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Abstract

This introduction to the object-orientation features of the R package sandwich is a (slightly)
modified version of Zeileis (2006), published in the Journal of Statistical Software.

Sandwich covariance matrix estimators are a popular tool in applied regression modeling
for performing inference that is robust to certain types of model misspecification. Suitable
implementations are available in the R system for statistical computing for certain model
fitting functions only (in particular lm()), but not for other standard regression functions,
such as glm(), nls(), or survreg().

Therefore, conceptual tools and their translation to computational tools in the package
sandwich are discussed, enabling the computation of sandwich estimators in general parametric
models. Object orientation can be achieved by providing a few extractor functions—most
importantly for the empirical estimating functions—from which various types of sandwich
estimators can be computed.
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1. Introduction

A popular approach to applied parametric regression modeling is to derive estimates of the un-
known parameters via a set of estimating functions (including least squares and maximum likeli-
hood scores). Inference for these models is typically based on a central limit theorem in which the
covariance matrix is of a sandwich type: a slice of meat between two slices of bread, pictorially
speaking. Employing estimators for the covariance matrix based on this sandwich form can make
inference for the parameters more robust against certain model misspecifications (provided the es-
timating functions still hold and yield consistent estimates). Therefore, sandwich estimators such
as heteroskedasticy consistent (HC) estimators for cross-section data and heteroskedasitcity and
autocorrelation consistent (HAC) estimators for time-series data are commonly used in applied
regression, in particular in linear regression models.

Zeileis (2004) discusses a set of computational tools provided by the sandwich package for the R
system for statistical computing (R Development Core Team 2006) which allows for computing
HC and HAC estimators in linear regression models fitted by lm(). Here, we set out where the
discussion of Zeileis (2004) ends and generalize the tools from linear to general parametric models
fitted by estimating functions. This generalization is achieved by providing an object-oriented
implementation for the building blocks of the sandwich that rely only on a small set of extractor
functions for fitted model objects. The most important of these is a method for extracting the
empirical estimating functions—based on this a wide variety of meat fillings for sandwiches is
provided.

The paper is organized as follows: Section 2 discusses the model frame and reviews some of the
underlying theory. Section 3 presents some existing R infrastructure which can be re-used for the
computation of sandwich covariance matrices in Section 4. Section 5 gives a brief illustration of
the computational tools before Section 6 concludes the paper.
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2. Model frame

To fix notations, let us assume we have data in a regression setup, i.e., (yi, xi) for i = 1, . . . , n,
that follow some distribution that is controlled by a k-dimensional parameter vector θ. In many
situations, an estimating function ψ(·) is available for this type of models such that E[ψ(y, x, θ)] =
0. Then, under certain weak regularity conditions (see e.g., White 1994), θ can be estimated using
an M-estimator θ̂ implicitely defined as

n∑
i=1

ψ(yi, xi, θ̂) = 0. (1)

This includes cases where the estimating function ψ(·) is the derivative of an objective function
Ψ(·):

ψ(y, x, θ) =
∂Ψ(y, x, θ)

∂θ
. (2)

Examples for estimation techniques included in this framework are maximum likelihood (ML) and
ordinary and nonlinear least squares (OLS and NLS) estimation, where the estimator is usually
written in terms of the objective function as θ̂ = argminθ

∑
i Ψ(yi, xi, θ). Other techniques—often

expressed in terms of the estimating function rather than the objective function—include quasi
ML, robust M-estimation and generalized estimating equations (GEE).

Inference about θ is typically performed relying on a central limit theorem (CLT) of type

√
n (θ̂ − θ) d−→ N(0, S(θ)), (3)

where d−→ denotes convergence in distribution. For the covariance matrix S(θ), a sandwich formula
can be given

S(θ) = B(θ)M(θ)B(θ) (4)

B(θ) = (E[−ψ′(y, x, θ)])−1 (5)
M(θ) = VAR[ψ(y, x, θ)] (6)

see Theorem 6.10 in White (1994), Chapter 5 in Cameron and Trivedi (2005), or Stefanski and
Boos (2002) for further details. The “meat” of the sandwich M(θ) is the variance of the estimating
function and the “bread” is the inverse of the expectation of its first derivative ψ′ (again with
respect to θ). Note that we use the more evocative names S, B and M instead of the more
conventional notation V (θ) = A(θ)−1B(θ)A(θ)−1.

In correctly specified models estimated by ML (or OLS and NLS with homoskedastic errors), this
sandwich expression for S(θ) can be simplified because M(θ) = B(θ)−1, corresponding to the
Fisher information matrix. Hence, the variance S(θ) in the CLT from Equation 3 is typically
estimated by an empirical version of B(θ). However, more robust covariance matrices can be
obtained by employing estimates for M(θ) that are consistent under weaker assumptions (see
e.g., Lumley and Heagerty 1999) and plugging these into the sandwich formula for S(θ) from
Equation 4. Robustness can be achieved with respect to various types of misspecification, e.g.,
heteroskedasticity—however, consistency of θ̂ has to be assured, which implies that at least the
estimating functions have to be correctly specified.

Many of the models of interest to us, provide some more structure: the objective function Ψ(y, x, θ)
depends on x and θ in a special way, namely it does only depend on the univariate linear predictor
η = x>θ. Then, the estimating function is of type

ψ(y, x, θ) =
∂Ψ
∂η
· ∂η
∂θ

=
∂Ψ
∂η
· x. (7)
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The partial derivative r(y, η) = ∂Ψ(y, η)/∂η is in some models also called “working residual”
corresponding to the usual residuals in linear regression models. In such linear-predictor-based
models, the meat of the sandwich can also be sloppily written as

M(θ) = xVAR[r(y, x>θ)]x>. (8)

Whereas employing this structure for computing HC covariance matrix estimates is well-established
practice for linear regression models (see MacKinnon and White 1985; Long and Ervin 2000, among
others), it is less commonly applied in other regression models such as GLMs.

3. Existing R infrastructure

To make use of the theory outlined in the previous section, some computational infrastructure is
required translating the conceptual to computational tools. R comes with a multitude of model-
fitting functions that compute estimates θ̂ and can be seen as special cases of the framework above.
They are typically accompanied by extractor and summary methods providing inference based on
the CLT from Equation 3. For extracting the estimated parameter vector θ̂ and some estimate
of the covariance matrix S(θ), there are usually a coef() and a vcov() method, respectively.
Based on these estimates, inference can typically be performed by the summary() and anova()
methods. By convention, the summary() method performs partial t or z tests and the anova()
method performs F or χ2 tests for nested models. The covariance estimate used in these tests
(and returned by vcov()) usually relies on the assumption of correctly specified models and hence
is simply an empirical version of the bread B(θ) only (divided by n).
For extending these tools to inference based on sandwich covariance matrix estimators, two things
are needed: 1. generalizations of vcov() that enable computations of sandwich estimates, 2. infer-
ence functions corresponding to the summary() and anova() methods which allow other covariance
matrices to be plugged in. As for the latter, the package lmtest (Zeileis and Hothorn 2002) provides
coeftest() and waldtest() and car (Fox 2002) provides linear.hypothesis()—all of these can
perform model comparisons in rather general parametric models, employing user-specified covari-
ance matrices. As for the former, only specialized solutions of sandwich covariances matrices are
currently available in R packages, e.g., HAC estimators for linear models in previous versions of
sandwich and HC estimators for linear models in car and sandwich. Therefore, we aim at pro-
viding a tool kit for plugging together sandwich matrices (including HC and HAC estimators
and potentially others) in general parametric models, re-using the functionality that is already
provided.

4. Covariance matrix estimators

In the following, the conceptual tools outlined in Section 2 are translated to computational tools
preserving their flexibility through the use of the estimating functions framework and re-using
the computational infrastructure that is already available in R. Separate methods are suggested
for computing estimates for the bread B(θ) and the meat M(θ), along with some convenience
functions and wrapper interfaces that build sandwiches from bread and meat.

4.1. The bread

Estimating the bread B(θ) is usually relatively easy and the most popular estimate is the Hessian,
i.e., the mean crossproduct of the derivative of the estimating function evaluated at the data and
estimated parameters:

B̂ =

(
1
n

n∑
i=1

−ψ′(yi, xi, θ̂)

)−1

. (9)

If an objective function Ψ(·) is used, this is the crossproduct of its second derivative, hence the
name Hessian.
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This estimator is what the vcov() method is typically based on and therefore it can usually
be extracted easily from the fitted model objects, e.g., for “lm” and “glm” it is essentially the
cov.unscaled element returned by the summary() method. To unify the extraction of a suitable
estimate for the bread, sandwich provides a new bread() generic that should by default return
the bread estimate that is also used in vcov(). This will usually be the Hessian estimate, but
might also be the expected Hessian (Cameron and Trivedi 2005, Equation 5.36) in some models.
The package sandwich provides bread() methods for“lm”(including“glm”by inheritance),“coxph”,
“survreg”and“nls”objects. All of them simply re-use the information provided in the fitted mod-
els (or their summaries) and perform hardly any computations, e.g., for “lm” objects:

bread.lm <- function(obj, ...)

{

so <- summary(obj)

so$cov.unscaled * as.vector(sum(so$df[1:2]))

}

4.2. The meat

While the bread B(θ) is typically estimated by the Hessian matrix B̂ from Equation 9, various
different types of estimators are available for the meat M(θ), usually offering certain robustness
properties. Most of these estimators are based on the empirical values of estimating functions.
Hence, a natural idea for object-oriented implementation of such estimators is the following: pro-
vide various functions that compute different estimators for the meat based on an estfun() ex-
tractor function that extracts the empirical estimating functions from a fitted model object. This
is what sandwich does: the functions meat(), meatHAC() and meatHC() compute outer product,
HAC and HC estimators for M(θ), respectively, relying on the existence of an estfun() method
(and potentially a few other methods). Their design is described in the following.

Estimating functions

Whereas (different types of) residuals are typically available as discrepancy measure for a model fit
via the residuals() method, the empirical values of the estimating functions ψ(yi, xi, θ̂) are often
not readily implemented in R. Hence, sandwich provides a new estfun() generic whose methods
should return an n× k matrix with the empirical estimating functions: ψ(y1, x1, θ̂)

...
ψ(yn, xn, θ̂)

 .

Suitable methods are provided for “lm”, “glm”, “rlm”, “nls”, “survreg” and “coxph” objects. Usu-
ally, these can easily re-use existing methods, in particular residuals() and model.matrix() if
the model is of type (7). As a simple example, the most important steps of the “lm” method are

estfun.lm <- function (obj, ...)

{

wts <- weights(obj)

if(is.null(wts)) wts <- 1

residuals(obj) * wts * model.matrix(obj)

}

Outer product estimators

A simple and natural estimator for the meat matrix M(θ) = VAR[ψ(y, x, θ)] is the outer product
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of the empirical estimating functions:

M̂ =
1
n

n∑
i=1

ψ(yi, xi, θ̂)ψ(yi, xi, θ̂)> (10)

This corresponds to the Eicker-Huber-White estimator (Eicker 1963; Huber 1967; White 1980) and
is sometimes also called outer product of gradients estimator. In practice, a degrees of freedom
adjustment is often used, i.e., the sum is scaled by n − k instead of n, corresponding to the
HC1 estimator from MacKinnon and White (1985). In non-linear models this has no theoretical
justification, but has been found to have better finite sample performance in some simulation
studies.
In sandwich, these two estimators are provided by the function meat() which only relies on the
existence of an estfun() method. A simplified version of the R code is

meat <- function(obj, adjust = FALSE, ...)

{

psi <- estfun(obj)

k <- NCOL(psi)

n <- NROW(psi)

rval <- crossprod(as.matrix(psi))/n

if(adjust) rval <- n/(n - k) * rval

rval

}

HAC estimators

More elaborate methods for deriving consistent covariance matrix estimates in the presence of
autocorrelation in time-series data are also available. Such HAC estimators M̂HAC are based on
the weighted empirical autocorrelations of the empirical estimating functions:

M̂HAC =
1
n

n∑
i,j=1

w|i−j| ψ(yi, xi, θ̂)ψ(yj , xj , θ̂)> (11)

where different strategies are available for the choice of the weights w` at lag ` = 0, . . . , n− 1
(Andrews 1991; Newey and West 1994; Lumley and Heagerty 1999). Again, an additional finite
sample adjustment can be applied by multiplication with n/(n− k).
Once a vector of weights is chosen, the computation of M̂HAC in R is easy, the most important
steps are given by

meatHAC <- function(obj, weights, ...)

{

psi <- estfun(obj)

n <- NROW(psi)

rval <- 0.5 * crossprod(psi) * weights[1]

for(i in 2:length(weights))

rval <- rval + weights[i] * crossprod(psi[1:(n-i+1),], psi[i:n,])

(rval + t(rval))/n

}

The actual function meatHAC() in sandwich is much more complex as it also interfaces different
weighting and bandwidth selection functions. The details are the same compared to Zeileis (2004)
where the selection of weights had been discussed for fitted “lm” objects.
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HC estimators

In addition to the two HC estimators that can be written as outer product estimators (also called
HC0 and HC1), various other HC estimators (usually called HC2–HC4) have been suggested, in
particular for the linear regression model (MacKinnon and White 1985; Long and Ervin 2000;
Cribari-Neto 2004). In fact, they can be applied to more general models provided the estimating
function depends on the parameters only through a linear predictor as described in Equation 7.
Then, the meat matrix M(θ) is of type (8) which naturally leads to HC estimators of the form
M̂HC = 1/nX>Ω̂X, where X is the regressor matrix and Ω̂ is a diagonal matrix estimating the
variance of r(y, η). Various functions ω(·) have been suggested that derive estimates of the vari-
ances from the observed working residuals (r(y1, x>1 θ̂), . . . , r(yn, x

>
n θ̂))

>—possibly also depending
on the hat values and the degrees of freedom. Thus, the HC estimators are of the form

M̂HC =
1
n
X>

 ω(r(y1, x>1 θ)) · · · 0
...

. . .
...

0 · · · ω(r(y, x>θ))

X. (12)

To transfer these tools into software in the function meatHC(), we need infrastructure for three
elements in Equation 12: 1. the model matrix X, 2. the function ω(·), and 3. the empirical working
residuals r(yi, x>i θ̂). As for 1, the model matrix X can easily be accessed via the model.matrix()
method. Concerning 2, the specification of ω(·) is discussed in detail in Zeileis (2004). Hence, we
omit the details here and only assume that we have either a vector omega of diagonal elements
or a function omega that computes the diagonal elements from the residuals, diagonal values of
the hat matrix (provided by the hatvalues() method) and the degrees of freedom n − k. For
3, the working residuals, some fitted model classes provide infrastructure in their residuals()
method. However, there is no unified interface available for this and instead of setting up a new
separate generic, it is also possible to recover this information from the estimating function. As
ψ(yi, xi, θ̂) = r(yi, x>i θ̂) ·xi, we can simply divide the empirical estimating function by xi to obtain
the working residual.
Based on these functions, all necessary information can be extracted from fitted model objects
and a condensed version of meatHC() can then be written as

meatHC <- function(obj, omega, ...)

{

X <- model.matrix(obj)

res <- rowMeans(estfun(obj)/X, na.rm = TRUE)

diaghat <- hatvalues(obj)

df <- NROW(X) - NCOL(X)

if(is.function(omega)) omega <- omega(res, diaghat, df)

rval <- sqrt(omega) * X

crossprod(rval)/NROW(X)

}

4.3. The sandwich

Based on the building blocks described in the previous sections, computing a sandwich estimate
from a fitted model object is easy: the function sandwich() computes an estimate (by default the
Eicker-Huber-White outer product estimate) for 1/nS(θ) via

sandwich <- function(obj, bread. = bread, meat. = meat, ...)

{
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if(is.function(bread.)) bread. <- bread.(obj)

if(is.function(meat.)) meat. <- meat.(obj, ...)

1/NROW(estfun(obj)) * (bread. %*% meat. %*% bread.)

}

For computing other estimates, the argument meat. could also be set to meatHAC or meatHC.
Therefore, all that an R user/developer would have to do to make a new class of fitted models,
“foo” say, fit for this framework is: provide an estfun() method estfun.foo() and a bread()
method bread.foo(). See also Figure 1.
Only for HC estimators (other than HC0 and HC1 which are available via meat()), it has to be
assured in addition that

� the model only depends on a linear predictor (this cannot be easily checked by the software,
but has to be done by the user),

� the model matrix X is available via a model.matrix.foo() method,

� a hatvalues.foo() method exists (for HC2–HC4).

For both, HAC and HC estimators, the complexity of the meat functions was reduced for exposition
in the paper: choosing the weights in meatHAC and the diagonal elements omega in meatHC can be
controlled by a number of further arguments. To make these explicit for the user, wrapper functions
vcovHAC() and vcovHC() are provided in sandwich which work as advertised in Zeileis (2004) and
are the recommended interfaces for computing HAC and HC estimators, respectively. Furthermore,
the convenience interfaces kernHAC(), NeweyWest() and weave() setting the right defaults for
(Andrews 1991), Newey and West (1994), and Lumley and Heagerty (1999), respectively, continue
to be provided by sandwich.

fitted model object
(class: foo)

estfun foo

meatHC meatHAC meat bread foo

Figure 1: Structure of sandwich estimators

5. Illustrations

This section briefly illustrates how the tools provided by sandwich can be applied to various models
and re-used in other functions. Predominantly, sandwich estimators are used for inference, such
as partial t or z tests of regression coefficients or restriction testing in nested regression models.
As pointed out in Section 3, the packages lmtest (Zeileis and Hothorn 2002) and car (Fox 2002)
provide some functions for this type of inference.
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The model for which sandwich estimators are employed most often is surely the linear regression
model. Part of the reason for this is (together with the ubiquity of linear regression) that in linear
regression mean and variance can be specified independently from each other. Thus, the model can
be seen as a model for the conditional mean of the response with the variance left unspecified and
captured only for inference by a robust sandwich estimator. Zeileis (2004) presents a collection
of applications of sandwich estimators to linear regression, both for cross-section and time-series
data. These examples are not affected by making sandwich object oriented, therefore, we do not
present any examples for linear regression models here.
To show that with the new object-oriented tools in sandwich, the functions can be applied as easily
to other models we consider some models from microeconometrics: count data regression and
probit and tobit models. In all examples, we compare the usual summary (coefficients, standard
errors and partial z tests) based on vcov() with the corresponding summary based on HC standard
errors as provided by sandwich(). coeftest() from lmtest is always used for computing the
summaries.

5.1. Count data regression

To illustrate the usage of sandwich estimators in count data regressions, we use artifical data
simulated from a negative binomial model. The mean of the response y depends on a regressor
x through a log link, the size parameter of the negative binomial distribution is 1, and the re-
gressor is simply drawn from a standard normal distribution. After setting the random seed for
reproducibility, we draw 250 observations from this model:

> set.seed(123)

> x <- rnorm(250)

> y <- rnbinom(250, mu = exp(1 + x), size = 1)

In the following, we will fit various count models to this data employing the overspecification
y ~ x + I(x^2) and assessing the significance of I(x^2). First, we use glm() with family =
poisson to fit a poisson regression as the simplest model for count data. Of course, this model is
not correctly specified as y is from a negative binomial distribution. Hence, we are not surprised
that the resulting test of I(x^2) is spuriously significant:

> fm_pois <- glm(y ~ x + I(x^2), family = poisson)

> coeftest(fm_pois)

z test of coefficients:

Estimate Std. Error z value Pr(>|z|)
(Intercept) 1.063268 0.041357 25.7094 < 2e-16 ***
x 0.996072 0.053534 18.6062 < 2e-16 ***
I(x^2) -0.049124 0.023146 -2.1223 0.03381 *
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

However, the specification of the conditional mean of y is correct in this model which is reflected
by the coefficient estimates that are close to their true value. Only the dispersion which is fixed
at 1 in the poisson family is misspecified. In this situation, the problem can be alleviated by
employing sandwich standard errors in the partial z tests, capturing the overdispersion in y.

> coeftest(fm_pois, vcov = sandwich)

z test of coefficients:



Achim Zeileis 9

Estimate Std. Error z value Pr(>|z|)
(Intercept) 1.063268 0.083776 12.6918 <2e-16 ***
x 0.996072 0.105217 9.4668 <2e-16 ***
I(x^2) -0.049124 0.036284 -1.3539 0.1758
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Clearly, sandwich standard errors are not the only way of dealing with this situation. Other obvious
candidates would be to use a quasi-poisson or, of course, a negative binomial model (McCullagh
and Nelder 1989). The former is available through the quasipoisson family for glm() that leads to
the same coefficient estimates as poisson but additionally estimates the dispersion for inference.
The associated model summary is very similar to that based on the sandwich standard errors,
leading to qualitatively identical results.

> fm_qpois <- glm(y ~ x + I(x^2), family = quasipoisson)

> coeftest(fm_qpois)

z test of coefficients:

Estimate Std. Error z value Pr(>|z|)
(Intercept) 1.063268 0.090435 11.7572 <2e-16 ***
x 0.996072 0.117063 8.5088 <2e-16 ***
I(x^2) -0.049124 0.050613 -0.9706 0.3318
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Negative binomial models can be fitted by glm.nb() from MASS (Venables and Ripley 2002).

> fm_nbin <- glm.nb(y ~ x + I(x^2))

> coeftest(fm_nbin)

z test of coefficients:

Estimate Std. Error z value Pr(>|z|)
(Intercept) 1.066057 0.088574 12.0358 <2e-16 ***
x 0.999616 0.094894 10.5340 <2e-16 ***
I(x^2) -0.052652 0.064883 -0.8115 0.4171
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Here, the estimated parameters are very similar to those from the poisson regression and the
z tests lead to the same conclusions as in the previous two examples.

5.2. Probit and tobit models

In this section, we consider an example from Greene (2003, Section 22.3.6) that reproduces the
analysis of extramarital affairs by Fair (1978). The data, famously known as Fair’s affairs, is
available in the Ecdat package (Croissant 2005) and provides cross-section information on the
number of extramarital affairs of 601 individuals along with several covariates such as age (age),
years married (ym), religiousness (religious), occupation (occupation) and a self-rating of the
marriage (rate). Table 22.3 in Greene (2003) provides the parameter estimates and corresponding
standard errors of a tobit model (for the number of affairs) and a probit model (for infidelity as
a binary variable). In R, these models can be fitted using survreg() from the survival package
(Therneau and Lumley 2006) and glm(), respectively:
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> data("Fair", package = "Ecdat")

> fm_tobit <- survreg(Surv(nbaffairs, nbaffairs > 0, type = "left") ~

+ age + ym + religious + occupation + rate, data = Fair, dist = "gaussian")

> fm_probit <- glm(I(nbaffairs > 0) ~ age + ym + religious + occupation +

+ rate, data = Fair, family = binomial(link = "probit"))

Using coeftest(), we compare the usual summary based on the standard errors as computed
by vcov() (which reproduces the results in Greene 2003) and compare them to the HC standard
errors provided by sandwich().

> coeftest(fm_tobit)

z test of coefficients:

Estimate Std. Error z value Pr(>|z|)
(Intercept) 8.174197 2.741446 2.9817 0.002866 **
age -0.179333 0.079093 -2.2674 0.023368 *
ym 0.554142 0.134518 4.1195 3.798e-05 ***
religious -1.686220 0.403752 -4.1764 2.962e-05 ***
occupation 0.326053 0.254425 1.2815 0.200007
rate -2.284973 0.407828 -5.6028 2.109e-08 ***
Log(scale) 2.109859 0.067098 31.4444 < 2.2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

> coeftest(fm_tobit, vcov = sandwich)

z test of coefficients:

Estimate Std. Error z value Pr(>|z|)
(Intercept) 8.174197 3.077933 2.6557 0.007913 **
age -0.179333 0.088915 -2.0169 0.043706 *
ym 0.554142 0.137162 4.0400 5.344e-05 ***
religious -1.686220 0.399854 -4.2171 2.475e-05 ***
occupation 0.326053 0.245978 1.3255 0.184993
rate -2.284973 0.393479 -5.8071 6.356e-09 ***
Log(scale) 2.109859 0.054837 38.4754 < 2.2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

For the tobit model fm_tobit, the HC standard errors are only slightly different and yield qual-
itatively identical results. The picture is similar for the probit model fm_probit which leads to
the same interpretations, both for the standard and the HC estimate.

> coeftest(fm_probit)

z test of coefficients:

Estimate Std. Error z value Pr(>|z|)
(Intercept) 0.976668 0.365375 2.6731 0.0075163 **
age -0.022024 0.010319 -2.1343 0.0328214 *
ym 0.059901 0.017121 3.4986 0.0004677 ***
religious -0.183646 0.051715 -3.5511 0.0003836 ***
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occupation 0.037513 0.032845 1.1421 0.2533995
rate -0.272983 0.052574 -5.1923 2.077e-07 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

> coeftest(fm_probit, vcov = sandwich)

z test of coefficients:

Estimate Std. Error z value Pr(>|z|)
(Intercept) 0.976668 0.393033 2.4850 0.0129569 *
age -0.022024 0.011274 -1.9534 0.0507678 .
ym 0.059901 0.017557 3.4119 0.0006452 ***
religious -0.183646 0.053047 -3.4620 0.0005363 ***
occupation 0.037513 0.032922 1.1395 0.2545089
rate -0.272983 0.053327 -5.1190 3.071e-07 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

See Greene (2003) for a more detailed discussion of these and other regression models for Fair’s
affairs data.

6. Discussion

Object-oriented computational infrastructure in the R package sandwich for estimating sandwich
covariance matrices in a wide class of parametric models is suggested. Re-using existing building
blocks, all an R developer has to implement for adapting a new fitted model class to the sandwich
estimators are methods for extracting a bread estimator and the empirical estimating functions
(and possibly model matrix and hat values).
Although the most important area of application of sandwich covariance matrices is inference,
particularly restriction testing, the package sandwich does not contain any inference functions
but rather aims at providing modular building blocks that can be re-used in or supplied to other
computational tools. In this paper, we show how the sandwich functions can be plugged into
some functions made available by other packages that implement tools for Wald tests. However,
it should be pointed out that this is not the only strategy for employing sandwich covariances for
restriction testing; recent research provides us with at least two other promising strategies: For
cross-section data, Godfrey (2006) shows that the finite sample performance of quasi t or z tests
can be improved by computing HC estimators based on the residuals of the restricted model and
assessing their significance based on their bootstrap distribution. For time-series data, Kiefer
and Vogelsang (2002) consider t-type statistics based on HAC estimators where the bandwidth is
equal to the sample size, leading to a non-normal asymptotic distribution of the t statistic. For
both strategies, some tools from sandwich could be easily re-used but further infrastructure, in
particular for the inference, is required. As this is beyond the scope of the sandwich package, we
leave this for future developments in packages focused on inference in regression models.
As the new tools in sandwich provide“robust”covariances for a wide class of parametric models, it is
worth pointing out that this should not encourage the user to employ them automatically for every
model in every analysis. First, the use of sandwich estimators when the model is correctly specified
leads to a loss of power. Second, if the model is not correctly specified, the sandwich estimators
are only useful if the parameters estimates are still consistent, i.e., if the misspecification does not
result in bias. Whereas it is well understood what types of misspecification can be dealt with in
linear regression models, the situation is less obvious for general regression models. Some further
expository discussion of this issue for ML and quasi ML estimators can be found in Freedman
(2006) and Koenker (2006).
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