQ -50 15

HAL -75 20

PAYX -100 25

TXN -25 25

YHOO -10 20

The target portfolio is a superset of the target portfolio we used in the two
previous examples. It contains all the positions in the previous target portfolio
plus positions that we short or cover.

5 A LONG-SHORT EXAMPLE 33

> p.target.shares

shares price

IBM 100 10

GOOG 50 20

GM 200 30

SCHW 100 50

MSFT 100 60

AMD 100 100

EBAY 75 120

QCOM 50 190

HPQ -100 15

HAL 200 20

PAYX -50 25

APPL -75 30

TXN -50 25

YHOO 25 20

The target portfolio, p.target, contains 14 positions and has a market value
of $44,900. We assume that we have the additional funds necessary to increase
the market value of the portfolio.

5.2 Candidate trades

We calculate the portfolio difference to determine what the candidate trades
will be:

> sub.candidates

orig target side shares mv

AMD 150 100 S 50 -5000

APPL 0 -75 X 75 -2250

DELL 50 0 S 50 -5500

GM 100 200 B 100 3000

GOOG 0 50 B 50 1000

HAL -75 0 C 75 1500

HPQ -50 -100 X 50 -750

MSFT 0 100 B 100 6000

PAYX -100 -50 C 50 1250

QCOM 75 50 S 25 -4750

SCHW 0 100 B 100 5000

TXN -25 -50 X 25 -625

YHOO -10 0 C 10 200

We now have buy, sell, cover, and short candidates (B, S, C, X). Buys
and covers have positive market values because they increase the value of the
portfolio, and sells and shorts have negative market values because they decrease
the value of the portfolio. Notice that all the candidate trades necessary to reach
the target positions for HAL and YHOO are not on the candidate list. We do
not include all the candidate trades to reach these positions because they involve
side changes.

5 A LONG-SHORT EXAMPLE 34

5.2.1 Side changes and restrictions

A side change occurs when a position changes from long to short or short to
long. The portfolio package does not allow a side change to occur during a
single trading session.14 For a side change to occur, we must make two types of
trades. We must either sell first, then short, or cover first, then buy. We only
allow the first of one of these trades to occur during a single trading session. The
second trade is added to the restricted list so that it may be performed during
a later session. The two trades that involve side changes have been added to
the restricted list.

> tl@restricted

id orig target side shares mv reason

1 HAL 0 200 B 200 4000 Side change enter

2 YHOO 0 25 B 25 500 Side change enter

We have added the buy candidates for HAL and YHOO to the restricted
data frame so that we do not accidentally enter a box position. The reason
column explains why these candidates have been added to restricted. During
this trading session we will attempt to exit the short positions for HAL and
YHOO by covering these positions. In a subsequent trading session we will
attempt to enter a long position by buying these equities.

5.3 Creating sorts and assigning them weights

Like in the previous example, we name the sorts and assign them weights by
creating a list.

> sorts <- list(alpha = 1, ret.1.d = 1/2)

We assigned a weight of 1 to alpha and a weight of 0.5 to one-day return.

5.4 Passing additional information to tradelist

We must pass a data frame with columns for id, price.usd, volume, alpha,
and ret.1.d in the call to new:

> sub.data

id volume price.usd alpha ret.1.d

IBM IBM 2100 10 -0.76 -0.003

GOOG GOOG 2200 20 1.10 0.010

GM GM 100 30 1.00 0.100

SCHW SCHW 2500 50 1.20 -0.010

MSFT MSFT 2600 60 1.50 -0.020

AMD AMD 3000 100 -0.94 -0.040

14Writing code so that we make a side change without creating a box position is hard. We
will address this in future versions of the portfolio package

6 THE TRADELIST ALGORITHM, LONG-SHORT 35

DELL DELL 3100 110 -0.15 -0.020

EBAY EBAY 3200 120 -0.32 -0.070

QCOM QCOM 3900 190 -0.36 -0.005

HPQ HPQ 4000 15 -1.30 -0.002

HAL HAL 4000 20 1.70 0.001

PAYX PAYX 4000 25 0.53 -0.001

APPL APPL 4000 30 -0.30 -0.090

TXN TXN 4000 25 -0.50 -0.010

YHOO YHOO 4000 20 1.20 -0.002

Aside from having information about additional equities, this data frame
does not differ greatly from the one we passed to new in section 3.3.

5.5 Calling new

Having gathered the components necessary to build a tradelist tradelist, we
make a call to new:

> tl <- new("tradelist", orig = p.current, target = p.target,

+ chunk.usd = 2000, sorts = sorts, turnover = 36825, data = data)

We pass 8 arguments as parameters to the new method. The parameters are
similar to those in section 3.3 with the exception of turnover which we have set
to $36,825. The value of the candidate trades in this example is greater than the
value of the candidate trades in the previous example so we must set turnover
higher if we want to complete all of the candidate trades.

6 The tradelist algorithm, long-short

The way the portfolio package builds a long-short tradelist is similar to
the way it builds a long-only tradelist. We will walk through the process
of creating a long-short tradelist with portfolio and discuss the differences
between creating long-only and long-short trade list.

6.1 Calculating ranks

We calculate the ranks for a long-short portfolio in much the same way we do
so for a long-only portfolio. The main difference we must take into is the need
to rank four types of trades with other trades of the same type. In previous
examples we ranked buys and sells separately. Now we rank buys, sells, covers,
and shorts separately.

6.1.1 Raw ranks with a long-short tradelist

As per our third simplifying assumption, we do not favour one type of trade
over another type of trade. As a consequence, we split and rank the trades
separately.

6 THE TRADELIST ALGORITHM, LONG-SHORT 36

$B

id orig target side shares mv alpha rank

MSFT MSFT 0 100 B 100 6000 1.5 1

SCHW SCHW 0 100 B 100 5000 1.2 2

GOOG GOOG 0 50 B 50 1000 1.1 3

GM GM 100 200 B 100 3000 1.0 4

$C

id orig target side shares mv alpha rank

HAL HAL -75 0 C 75 1500 1.70 3

YHOO YHOO -10 0 C 10 200 1.20 7

PAYX PAYX -100 -50 C 50 1250 0.53 11

$S

id orig target side shares mv alpha rank

AMD AMD 150 100 S 50 -5000 -0.94 1

QCOM QCOM 75 50 S 25 -4750 -0.36 2

DELL DELL 50 0 S 50 -5500 -0.15 3

$X

id orig target side shares mv alpha rank

HPQ HPQ -50 -100 X 50 -750 -1.3 1

TXN TXN -25 -50 X 25 -625 -0.5 2

APPL APPL 0 -75 X 75 -2250 -0.3 3

Like on page 24, the $B data frame shows the buys ranked with other buys
and the $S data frame shows the sells ranked with other sells. The $C and $X
data frames show covers and shorts ranked with other shorts.

6.1.2 Interleaving

The last step left us with 4 sets of ranks, one for each type of trade. Up to four
trades will share each rank when we combine these data frames to form a list of
overall rankings and the trades will be interleaved using groups of up to four.15

orig target side shares mv alpha rank

B.MSFT 0 100 B 100 6000 1.50 1

S.AMD 150 100 S 50 -5000 -0.94 1

X.HPQ -50 -100 X 50 -750 -1.30 1

B.SCHW 0 100 B 100 5000 1.20 2

S.QCOM 75 50 S 25 -4750 -0.36 2

X.TXN -25 -50 X 25 -625 -0.50 2

B.GOOG 0 50 B 50 1000 1.10 3

C.HAL -75 0 C 75 1500 1.70 3

S.DELL 50 0 S 50 -5500 -0.15 3

X.APPL 0 -75 X 75 -2250 -0.30 3

B.GM 100 200 B 100 3000 1.00 4

C.YHOO -10 0 C 10 200 1.20 7

C.PAYX -100 -50 C 50 1250 0.53 11

15Some of the groups may not include one trade of every type.

6 THE TRADELIST ALGORITHM, LONG-SHORT 37

As per the third simplifying assumption, there is no natural way to choose
between the best buy, sell, cover, or short. To deal with this ambiguity, we
always break ties in rank between a buy, sell, cover, and short by assigning
the buy the highest rank, the sell the second highest rank, the cover the third
highest rank, and the short the worst rank:

orig target side shares mv alpha rank

MSFT 0 100 B 100 6000 1.50 1

AMD 150 100 S 50 -5000 -0.94 2

HAL -75 0 C 75 1500 1.70 3

HPQ -50 -100 X 50 -750 -1.30 4

SCHW 0 100 B 100 5000 1.20 5

QCOM 75 50 S 25 -4750 -0.36 6

YHOO -10 0 C 10 200 1.20 7

TXN -25 -50 X 25 -625 -0.50 8

GOOG 0 50 B 50 1000 1.10 9

DELL 50 0 S 50 -5500 -0.15 10

PAYX -100 -50 C 50 1250 0.53 11

APPL 0 -75 X 75 -2250 -0.30 12

GM 100 200 B 100 3000 1.00 13

Once again, each candidate has a unique rank and the rows appear in groups
of buys, sells, covers, and shorts. The pattern repeats throughout he data frame
because we have ties at every rank except for the last. There is no tie at the
last rank because we have an odd number of candidates.

6.1.3 Weighted ranks

Having interleaved the separate rankings by type, we calculate weighted ranks.

id orig target side shares mv alpha rank

MSFT MSFT 0 100 B 100 6000 1.50 1

AMD AMD 150 100 S 50 -5000 -0.94 2

HAL HAL -75 0 C 75 1500 1.70 3

HPQ HPQ -50 -100 X 50 -750 -1.30 4

SCHW SCHW 0 100 B 100 5000 1.20 5

QCOM QCOM 75 50 S 25 -4750 -0.36 6

YHOO YHOO -10 0 C 10 200 1.20 7

TXN TXN -25 -50 X 25 -625 -0.50 8

GOOG GOOG 0 50 B 50 1000 1.10 9

DELL DELL 50 0 S 50 -5500 -0.15 10

PAYX PAYX -100 -50 C 50 1250 0.53 11

APPL APPL 0 -75 X 75 -2250 -0.30 12

GM GM 100 200 B 100 3000 1.00 13

We double the one-day return ranks to reflect that one-day return is less
important than alpha. (Recall that lesser ranks are better.)

> tl@rank.sorts[["ret.1.d"]]

6 THE TRADELIST ALGORITHM, LONG-SHORT 38

id orig target side shares mv ret.1.d rank

GM GM 100 200 B 100 3000 0.100 2

AMD AMD 150 100 S 50 -5000 -0.040 4

HAL HAL -75 0 C 75 1500 0.001 6

APPL APPL 0 -75 X 75 -2250 -0.090 8

GOOG GOOG 0 50 B 50 1000 0.010 10

DELL DELL 50 0 S 50 -5500 -0.020 12

PAYX PAYX -100 -50 C 50 1250 -0.001 14

TXN TXN -25 -50 X 25 -625 -0.010 16

SCHW SCHW 0 100 B 100 5000 -0.010 18

QCOM QCOM 75 50 S 25 -4750 -0.005 20

YHOO YHOO -10 0 C 10 200 -0.002 22

HPQ HPQ -50 -100 X 50 -750 -0.002 24

MSFT MSFT 0 100 B 100 6000 -0.020 26

We assign each candidate the best weighted rank from either sort. We com-
bine the data frame of the candidates ranked by alpha with the data frame of
the candidates ranked by one-day return:

id orig target side shares mv rank

1 AMD 150 100 S 50 -5000 2

2 AMD 150 100 S 50 -5000 4

3 APPL 0 -75 X 75 -2250 12

4 APPL 0 -75 X 75 -2250 8

5 DELL 50 0 S 50 -5500 10

6 DELL 50 0 S 50 -5500 12

7 GM 100 200 B 100 3000 13

8 GM 100 200 B 100 3000 2

9 GOOG 0 50 B 50 1000 9

10 GOOG 0 50 B 50 1000 10

11 HAL -75 0 C 75 1500 3

12 HAL -75 0 C 75 1500 6

13 HPQ -50 -100 X 50 -750 4

14 HPQ -50 -100 X 50 -750 24

15 MSFT 0 100 B 100 6000 1

16 MSFT 0 100 B 100 6000 26

17 PAYX -100 -50 C 50 1250 11

18 PAYX -100 -50 C 50 1250 14

19 QCOM 75 50 S 25 -4750 6

20 QCOM 75 50 S 25 -4750 20

21 SCHW 0 100 B 100 5000 5

22 SCHW 0 100 B 100 5000 18

23 TXN -25 -50 X 25 -625 8

24 TXN -25 -50 X 25 -625 16

25 YHOO -10 0 C 10 200 7

26 YHOO -10 0 C 10 200 22

To remove duplicates, we assign each candidate the best weighted rank as-
sociated with it by any sort.

6 THE TRADELIST ALGORITHM, LONG-SHORT 39

orig target side shares mv

MSFT 0 100 B 100 6000

AMD 150 100 S 50 -5000

GM 100 200 B 100 3000

HAL -75 0 C 75 1500

HPQ -50 -100 X 50 -750

SCHW 0 100 B 100 5000

QCOM 75 50 S 25 -4750

YHOO -10 0 C 10 200

APPL 0 -75 X 75 -2250

TXN -25 -50 X 25 -625

GOOG 0 50 B 50 1000

DELL 50 0 S 50 -5500

PAYX -100 -50 C 50 1250

Once again we generate raw ranks:

orig target side shares mv rank

MSFT 0 100 B 100 6000 1.0

AMD 150 100 S 50 -5000 2.5

GM 100 200 B 100 3000 2.5

HAL -75 0 C 75 1500 4.0

HPQ -50 -100 X 50 -750 5.0

SCHW 0 100 B 100 5000 6.0

QCOM 75 50 S 25 -4750 7.0

YHOO -10 0 C 10 200 8.0

APPL 0 -75 X 75 -2250 9.5

TXN -25 -50 X 25 -625 9.5

GOOG 0 50 B 50 1000 11.0

DELL 50 0 S 50 -5500 12.0

PAYX -100 -50 C 50 1250 13.0

Having created weighted ranks, we prepare for the creation of synthetic
ranks.

6.1.4 Mapping to the truncated normal distribution

We create synthetic ranks from by mapping the ranks to a truncated normal
distribution. We scale buys and covers to the the 85th percentile and above and
sells and shorts to the 15th percentile and below ((0, 0.15] ∪ [0.85, 1)).

side alpha ret.1.d rank rank.ws

AMD S -0.94 -0.040 2 0.037

HPQ X -1.30 -0.002 4 0.043

QCOM S -0.36 -0.005 6 0.075

APPL X -0.30 -0.090 8 0.107

TXN X -0.50 -0.010 8 0.107

DELL S -0.15 -0.020 10 0.112

GOOG B 1.10 0.010 9 0.880

PAYX C 0.53 -0.001 11 0.887

6 THE TRADELIST ALGORITHM, LONG-SHORT 40

SCHW B 1.20 -0.010 5 0.910

YHOO C 1.20 -0.002 7 0.925

GM B 1.00 0.100 2 0.940

HAL C 1.70 0.001 3 0.962

MSFT B 1.50 -0.020 1 0.970

Finally, we map the values to the truncated normal distribution:

> tl.ranks

id orig target side shares mv alpha ret.1.d rank.t

AMD AMD 150 100 S 50 -5000 -0.94 -0.040 -1.8

HPQ HPQ -50 -100 X 50 -750 -1.30 -0.002 -1.7

QCOM QCOM 75 50 S 25 -4750 -0.36 -0.005 -1.4

APPL APPL 0 -75 X 75 -2250 -0.30 -0.090 -1.2

TXN TXN -25 -50 X 25 -625 -0.50 -0.010 -1.2

DELL DELL 50 0 S 50 -5500 -0.15 -0.020 -1.2

GOOG GOOG 0 50 B 50 1000 1.10 0.010 1.2

PAYX PAYX -100 -50 C 50 1250 0.53 -0.001 1.2

SCHW SCHW 0 100 B 100 5000 1.20 -0.010 1.3

YHOO YHOO -10 0 C 10 200 1.20 -0.002 1.4

GM GM 100 200 B 100 3000 1.00 0.100 1.6

HAL HAL -75 0 C 75 1500 1.70 0.001 1.8

MSFT MSFT 0 100 B 100 6000 1.50 -0.020 1.9

6.2 Calculating chunks

Calculating chunks for a long-short portfolio functions in almost the same man-
ner as it would for a long-only portfolio. We set the market value of each chunk
to be 2,000 in the call to new.

> sub.chunks

side rank.t chunk.shares chunk.mv tca.rank

AMD.1 S -1.8 20 -2000 -1.8

AMD.2 S -1.8 20 -2000 -1.8

AMD.3 S -1.8 10 -1000 -1.8

APPL.1 X -1.2 67 -2010 -1.2

APPL.2 X -1.2 8 -240 -1.2

DELL.1 S -1.2 18 -1980 -1.2

DELL.2 S -1.2 18 -1980 -1.2

DELL.3 S -1.2 14 -1540 -1.2

GM.1 B 1.6 67 2010 1.6

GM.2 B 1.6 33 990 -4.4

GOOG.1 B 1.2 50 1000 1.2

HAL.1 C 1.8 75 1500 1.8

HPQ.1 X -1.7 50 -750 -1.7

MSFT.1 B 1.9 33 1980 1.9

MSFT.2 B 1.9 33 1980 1.9

MSFT.3 B 1.9 33 1980 1.9

6 THE TRADELIST ALGORITHM, LONG-SHORT 41

MSFT.4 B 1.9 1 60 1.9

PAYX.1 C 1.2 50 1250 1.2

QCOM.1 S -1.4 11 -2090 -1.4

QCOM.2 S -1.4 11 -2090 -1.4

QCOM.3 S -1.4 3 -570 -1.4

SCHW.1 B 1.3 40 2000 1.3

SCHW.2 B 1.3 40 2000 1.3

SCHW.3 B 1.3 20 1000 1.3

TXN.1 X -1.2 25 -625 -1.2

YHOO.1 C 1.4 10 200 1.4

Aside from the addition of cover and short chunks, the chunk table should
appear exactly as it does in section 4.3.

6.3 Calculating Swaps

Swaps work slightly differently with a long-short tradelist than with a long-
only tradelist. In a long-only tradelist we only have to pair buys and sells, but
in a long-short tradelist we have to pair buys, sells, shorts, and covers. The
calcSwaps method accounts for this by matching trades within a side. We pair
shorts with covers and buys with sells:

> swaps.sub

side.enter tca.rank.enter side.exit tca.rank.exit rank.gain

MSFT.1,NA.0 B 1.9 S -10000.0 10001.9

MSFT.2,NA.0 B 1.9 S -10000.0 10001.9

MSFT.3,NA.0 B 1.9 S -10000.0 10001.9

MSFT.4,NA.0 B 1.9 S -10000.0 10001.9

HPQ.1,NA.0 X -1.7 C 10000.0 10001.7

GM.1,NA.0 B 1.6 S -10000.0 10001.6

SCHW.1,NA.0 B 1.3 S -10000.0 10001.3

APPL.1,NA.0 X -1.2 C 10000.0 10001.2

APPL.2,NA.0 X -1.2 C 10000.0 10001.2

TXN.1,NA.0 X -1.2 C 10000.0 10001.2

SCHW.2,AMD.1 B 1.3 S -1.8 3.1

SCHW.3,AMD.2 B 1.3 S -1.8 3.1

GOOG.1,AMD.3 B 1.2 S -1.8 3.0

GM.2,QCOM.1 B -4.4 S -1.4 -3.0

NA.0,HAL.1 X 10000.0 C 1.8 -9998.2

NA.0,QCOM.2 B -10000.0 S -1.4 -9998.6

NA.0,QCOM.3 B -10000.0 S -1.4 -9998.6

NA.0,YHOO.1 X 10000.0 C 1.4 -9998.6

NA.0,DELL.1 B -10000.0 S -1.2 -9998.8

NA.0,DELL.2 B -10000.0 S -1.2 -9998.8

NA.0,DELL.3 B -10000.0 S -1.2 -9998.8

NA.0,PAYX.1 X 10000.0 C 1.2 -9998.8

In the side.enter column we list buys (B) and shorts (X) because the only
way to enter a side is by initially buying or shorting a stock. Sells and covers

6 THE TRADELIST ALGORITHM, LONG-SHORT 42

move us closer to exiting the position which is why we put these trades in the
side.exit column. Like in previous examples, the labels describe the swaps.
The value to the left of the comma is the name of buy or short and the name
to the right of the comma is the name of a sell or cover. The number following
the period is the chunk number of the stock involved in the trade.

Dummy chunks work similarly for long-short portfolios as they do for long-
only portfolios. The main difference is that we must create dummy shorts and
covers to pair with real covers and shorts. We create 18 dummy chunks. The
dummy chunks at the head of the swaps table exist because the current portfolio
has a lesser market value than the target portfolio. To increase the market value
of the current portfolio we want to make more buys and covers than sells. The
dummy chunks at the tail of the table were created because we ran out of shorts
and buys to match with real covers and sells. We assign this type of dummy
trade a poor trade-cost adjusted rank.

6.4 The calcSwapsActual Method

The calcSwapsActual method works in almost exactly the same way as it does
for a long-only tradelist.

> sub.swaps.actual <- tl@swaps.actual[, c("side.enter", "tca.rank.enter",

+ "side.exit", "tca.rank.exit", "rank.gain")]

> sub.swaps.actual

side.enter tca.rank.enter side.exit tca.rank.exit rank.gain

MSFT.1,NA.0 B 1.9 S -10000.0 10001.9

MSFT.2,NA.0 B 1.9 S -10000.0 10001.9

MSFT.3,NA.0 B 1.9 S -10000.0 10001.9

MSFT.4,NA.0 B 1.9 S -10000.0 10001.9

HPQ.1,NA.0 X -1.7 C 10000.0 10001.7

GM.1,NA.0 B 1.6 S -10000.0 10001.6

SCHW.1,NA.0 B 1.3 S -10000.0 10001.3

APPL.1,NA.0 X -1.2 C 10000.0 10001.2

APPL.2,NA.0 X -1.2 C 10000.0 10001.2

TXN.1,NA.0 X -1.2 C 10000.0 10001.2

SCHW.2,AMD.1 B 1.3 S -1.8 3.1

SCHW.3,AMD.2 B 1.3 S -1.8 3.1

GOOG.1,AMD.3 B 1.2 S -1.8 3.0

GM.2,QCOM.1 B -4.4 S -1.4 -3.0

We do not remove any swaps because we set the turnover equal to the
unsigned market value of the candidate trades. If we decrease turnover, some
of the swaps will be excised.

> tl@turnover <- nt - tl@chunk.usd

We set turnover to equal the turnover necessary to complete all of the can-
didate trades (nt), minus the maximum size of a chunk. This guarantees that

6 THE TRADELIST ALGORITHM, LONG-SHORT 43

we do not make trade the worst swap, in this case NA.0,PAYX.1. By lowering
turnover we caused the worst ranked swap to be removed.

> sub.swaps.actual

side.enter tca.rank.enter side.exit tca.rank.exit rank.gain

MSFT.1,NA.0 B 1.9 S -10000.0 10001.9

MSFT.2,NA.0 B 1.9 S -10000.0 10001.9

MSFT.3,NA.0 B 1.9 S -10000.0 10001.9

MSFT.4,NA.0 B 1.9 S -10000.0 10001.9

HPQ.1,NA.0 X -1.7 C 10000.0 10001.7

GM.1,NA.0 B 1.6 S -10000.0 10001.6

SCHW.1,NA.0 B 1.3 S -10000.0 10001.3

APPL.1,NA.0 X -1.2 C 10000.0 10001.2

APPL.2,NA.0 X -1.2 C 10000.0 10001.2

TXN.1,NA.0 X -1.2 C 10000.0 10001.2

SCHW.2,AMD.1 B 1.3 S -1.8 3.1

SCHW.3,AMD.2 B 1.3 S -1.8 3.1

GOOG.1,AMD.3 B 1.2 S -1.8 3.0

GM.2,QCOM.1 B -4.4 S -1.4 -3.0

6.5 Calculating actual chunks

The calcchunksActual method works similarly to the way it does for a long-
only tradelist:

> sub.chunks.actual

side alpha ret.1.d rank.t tca.rank chunk.shares chunk.mv chunk

MSFT.1 B 1.50 -0.020 1.9 1.9 33 1980 1

MSFT.2 B 1.50 -0.020 1.9 1.9 33 1980 2

MSFT.3 B 1.50 -0.020 1.9 1.9 33 1980 3

MSFT.4 B 1.50 -0.020 1.9 1.9 1 60 4

HPQ.1 X -1.30 -0.002 -1.7 -1.7 50 -750 1

GM.1 B 1.00 0.100 1.6 1.6 67 2010 1

SCHW.1 B 1.20 -0.010 1.3 1.3 40 2000 1

APPL.1 X -0.30 -0.090 -1.2 -1.2 67 -2010 1

APPL.2 X -0.30 -0.090 -1.2 -1.2 8 -240 2

TXN.1 X -0.50 -0.010 -1.2 -1.2 25 -625 1

SCHW.2 B 1.20 -0.010 1.3 1.3 40 2000 2

SCHW.3 B 1.20 -0.010 1.3 1.3 20 1000 3

GOOG.1 B 1.10 0.010 1.2 1.2 50 1000 1

GM.2 B 1.00 0.100 1.6 -4.4 33 990 2

AMD.1 S -0.94 -0.040 -1.8 -1.8 20 -2000 1

AMD.2 S -0.94 -0.040 -1.8 -1.8 20 -2000 2

AMD.3 S -0.94 -0.040 -1.8 -1.8 10 -1000 3

QCOM.1 S -0.36 -0.005 -1.4 -1.4 11 -2090 1

dummy.quality

MSFT.1 <NA>

MSFT.2 <NA>

7 CONCLUSION 44

MSFT.3 <NA>

MSFT.4 <NA>

HPQ.1 <NA>

GM.1 <NA>

SCHW.1 <NA>

APPL.1 <NA>

APPL.2 <NA>

TXN.1 <NA>

SCHW.2 <NA>

SCHW.3 <NA>

GOOG.1 <NA>

GM.2 <NA>

AMD.1 <NA>

AMD.2 <NA>

AMD.3 <NA>

QCOM.1 <NA>

We have changed the swaps back into chunks. The additional work for
a long-short portfolio involves converting buy/sell and short/cover swaps into
chunks instead of just dealing with buy/sell chunks.

6.6 The calcActual Method

The calcActual method works almost exactly the same way it does for a long-
only tradelist:

> tl@actual

id side shares mv alpha ret.1.d rank.t

AMD AMD S 50 -5000 -0.94 -0.040 -1.8

APPL APPL X 75 -2250 -0.30 -0.090 -1.2

GM GM B 100 3000 1.00 0.100 1.6

GOOG GOOG B 50 1000 1.10 0.010 1.2

HPQ HPQ X 50 -750 -1.30 -0.002 -1.7

MSFT MSFT B 100 6000 1.50 -0.020 1.9

QCOM QCOM S 11 -2090 -0.36 -0.005 -1.4

SCHW SCHW B 100 5000 1.20 -0.010 1.3

TXN TXN X 25 -625 -0.50 -0.010 -1.2

We “roll-up” all the chunks into single orders.

7 Conclusion

With intelligently defined sorts, the portfolio package is a powerful tool for
managing equity portfolios. Nonetheless, the tradelist code could stand for
improvement in certain areas, particularly the area of trade-cost adjustment.
The current method of using discrete and static boundaries for determining
trade-adjusted rank should be replaced by a trade-cost adjustment function.
Nonetheless, we believe that our package makes the difficult problem of trading
a little bit easier.

