
A tutorial for the sendplot R package

Lori A. Shepherd, John A. Kirchgraber Jr., and Daniel P. Gaile

March 25, 2008

Statistical Genetics and Genomics Research Group
Department of Biostatistics, University at Buffalo

New York State Center of Excellence in Bioinformatics and Life Sciences

las65@buffalo.edu

Contents

1 Introduction 2

2 sendxy: scatter-plot wrapper 5
2.1 specifying the plot call . 5
2.2 specifying the interactive points and tool-tip content 6
2.3 creating the PNG image file . 7
2.4 creating the image map . 8

2.4.1 automatic dectection of bounding points 8
2.4.2 manual detection of bounding points 9

2.5 specifying the spot radius . 10
2.6 creating the sendxy example output 12
2.7 summary of code used to generate the sendxy example 12

3 sendimage: image wrapper 16
3.1 specifying the plot call . 16
3.2 specifying the interactive points and tool-tip content 17
3.3 creating the PNG image file . 18
3.4 creating the image map . 18

3.4.1 automatic dectection of bounding points 19
3.4.2 manual detection of bounding points 19

3.5 specifying the spot radius . 22
3.6 creating the sendimage example output 22
3.7 summary of code used to generate the sendimage example 22

1

4 heatmap.send: heatmap wrapper 26
4.1 specifying the plot call . 27
4.2 specifying the interactive points and tool-tip content 27
4.3 creating the PNG image file . 28
4.4 creating the image map . 28
4.5 specifying the spot radius . 30
4.6 creating the heatmap.send example output 30
4.7 summary of code used to generate the heatmap.send example . . 31

5 sendplot 33
5.1 specifying the plot call . 33
5.2 specifying the interactive points and tool-tip content 46

5.2.1 scatterplot . 46
5.2.2 image . 46

5.3 creating the PNG image file . 48
5.4 creating the image map . 48

5.4.1 automatic dectection of bounding points 49
5.4.2 manual detection of bounding points 49

5.5 specifying the spot radius . 53
5.6 creating the sendplot example output 53

1 Introduction

The functions in the sendplot library allow R users to generate interactive plots
with tool-tip content. A pair of files are created : a Portable Network Graphics
(PNG) file which is a bitmap image and an HTML file which contains embed-
ded Javascript code for dynamically generating tool-tips. When opened with a
supported browser, the HTML file displays the PNG image and the user is able
to mouse over and view tool-tip windows for user specified image locations. The
information that appears in the tool-tip windows is user specified and highly cus-
tomizable. The tool-tip functionality is provided by code from the wz tooltip.js
Javascript library (Zorn 2007) which is embedded in the HTML output.

The ’sendplot’ function constitutes the primary function of the sendplot
library. It allows for the generation of interactive xy (i.e., scatter-plot) and
image (i.e., heatmap) plots, which can contain any number of decorative (i.e.,
non-interactive) plots. The library also contains three convenient wrapper func-
tions: sendxy, sendimage, and heatmap.send. The wrapper functions have less
functionality than the sendplot function but can be easier to use. Brief descrip-
tions of the four functions are as follows:

� sendxy : this function produces an interactive xy plot without any deco-
rative plots (i.e., just a single scatter-plot).

� sendimage : this function produces an interactive image plot without any
decorative plots (i.e., just a single image plot).

2

� heatmap.send : this function is a wrapper for the R stats package heatmap.
This will create an interactive heatmap image. NOTE: The majority of
the code for this function is verbatim from the R package stats heatmap
function. This function was designed to work as a wrapper to utilize the
same functionality and plotting as the heatmap function with sendplot’s
interactive functionality.

� sendplot: this function produces an interactive xy or image plot which is
an element of layout which can contain other decorative plots.

The creation of interactive plots with tool-tip content requires the develop-
ment of the following components:

1. The static plot image. The library supports the following: a simple xy-plot
(sendxy), a simple image plot (sendimage), a heatmap with decorative
dendrograms (heatmap.send), or a flexible layout of plots which contains
one interactive xy-plot or image plot (sendplot). The functions in the
sendplot library allow for the full complement of graphical bells and whis-
tles which are available in R (e.g., custom axes, inclusion of legends, math
symbols, etc.).

2. The plotted point to pixel mapping. The sendplot functions output an
HTML file and a PNG image. The HTML file contains an image map
which identifies the interactive regions of the PNG image (i.e., the regions
for which a tool-tip will appear). The image map requires a mapping of the
plotted point coordinates as specified in the R plotting calls that generated
them to the corresponding pixel location on the final PNG image. The
sendplot functions build this map by identifying the upper-left and lower-
right locations in the original plotting coordinate system and in the final
pixel coordinate system. The functions provide a convenient mechanism
to accomplish this.

3. The tool-tip content lists. The sendplot functions allow users to specify
x-specific, y-specific, and point specific (e.g., xy-specific) information to
be displayed in the tool-tip.

The sendplot functions are typically run in two iterations when creating inter-
active plots for the first time. In the first iteration, the PNG file is created and
then opened in a program such as mspaint or kolourpaint so that the upper-
left and lower-right pixel coordinates are identified. In the second iteration, the
function is called again using the pixel coordinates identified in the first iteration
and the PNG and HTML output files are created. Figure 1 provides a flowchart
for this two-iteration procedure. Note: the first iteration need not be repeated
for calls that use the sample plot type and output image size as the upper-left
and lower-right pixel will not change.

For linux/unix users, there is an option for automatic detection of the upper-
left and lower-right pixil coordinates. This utilizes ImageMagick’s convert pro-
gram installed on most linux machines, and the R library rtiff’s readTiff func-
tion. This eliminates the need for a second interaction. For windows/mac users,

3

Figure 1: The sendplot functions are typically run in two iterations when cre-
ating interactive plots for the first time. The first iteration involves the identi-
fication of the upper-left and lower-right pixel coordinates. The final output is
generated in the second iteration.An option has bee implimented to eliminate
this two step procedure for linux/unix machines.

this automatic detection of coordinates is viable if the user has the ability to
convert a PNG image to a TIFF image; two iterations are still needed. The first
iteration will create the PNG images. The user manually converts the PNG
images to the TIF images using appropriate file names. The function is run
again and the auto detect will function correctly.

The remainder of this document will provide detailed tutorials for the use
of the functions: sendxy, sendimage, heatmap.send, and sendplot. All sections
assume library has been loaded:

> library(sendplot)

Important Note: The sendplot output has been tested on Firefox and
Internet Explorer browsers. Internet Explorer users may need to modify their

4

preferences to allow blocked content, as Internet Explorer may initially block
the scripts from running. A warning message normally appears towards the top
of the browser; if the user click on this warning it will give an option to allow
blocked content.

2 sendxy: scatter-plot wrapper

The sendxy function creates a single interactive scatter-plot. The following is
an example function call:

sendxy(plot.call,
x, y,
xy.lbls = NA, x.lbls = NA,y.lbls=NA,
xlim = NA, ylim = NA,
mai=NA, mai.prc=FALSE,plt.extras=NA,
bound.pt=FALSE, source.plot=NA,
paint=FALSE,img.prog = NA,
resize="800x1100",
ps.paper="letter",ps.width=8,ps.height=11,
fname.root="test",dir="./",header="v2",
up.left=c(205,131),low.right=c(633,883),
spot.radius=5, automap=FALSE, automap.method="mode")

2.1 specifying the plot call

The plot.call argument is a character string containing the call for the desired
scatter-plot. For example, consider the two datasets: the first containing iden-
tical x and y values ranging from 1 to 7 and the second containing x values
decreasing from 7 to 1 with a constant y value of 4.

x1 = 1:7
y1 = 1:7
x2 = 7:1
y2 = rep(4,7)

The following example plot.call argument will plot the first dataset as a green
plus and the second as a purple X.

plot.calls = "plot(x1,y1,col='green', pch=3, cex=1.5,xlab='',ylab='');
points(x2,y2,pch=4, cex=1.5, col='purple');
title(xlab='x values', ylab='y values')"

Notice how the call is a character string that will be evaluated as multiple
function calls separated by a semicolon. Arguments of type character within
these calls are specified with a single quotation rather than the double quota-
tions used originally, or vice versa (see col arguments). Any variables used in

5

arguments (x1,x2,y1,y2 in our example) should be in local memory before run-
ning the sendxy function call.

NOTE: No xlim or ylim value should be specified in any of the plot.call
plotting calls. For mapping purposes, xlim and ylim must be given as separate
arguments to the function. If xlim and ylim are not set in the arguments, or
entered as NA, the range of the x and y values will be used.

mai and mai.prc control the plot margins. If mai is NA (default), the ap-
plication uses default plot margins. For more information on mai, mai.prc,
plt.extras, and header please refer to R help files or to the last section of this
vignette (i.e., the sendplot section).

2.2 specifying the interactive points and tool-tip content

The x and y arguments are the x and y coordinates of desired interactive points.
If, for example, we only wanted the points of the first dataset to be interactive:
x = x1 and y = y1. If, however, we want all the points of both datasets to be
active, the x and y should be a combination of all datasets’ x and y values.

x = c(x1,x2)
y = c(y1,y2)

The arguments x.lbls, y.lbls, and xy.lbls control what is displayed in the inter-
active window when the user hovers the mouse over plot points. The arguments
x.lbls and y.lbls refer to data that is specific to the x and y values respectively.
The argument xy.lbls governs data specific to both x and y location. In the case
of a scatter-plot, x.lbls, y.lbls, and xy.lbls refer to the same position; it is only
necessary to use either x.lbls or y.lbls. x.lbls and y.lbls are data.frames with the
number of rows equal to the number of interactive data points. The first row
of the data frame should contain column headers; these names will be used as
display names in the interactive window that appears.

For our example, we have 14 data points. The following creates a data.frame
of information for the 14 data points; each point has a letter and a number as-
sociated with it.

x.lbls = list()
x.lbls$letter = rep(c("a","b","c","d","e","f","g"),2)
x.lbls$number = 1:14
x.lbls = as.data.frame(x.lbls)

letter number
1 a 1
2 b 2
3 c 3
4 d 4
5 e 5

6

6 f 6
7 g 7
8 a 8
9 b 9
10 c 10
11 d 11
12 e 12
13 f 13
14 g 14

Note: the function assumes the data.frame rows are in the same order as they
appear in the x argument (or y argument if y.lbls).

2.3 creating the PNG image file

The following arguments play a role in the generation of the final PNG image
file:

source.plot: Indicates whether application should make a postscript file and
then convert to png file, or if the png file should be made directly. This
value is either ps, png, or NA. If NA the operating system is checked and
the appropriate file format is output. Unix has a convert function that
can convert a ps file to png file; we by default use this setup because we
feel the postscript file maintains better quality. So on unix/linux systems
if source.plot is NA, source.plot will be set to ps. Windows does not have
this option, for this reason source.plot will be set to png if left NA

dir: directory path to where files should be created

fname.root: Base name to use for postscript, .png, and html file names.

resize: character indicating resize value. If source.plot is ”ps”, resize is passed
as part of a system convert command converting the postscript to the
.png. The original image is resized to this dimension expanding condensed
images or vice versa. If source.plot is ”png”, the argument is parsed and
the dimensions are passed into the R grDevices package function png as
the width and height arguments.

ps.paper: postscript paper argument

ps.width: postscript width argument (only used if ps.paper=”special”)

ps.height: postscript height argument (only used if ps.paper=”special”)

The source.plot argument controls what file formats are created. The interactive
html file requires a .png file. There are two possible scenarios for making a .png
file: the .png file may be made directly, or a postscript file may be made first

7

and then converted into a .png file. We recommend making the postscript file
and converting to the .png file because it maintains better clarity and quality.

If the source.plot argument is set to ”png” then a PNG file is generated
directly. If the source.plot argument is set to ”ps” then a postscript file is
generated and then converted (using the ’convert’ command in linux or a user
specified application in windows) to the PNG format. The ps.paper, ps.width,
and ps.height arguments specify the dimensions of the postscript output. If the
ps.paper argument is set to a recognized format such as “letter” or “a4”, then
the ps.width and ps.height arguments are ignored. If the ps.paper argument is
set to “special” then the postscript dimensions are governed by ps.height and
ps.width.

2.4 creating the image map

As mentioned previously, the sendplot functions output an HTML file and a
PNG image. The HTML file contains an image map which identifies the in-
teractive regions of the PNG image (i.e., the regions for which a tool-tip will
appear). The image map requires a mapping of the plotted point coordinates as
specified in the R plotting calls that generated them to the corresponding pixel
location on the final PNG image. The sendplot functions build this map by
identifying the upper-left and lower-right locations in the original plotting coor-
dinate system and in the final pixel coordinate system. The function arguments
for these coordinates are given as:

up.left: The x and y value in pixels of the upper left hand corner of the plot
call

low.right: The x and y value in pixels of the lower right hand corner of the plot
call.

The sendplot functions provide convenient options for identifing the upper-
left and lower-right pixil coordinates. There is an automatic detection of bound-
ing points, in most cases eliminating the two step procedure. There are also
options for manual detection of bound points. These options will be discussed
further in the following sections.

2.4.1 automatic dectection of bounding points

As mentioned previously, there is an option for automatic detection of the upper-
left and lower-right pixil coordinates. This option eliminates the two iteration
procedure for linux and unix users. The functions utilizes ImageMagick’s convert
program installed on most linux machines, and the R library rtiff’s readTiff
function. The function arguments implementing this option are:

automap: logical indicating if application should attempt to automatically de-
tect upper-left and lower-right coordinates.

automap.method: if automap is TRUE, the method that will be used to find
bound points. The current options are median and mode

8

For windows and mac users, this automatic detection of coordinates is viable
if the user has the ability to convert a PNG image to a TIFF image. The current
implemenation still requires two iterations. The first iteration will create the
PNG images. The user then must manually convert the PNG images to the TIF
images using appropriate file names. The function is run again and the auto
detect will function correctly.

Continuing the current example, the following code is executed:

sendxy(plot.call=plot.calls,
x=x, y=y,
x.lbls=x.lbls,
source.plot=NA,
automap=TRUE, automap.method="mode",
fname.root="testXY",resize="800x1100",
up.left=c(205,131),low.right=c(633,883))

2.4.2 manual detection of bounding points

As mentioned previously, the sendplot functions are typically run in two itera-
tions when creating interactive plots for the first time. In the first iteration, the
PNG file is created and then opened in a program such as mspaint or kolourpaint
so that the upper-left and lower-right pixel coordinates are identified. In the
second iteration, the function is called again using the pixel coordinates iden-
tified in the first iteration and the PNG and HTML output files are created.
Refer back to Figure 1 for a flowchart for this two-iteration procedure.

The sendplot functions include arguments which allow for the convenient
identification of the up.left and low.right values. These arguments are:

paint: logical indicating if application should automatically open the .png file
for the user to view .png file and/or to retrieve needed bounding values of
the plot call.

img.prog: if paint is TRUE, the command line call that will open a program
to view .png file to retrieve pixel locations of interactive plot bounds. If
this is left NA, the operating system is checked and a default program is
used. For unix the default application is kolourpaint and for windows it
is Microsoft paint (mspaint).

bound.pt: logical indicating if red points should be plotted to aid in finding the
upper left and lower right coordinates. If bound.pt is FALSE, indicates
that up.left and low.right arguments are correct and will make the html
file. Note that if bound.pt is TRUE then the function will not attempt
the task of writing the .html file as that step can be time consuming.

One way to identify the up.left and low.right values in the first iteration of send-
plot construction is to execute the function with: bound.pt=TRUE, paint=TRUE,
and img.prog=NA. With this combination of arguments, the function will create
the PNG output, add red points to the upper-left and lower-right corners, and

9

then open the PNG in the default viewer so that the user can readily identify
the up.left and low.right pixel coordinates.

Continuing the current example, the following code is executed:

sendxy(plot.call=plot.calls,
x=x, y=y,
x.lbls=x.lbls,
bound.pt=TRUE,
source.plot=NA, paint=TRUE,
img.prog=NA,
fname.root="testXY",resize="800x1100",
up.left=c(205,131),low.right=c(633,883))

We have entered dummy values for the up.left and low.right coordinates. Figure
2 contains a screenshot of the example PNG file opened in kolourpaint. Accord-
ing to the information in kolourpaint, the up.left location should be 124,130.
Notice the mouse is over the upper left red point for the up.left bounding box.
The pixel location is shown on the bottom of the window in the second box from
the left. It shows a location of 124, 130. If we had checked the low.right coor-
dinate it would read 713,885. To complete the process of generating the sendxy
output, the sendxy function used to created this figure should be rerun with
bound.pt=FALSE, paint=FALSE,up.left=c(124,130) and low.right=c(713,885).

NOTE: As mentioned earlier, the sendxy function does not always need to be
run iteratively. If the user is using the same machine (therefore consistent point
size and operating system), the plot’s xlim, ylim, and margins are the same, and
the resize value is the same, the bounding points will also be the same. Helpful
hint: In may cases if the user is generating similar plots, the xlim and ylim
can be set constant so that all graphs are on the same scale; mai=NA using
the default margins will also be consistent. This process of retrieving bound.pt
needs to be performed once for a certain group of settings.

2.5 specifying the spot radius

The spot.radius argument controls how large an area will be active when the
mouse is scrolled over. If the user selects a larger region, some spot locations
may overlap and be lost. The interactive application is very sensitive if the user
selects a low region. The users’ discretion is best used here given that the plot
scale and number of data points will also play a role in determining a good
spot.radius.

10

Figure 2: scatter-plot opened in kolourpaint, showing additional red points to
aid in locating boundaries. Notice where pixel location can be found

11

2.6 creating the sendxy example output

If automap is used to detect bounding points the function automatically con-
tinues making the HTML file and sendxy final example output.

If bounding points are detected manually, after the correct bounding points
are known, the sendxy function call should be run again, changing only the
up.left, up.right, paint, and bound.pt arguments. up.left and low.right should be
updated accordingly. paint and bound.pt should be tripped to FALSE. (NOTE:
these are the correct up.left and low.right boundaries when the .png is created
from the postscript in linux/unix environment. If the .png file was generated di-
rectly the up.left and low.right values of this example may be slightly different).
The following will make the correct interactive plot:

manual detection of points
sendxy(plot.call = plot.calls,

x=x, y=y,
x.lbls=x.lbls,
bound.pt=FALSE,
source.plot=NA, paint=FALSE,
img.prog=NA,fname.root="testXY",resize="800x1100",
up.left=c(124,130),low.right=c(713,885), spot.radius=5)

or
automatic detection of points
sendxy(plot.call = plot.calls,

x=x, y=y,
x.lbls=x.lbls,
source.plot=NA,
automap=TRUE, automap.method="mode"
fname.root="testXY",resize="800x1100",
up.left=c(124,130),low.right=c(713,885), spot.radius=5)

The resulting HTML file may be opened in any web browser that is capable
of running Javascript. Figure 3 shows a snapshot of the final graph opened in
Mozilla Firefox. Notice how the appropriate information for the region located
under the white arrow is displayed in the information box.

2.7 summary of code used to generate the sendxy example

The following is a summary of all code run to make the above example:

library("sendplot")

x1 = 1:7
y1 = 1:7
x2 = 7:1

12

Figure 3: A snapshot of our example html file opened in Mozilla Firefox. The
information is displayed for the region under the black arrow.

13

y2 = rep(4,7)
x = c(x1,x2)
y = c(y1,y2)

xy.lbls = list()
xy.lbls$test = rep(c("a","b","c","d","e","f","g"),2)
xy.lbls$num = 1:14
xy.lbls = as.data.frame(xy.lbls)

plot.calls = "plot(x1,y1,col='green', pch=3, cex=1.5,xlab='',ylab='');
points(x2,y2,pch=4, cex=1.5, col='purple');
title(xlab='x values', ylab='y values')"

#automatic detection of bound points

sendxy(plot.call = plot.calls,
x=x, y=y,
x.lbls=x.lbls,
source.plot=NA,
automap=TRUE, automap.method="mode"
fname.root="testXY",resize="800x1100",
up.left=c(124,130),low.right=c(713,885), spot.radius=5)

or

manual detection bound points

sendxy(plot.call = plot.calls,
x=x, y=y,
x.lbls=xy.lbls,
plt.extras=NA,
bound.pt=TRUE,
source.plot=NA, paint=TRUE,
img.prog=NA,fname.root="testXY",resize="800x1100",
up.left=c(205,131),low.right=c(633,883))

correct bounding found (124,130), (713,885)

sendxy(plot.call = plot.calls,
x=x, y=y,
x.lbls=xy.lbls,
plt.extras=NA,
bound.pt=FALSE,
source.plot=NA, paint=FALSE,
img.prog=NA,fname.root="testXY",resize="800x1100",

14

up.left=c(124,130),low.right=c(713,885), spot.radius=5)

And there you have it, an interactive scatter-plot!

15

3 sendimage: image wrapper

The sendimage function creates a single interactive image. The following is an
example function call:

sendimage(plot.call,
x, y, z,
z.value="value",
x.lbls = NA,y.lbls=NA,xy.lbls=NA,
mai=NA, mai.prc=FALSE,plt.extras=NA,
bound.pt=FALSE, source.plot=NA,
paint=FALSE, img.prog=NA,
resize="800x1100",
ps.paper="letter",ps.width=8,ps.height=11,
fname.root="test",dir="./",header="v2",
up.left=c(188,103),low.right=c(648,912),
spot.radius=5, automap=FALSE, automap.method="mode")

For the most part the arguments for sendimage are consistent with those for
sendxy.

3.1 specifying the plot call

As with the sendxy function, the plot.call argument is a character string con-
taining the call for the desired image plot. Consider the following example data
corresponding to a 4 x 5 image:

x = 1:4
y = 1:5
z = t(matrix(round(rnorm(20),digits=3), ncol=4))

The following constructs a plot.call argument for the desired image.

plot.calls = "image(x=x, y=y, z=z);title(main='sendimage example')"

Notice how the call is a character string that will be evaluated as multiple
function calls separated by a semicolon. Arguments of type character within
these calls are specified with a single quotation rather than the double quota-
tions used originally, or vice versa (see main argument). Any variables used in
arguments (x,y,z in our example) should be in local memory before running the
sendimage function call.

mai and mai.prc control the plot margins. If mai is NA (default), the ap-
plication uses default plot margins. For more information on mai, mai.prc,
plt.extras, and header please refer to R help files or to the last section of this
vignette (i.e., the sendplot section).

16

3.2 specifying the interactive points and tool-tip content

The x, y, and z arguments are the x, y, and z used in the image call. x and y are
the locations of the grid lines at which the values of z correspond. z is a matrix
of values (length of x by length of y). The function argument z.value describes
what z holds (examples pvalues, logRatios, percentAccepted); this identifier is
used in the interactive display. These three arguments have already been de-
fined in the previous section.

Note: z.value should not contain any spaces or punctuation characters;
numbers and letters only.

As with the sendxy function, the arguments x.lbls, y.lbls, and xy.lbls control
what is displayed in the interactive window when the user hovers the mouse over
plot points. The arguments x.lbls and y.lbls refer to data that is specific to the
x and y values respectively. x.lbls and y.lbls are data.frames of the dimension n
by m, where n is equal to the length of x or y respectively. Each row is specific
to a certain x or y value and each column is a unique variable or characteristic
of x or y respectively. The first row of the data frames should contain column
headers; these names will be used as display names in the interactive window
that appears. The xy.lbls argument is a little different because it governs data
specific to both x and y locations. The function argument xy.lbls is a list of
matrices; each matrix is of the dimension n by m, where n is equal to the length
of y and m is equal to the length of x.

Consider an example dataset which contains clinical and experimental data
corresponding to 4 tissue samples. The experimental data is derived from BAC
array comparative genomic hybridization experiments from which the results for
five particular BAC assays are considered here. Hence, the experimental data
for this example dataset is a 4x5 data matrix of observed (real valued) log2 tu-
mor/control ratios. Each of the BAC assays has attributes such as chromosome
location, genomic location. Each of the samples has attributes such as sex, age,
and tumor stage. The x.lbls data.frame is 4 x 3: 4 patients, 3 characteristics
based on patients (sex, age, stage). The y.lbls data.frame is a 5 x 2: 5 events,
2 characteristics (chromosome, genomic location). The xy.lbls is a list of length
2: 2 additional pieces of data collected: intensity and quality control measure.
Each of these two objects is a 5 x 4 matrix: 5 BACs, 4 patients. Our log2 ratios
data is already set as z. The set up of the x.lbls, y.lbls and xy.lbls objects would
be something like the following:

x.lbls = list()
x.lbls$sex = c("F", "M", "F", "F")
x.lbls$age = c(27, 73, 46, 50)
x.lbls$stage = c(1,1,3,2)
x.lbls = as.data.frame(x.lbls)

y.lbls = list()

17

y.lbls$chromosome = c("chr1", "chr2", "chrX", "chr7", "chrY")
y.lbls$location = c(92526, 486844000,2984248632,1387071184,3048286585)

xy.lbls = list()
intensity = matrix(c(-.3,1.0,.3,-.07,-.4,1.2,.4,.3,1.0,-.5,-.06,1.1,

.04,.5,.03,-.09,-.04,.06,.01,.03),nrow=5)
xy.lbls$intensity = intensity
QC = matrix(c(T,T,T,T,T,F,T,T,T,F,T,T,T,T,T,F,T,F,T,T), nrow=5)
xy.lbls$QC = QC

Note: the function assumes the data.frame rows are in the same order as
they appear in the x argument (or y argument if y.lbls).

Note: z values automatically display in the interactive window. If x.lbls,
y.lbls, and xy.lbls are NA, the interactive window will only display z values.

3.3 creating the PNG image file

sendimage follows the same process as sendxy for creating the PNG image file.
Please refer to section 2.3 for details.

3.4 creating the image map

As mentioned previously, the sendplot functions output an HTML file and a
PNG image. The HTML file contains an image map which identifies the in-
teractive regions of the PNG image (i.e., the regions for which a tool-tip will
appear). The image map requires a mapping of the plotted point coordinates as
specified in the R plotting calls that generated them to the corresponding pixel
location on the final PNG image. The sendplot functions build this map by
identifying the upper-left and lower-right locations in the original plotting coor-
dinate system and in the final pixel coordinate system. The function arguments
for these coordinates are given as:

up.left: The x and y value in pixels of the upper left hand corner of the plot
call

low.right: The x and y value in pixels of the lower right hand corner of the plot
call.

The sendplot functions provide convenient options for identifing the upper-
left and lower-right pixil coordinates. There is an automatic detection of bound-
ing points, in most cases eliminating the two step procedure. There are also
options for manual detection of bound points. These options will be discussed
further in the following sections.

18

3.4.1 automatic dectection of bounding points

As mentioned previously, there is an option for automatic detection of the upper-
left and lower-right pixil coordinates. This option eliminates the two iteration
procedure for linux and unix users. The functions utilizes ImageMagick’s convert
program installed on most linux machines, and the R library rtiff’s readTiff
function. The function arguments implementing this option are:

automap: logical indicating if application should attempt to automatically de-
tect upper-left and lower-right coordinates.

automap.method: if automap is TRUE, the method that will be used to find
bound points. The current options are median and mode

For windows and mac users, this automatic detection of coordinates is viable
if the user has the ability to convert a PNG image to a TIFF image. The current
implemenation still requires two iterations. The first iteration will create the
PNG images. The user then must manually convert the PNG images to the TIF
images using appropriate file names. The function is run again and the auto
detect will function correctly.

Continuing the current example, the following code is executed:

sendimage(plot.call = plot.calls, x=x, y=y, z=z,z.value='value',
x.lbls = x.lbls, y.lbls=y.lbls, xy.lbls=xy.lbls,
up.left=c(89,100),low.right=c(800,900),
source.plot=NA,
fname.root="testImg",resize="800x1100",
automap=TRUE, automap.method="mode")

3.4.2 manual detection of bounding points

As mentioned previously, the sendplot functions are typically run in two itera-
tions when creating interactive plots for the first time. In the first iteration, the
PNG file is created and then opened in a program such as mspaint or kolourpaint
so that the upper-left and lower-right pixel coordinates are identified. In the
second iteration, the function is called again using the pixel coordinates iden-
tified in the first iteration and the PNG and HTML output files are created.
Refer back to Figure 1 for a flowchart for this two-iteration procedure.

The sendplot functions include arguments which allow for the convenient
identification of the up.left and low.right values. These arguments are:

paint: logical indicating if application should automatically open the .png file
for the user to view .png file and/or to retrieve needed bounding values of
the plot call.

img.prog: if paint is TRUE, the command line call that will open a program
to view .png file to retrieve pixel locations of interactive plot bounds. If
this is left NA, the operating system is checked and a default program is
used. For unix the default application is kolourpaint and for windows it
is microsoft paint (mspaint).

19

bound.pt: logical indicating if blue points should be plotted to aid in finding
the upper left and lower right coordinates. If bound.pt is FALSE, indicates
that up.left and low.right arguments are correct and will make the html
file. Note that if bound.pt is TRUE then the function will not attempt
the task of writing the .html file as that step can be time consuming.

One way to identify the up.left and low.right values in the first iteration of send-
plot construction is to execute the function with: bound.pt=TRUE, paint=TRUE,
and img.prog=NA. With this combination of arguments, the function will create
the PNG output, add blue points to the upper-left and lower-right corners, and
then open the PNG in the default viewer so that the user can readily identify
the up.left and low.right pixel coordinates.

Note: The upper-left and lower-right corners of an image, are the corners
of the image itself, respectively.

Continuing the current example, the following code is executed:

sendimage(plot.call = plot.calls, x=x, y=y, z=z,z.value='value',
x.lbls = x.lbls, y.lbls=y.lbls, xy.lbls=xy.lbls,
up.left=c(89,100),low.right=c(800,900),
bound.pt=TRUE, source.plot=NA, paint=TRUE,
img.prog=NA,fname.root="testImg",resize="800x1100")

We have entered dummy values for the up.left and low.right coordinates. Fig-
ure 4 contains a screenshot of the example PNG file opened in kolourpaint. Ac-
cording to the information in kolourpaint, the up.left location should be 101,99.
Notice the mouse is over the upper left blue point for the up.left bounding box.
The pixel location is shown on the bottom of the window in the second box from
the left. It shows a location of 101,99. If we had checked the low.right coordi-
nate it would read 735,914. To complete the process of generating the sendimage
output, the sendimage function used to created this figure should be rerun with
bound.pt=FALSE, paint=FALSE,up.left=c(101,99) and low.right=c(735,914).

NOTE: As mentioned earlier, the sendimage function does not always need
to be run iteratively. If the user is using the same machine (therefore consis-
tent point size and operating system), the plot’s xlim, ylim, and margins are
the same, and the resize value is the same, the bounding points will also be
the same. Helpful hint: setting mai=NA, therefore using the default margins,
will keep margins consistent. This process of retrieving bound.pt needs to be
performed once for a certain group of settings.

20

Figure 4: image opened in kolourpaint, showing additional blue points to aid in
locating boundaries. Notice where pixel location can be found

21

3.5 specifying the spot radius

The spot.radius argument for sendimage is the same as in sendxy. Please refer
to section 2.5 for details.

3.6 creating the sendimage example output

If automap is used to detect bounding points the function automatically con-
tinues making the HTML file and sendxy final example output.

If bounding points are detected manually, after the correct bounding points
are known, the sendimage function call should be run again, changing only the
up.left, up.right, paint, and bound.pt arguments. up.left and low.right should be
updated accordingly. paint and bound.pt should be tripped to FALSE. (NOTE:
these are the correct up.left and low.right boundaries when the .png is created
from the postscript in linux/unix environment. If the .png file was generated di-
rectly the up.left and low.right values of this example may be slightly different).
The following will make the correct interactive plot:

manual detection of points
sendimage(plot.call = plot.calls, x=x, y=y, z=z,z.value='value',

x.lbls = x.lbls, y.lbls=y.lbls, xy.lbls=xy.lbls,
up.left=c(101,99),low.right=c(735,914),
bound.pt=FALSE, source.plot=NA, paint=FALSE,
img.prog=NA,fname.root="testImg", spot.radius=10)

or
automatic detection of points
sendimage(plot.call = plot.calls, x=x, y=y, z=z,z.value='value',

x.lbls = x.lbls, y.lbls=y.lbls, xy.lbls=xy.lbls,
up.left=c(101,99),low.right=c(735,914),
source.plot=NA,
fname.root="testImg", spot.radius=10,

automap=TRUE, automap.method="mode")

The resulting HTML file may be opened in any web browser that is capable
of running Javascript. Figure 5 shows a snapshot of the final graph opened in
Mozilla Firefox. Notice how the appropriate information for the region located
under the black arrow is displayed in the information box.

3.7 summary of code used to generate the sendimage ex-
ample

The following is a summary of all code run to make the above example:

22

Figure 5: A snapshot of our example html file opened in Mozilla Firefox. The
information is displayed for the region under the black arrow.

23

library("sendplot")

x = 1:4
y = 1:5
z = t(matrix(rnorm(20), ncol=4))

plot.calls = "image(x=x, y=y, z=z);title(main='sendimage example')"

x.lbls = list()
x.lbls$sex = c("F", "M", "F", "F")
x.lbls$age = c(27, 73, 46, 50)
x.lbls$stage = c(1,1,3,2)
x.lbls = as.data.frame(x.lbls)

y.lbls = list()
y.lbls$chromosome = c("chr1", "chr2", "chrX", "chr7", "chrY")
y.lbls$location = c(92526, 486844000,2984248632,1387071184,3048286585)

xy.lbls = list()
intensity = matrix(c(-.3,1.0,.3,-.07,-.4,1.2,.4,.3,1.0,-.5,-.06,1.1,

.04,.5,.03,-.09,-.04,.06,.01,.03),nrow=5)
xy.lbls$intensity = intensity
QC = matrix(c(T,T,T,T,T,F,T,T,T,F,T,T,T,T,T,F,T,F,T,T), nrow=5)
xy.lbls$QC = QC

automatic detection bound points

sendimage(plot.call = plot.calls, x=x, y=y, z=z,z.value='value',
x.lbls = x.lbls, y.lbls=y.lbls, xy.lbls=xy.lbls,
up.left=c(89,100),low.right=c(800,900),
source.plot=NA,
fname.root="testImg",
automap=TRUE, automap.method="mode")

or

manual detection bound points

sendimage(plot.call = plot.calls, x=x, y=y, z=z,z.value='value',
x.lbls = x.lbls, y.lbls=y.lbls, xy.lbls=xy.lbls,
up.left=c(89,100),low.right=c(800,900),
bound.pt=TRUE, source.plot=NA, paint=TRUE,
img.prog=NA,fname.root="testImg")

correct bounding points found (101,99), (735,914)

24

sendimage(plot.call = plot.calls, x=x, y=y, z=z,z.value='value',
x.lbls = x.lbls, y.lbls=y.lbls, xy.lbls=xy.lbls,
up.left=c(101,99),low.right=c(735,914),
bound.pt=FALSE, source.plot=NA, paint=FALSE,
img.prog=NA,fname.root="testImg", spot.radius=10)

Again it is not necessary to specify x.lbls, y.lbls, and xy.lbls. If the user
only wishes to display z values in interactive window, all may be NA. Like the
following call:

sendimage(plot.call = plot.calls, x=x, y=y, z=z,z.value='value',
up.left=c(101,99),low.right=c(735,914),
bound.pt=FALSE, source.plot=NA, paint=FALSE,
img.prog=NA,fname.root="testImg", spot.radius=10)

And there you have it, an interactive image!

25

4 heatmap.send: heatmap wrapper

The sendimage function creates a single interactive image. This is a wrapper
connecting the heatmap function of the R stats package with sendplot. The
majority of the code for this function is verbatim from the R package stats
heatmap function. This function was designed to work as a wrapper to utilize
the same functionality and plotting as the heatmap function with sendplot’s
interactive functionality. Authors of heatmap code used in our code: Andy
Liaw, original; R. Gentleman, M. Maechler, W. Huber,revisions. The following
is an example function call:

heatmap.send(x,Rowv = NULL,
Colv = if (symm) "Rowv" else NULL,
distfun = dist,hclustfun = hclust,
reorderfun = function(d,w) reorder(d, w),
add.expr,symm = FALSE,
revC = identical(Colv,"Rowv"),
scale = c("row", "column", "none"),
na.rm = TRUE, margins = c(5, 5),
ColSideColors,RowSideColors,
cexRow = 0.2 + 1/log10(nr),
cexCol = 0.2 + 1/log10(nc),
labRow = NULL,labCol = NULL,
main = NULL,xlab = NULL,ylab = NULL,
keep.dendro = FALSE,
verbose = getOption("verbose"),
mai.mat=NA, mai.prc=FALSE,
z.value="value",
x.lbls=NA,y.lbls=NA,xy.lbls=NA,
bound.pt = FALSE, source.plot=NA,
resize="800x1100",
ps.paper="letter",ps.width=8,ps.height=11,
fname.root="test",dir="./", header="v2",
paint=FALSE, img.prog = NA,
up.left=c(288,203),low.right=c(620,940),
spot.radius=5, automap=FALSE, automap.method="mode")

Note: Most of the arguments in this function are arguments for the stats
package function heatmap. We will not go through these arguments. Please
refer to heatmap documentation for more information.

For the most part the arguments for heatmap.send are consistent with those
for sendimage.

26

4.1 specifying the plot call

The function heatmap.send differs from the previous functions, sendxy and
sendimage, in that there is no plot.call argument. The heatmap function in
the R stats package takes in a matrix of values, x, and makes a corresponding
image. Consider the following example data corresponding to a 5 x 3 image:

x = matrix(rnorm(15), nrow=5, ncol=3)

mai and mai.prc control the plot margins. If mai is NA (default), the ap-
plication uses default plot margins. For more information on mai, mai.prc,
plt.extras, and header please refer to R help files or to the last section of this
vignette (i.e., the sendplot section).

4.2 specifying the interactive points and tool-tip content

As with the sendimage function, the argument z.value is text which will be used
as the descriptor name in the interactive display. Unlike the sendimage func-
tion, this does not correspond to an argument z; for the heatmap.send function
z.value describes what the argument x holds.

Note: z.value should not contain any spaces or characters; numbers and
letters only.

As with the sendxy function, the arguments x.lbls, y.lbls, and xy.lbls control
what is displayed in the interactive window when the user hovers the mouse
over plot points. The arguments x.lbls and y.lbls refer to data that is specific
to the x and y values respectively. x.lbls and y.lbls are data.frames. x.lbls is of
the dimension n by m where n is equal to the width of the argument x (Our
example 3). y.lbls is of the dimension n by m where n is equal to the length of
the argument x (Our example 5). Each row is specific to a certain x or y value
and each column is a unique variable or characteristic of x or y respectively.
The first row of the data frames should contain column headers; these names
will be used as display names in the interactive window that appears. xy.lbls
refers to data that is specific to both x and y location. The function argument
xy.lbls is a list of matrices; each matrix should be of the same dimensions as x
(Our example 5 x 3).

Note: the function assumes the data.frame rows are in the same order as
they appear in the x argument.

Note: x values automatically display in the interactive window. If x.lbls,
y.lbls, and xy.lbls are NA, the interactive window will only display z values.

The example will continues without specifying x.lbls, y.lbls, or xy.lbls. Please
refer to section 3.2 for an example utilizing these arguments.

27

4.3 creating the PNG image file

heatmap.send follows the same process as sendxy for creating the PNG image
file. Please refer to section 2.3 for details.

4.4 creating the image map

heatmap.send follows the same process as sendimage for creating the image map.
Please refer to section 3.4 for details.

The heatmap function allows for a few different options including color-coded
bars for x and y samples, as well as clustering. The following code creates a
schema of colors for samples.

color bars for samples
rcol = c("red", "blue", "yellow", "purple", "blue")
ccol = c("black", "green", "black")

Continuing the current example, the following code is executed:

heatmap.send(x, RowSideColors=rcol, ColSideColors=ccol,
z.value="value",
bound.pt=TRUE, paint=TRUE,source.plot=NA,
fname.root="heatmapSendPlot",resize="800x1100",
up.left=c(89,100),low.right=c(800,900),

spot.radius=10)

We have entered dummy values for the up.left and low.right coordinates. Fig-
ure 6 contains a screenshot of the example PNG file opened in kolourpaint. Ac-
cording to the information in kolourpaint, the up.left location should be 288,203.
Notice the grey mouse is over the upper left blue point for the up.left bounding
box. The pixel location is shown on the bottom of the window in the sec-
ond box from the left. It shows a location of 288,203. If we had checked the
low.right coordinate it would read 620,940. To complete the process of generat-
ing the heatmap.send output, the heatmap.send function used to create this fig-
ure should be rerun with bound.pt=FALSE, paint=FALSE,up.left=c(288,203),
and low.right=c(620,940).

NOTE: Like the sendxy and sendimage functions, the heatmap.send func-
tion does not always need to be run iteratively. If the user is using the same
machine (therefore consistent point size and operating system), the plot’s xlim,
ylim, and margins are the same, and the resize value is the same, the bounding
points will also be the same. Helpful hint: setting mai=NA, therefore using
the default margins, will keep margins consistent. This process of retrieving
bound.pt needs to be performed once for a certain group of settings.

If the automatic detection of bounding points is used, the following code is
executed:

28

Figure 6: A heatmap opened in kolourpaint, showing additional blue points to
aid in locating boundaries. Notice where pixel location can be found

29

heatmap.send(x, RowSideColors=rcol, ColSideColors=ccol,
z.value="value",
source.plot=NA,
fname.root="heatmapSendPlot",resize="800x1100",
up.left=c(89,100),low.right=c(800,900),

spot.radius=10, automap=TRUE, automap.method="mode")

4.5 specifying the spot radius

The spot.radius argument for heatmap.send is the same as in sendxy. Please
refer to section 2.5 for details.

4.6 creating the heatmap.send example output

If automap is used to detect bounding points the function automatically con-
tinues making the HTML file and sendxy final example output.

If bounding points are detected manually, after the correct bounding points
are known, the heatmap.send function call should be run again, changing only
the up.left, up.right, paint, and bound.pt arguments. up.left and low.right
should be updated accordingly. paint and bound.pt should be tripped to FALSE.
(NOTE: these are the correct up.left and low.right boundaries when the .png is
created from the postscript in linux/unix environment. If the .png file was gen-
erated directly the up.left and low.right values of this example may be slightly
different). The following will make the correct interactive plot:

manual detection of points

heatmap.send(x, RowSideColors=rcol, ColSideColors=ccol,
z.value="value",
bound.pt=FALSE, paint=FALSE,source.plot=NA,
fname.root="heatmapSendPlot",resize="800x1100",
up.left=c(288,203),low.right=c(620,940),

spot.radius=10)

or
automatic detection of points

heatmap.send(x, RowSideColors=rcol, ColSideColors=ccol,
z.value="value",
source.plot=NA,
fname.root="heatmapSendPlot",resize="800x1100",
up.left=c(288,203),low.right=c(620,940),

spot.radius=10, automap=TRUE,automap.method="mode")

30

Figure 7: A snapshot of our example HTML file opened in Mozilla Firefox. The
information is displayed for the region under the black arrow.

The resulting HTML file may be opened in any web browser that is capable
of running Javascript. Figure 7 shows a snapshot of the final graph opened in
Mozilla Firefox. Notice how the appropriate information for the region located
under the black arrow is displayed in the information box.

4.7 summary of code used to generate the heatmap.send
example

The following is a summary of all code run to make the above example:

library("sendplot")
x = matrix(rnorm(15), nrow=5, ncol=3)
rcol = c("red", "blue", "yellow", "purple", "blue")

31

ccol = c("black", "green", "black")

automatic detection of bound points
heatmap.send(x, RowSideColors=rcol, ColSideColors=ccol,

z.value="value",
source.plot=NA,
fname.root="heatmapSendPlot",resize="800x1100",
up.left=c(89,100),low.right=c(800,900),

spot.radius=10,automap=TRUE,automap.method="mode")

or

manual detection bound points
heatmap.send(x, RowSideColors=rcol, ColSideColors=ccol,

z.value="value",
bound.pt=TRUE, paint=TRUE,source.plot=NA,
fname.root="heatmapSendPlot",resize="800x1100",
up.left=c(89,100),low.right=c(800,900),

spot.radius=10)

correct bounding points found (288,203), (620,940)

heatmap.send(x, RowSideColors=rcol, ColSideColors=ccol,
z.value="value",
bound.pt=FALSE, paint=FALSE,source.plot=NA,
fname.root="heatmapSendPlot",resize="800x1100",
up.left=c(288,203),low.right=c(620,940),

spot.radius=10)

As mentioned earlier, the heatmap has options for color bars and for clus-
tering. The code to make the same heatmap without the color bands could
be:

heatmap.send(x, bound.pt=FALSE, paint=FALSE,
fname.root="heatmapSendPlot",resize="800x1100",
up.left=c(288,203),low.right=c(620,940),spot.radius=10)

Or perhaps without the cluster:

heatmap.send(x, Rowv=NA, Colv=NA,
bound.pt=FALSE, paint=FALSE,
fname.root="heatmapSendPlot",resize="800x1100",
up.left=c(288,203),low.right=c(620,940),spot.radius=10)

These really are just variants of the standard heatmap function.
And there you have it, an interactive heatmap!

32

5 sendplot

sendplot creates an interactive xy or image plot, additionally displaying any
number of decoration plots. The display is governed through the layout. The
following is an example function call:

sendplot <- function(mat, plot.calls, x,y, mai.mat, mai.prc=FALSE,xlim=NA, ylim=NA,
z=NA, z.value="value",type="scatterplot", plt.extras = NA,
x.lbls=NA, y.lbls=NA, xy.lbls=NA,
bound.pt = FALSE,source.plot=NA,resize="4000x5500",
ps.paper="letter", ps.width=8,ps.height=11,
fname.root="test",dir="./",header="v2",
paint=FALSE, img.prog = NA,
up.left=c(673,715),low.right=c(2874,4481),
spot.radius=5,automap=FALSE, automap.method="mode"
)

The example code throughout this section will create Figure 8, which displays
an interactive heatmap image.

Note: This example utilizes objects created with the R package aCGHplus.
aCGHplus is a package designed for array comparative genomic hybridization
experiments. For information on this package and objects that can be created
with this package, please go to the website:
http://sphhp.buffalo.edu/biostat/research/software/acghplus/index

Begin by loading the library and example dataset:

library(sendplot)
data("aCGHex")

5.1 specifying the plot call

This section will define the following sendplot arguments:

mat: numeric matrix governing plot layout

plot.calls: character vector of desired plot calls

mai.mat: numeric matrix indicating plot margins

mai.prc: logical indicating if mai.mat is a percentage of default settings

plt.extras: character vector of additional plotting

The first argument of the sendplot function, mat, is a numeric matrix that
is passed into the R graphics package function layout. The first figure, desig-
nated ’1’ in the matrix, is the interactive plot. All other designations represent
additional decorative plots of varying complexity.

The example (refer to figure 8) contains four different plots. The following
creates a layout matrix for the four plots:

33

Figure 8: Interactive heatmap image

34

mat=matrix(c(rep(c(rep(2,8),rep(0,2)),1),
rep(c(rep(1,8),rep(4,2)),14),
rep(c(rep(3,8),rep(0,2)),2)),
ncol=10,byrow=TRUE)

This results in the following matrix:

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
[1,] 2 2 2 2 2 2 2 2 0 0
[2,] 1 1 1 1 1 1 1 1 4 4
[3,] 1 1 1 1 1 1 1 1 4 4
[4,] 1 1 1 1 1 1 1 1 4 4
[5,] 1 1 1 1 1 1 1 1 4 4
[6,] 1 1 1 1 1 1 1 1 4 4
[7,] 1 1 1 1 1 1 1 1 4 4
[8,] 1 1 1 1 1 1 1 1 4 4
[9,] 1 1 1 1 1 1 1 1 4 4
[10,] 1 1 1 1 1 1 1 1 4 4
[11,] 1 1 1 1 1 1 1 1 4 4
[12,] 1 1 1 1 1 1 1 1 4 4
[13,] 1 1 1 1 1 1 1 1 4 4
[14,] 1 1 1 1 1 1 1 1 4 4
[15,] 1 1 1 1 1 1 1 1 4 4
[16,] 3 3 3 3 3 3 3 3 0 0
[17,] 3 3 3 3 3 3 3 3 0 0

Note: In layout, zero acts as a region in which no graph is displayed, a
buffer. Notice the use of zero to allow the first and fourth plot to line up in the
example.

Figure 9 displays a box version of the above layout.

The plot.calls argument is a character vector containing the desired plot calls
for all graphs. The first character string must be the call for the interactive
plot; this must be either a scatter-plot or an image. For example, the plot.calls
argument for Figure 8 is of length four:

plot.calls = c(
"image(x=x,y=y,z=t(z),zlim=c(-0.5,0.5), ylim=range(scanLoc,na.rm=T),

col=c(hsv(h=2/6,v=seq(1,0,length=1000)^1.15),
hsv(h=0/6,v=seq(0,1,length=1000)^1.15)),axes=F,xlab='',ylab='')",

"plot(ddr,axes = FALSE, xaxs = 'i', leaflab = 'none',main=ttl)",

"image(x=seq(from=-0.5,to=0.5,length=1000),y=1,z=t(zlgnd),zlim=c(-0.5,0.5),
col=c(hsv(h=2/6,v=seq(1,0,length=1000)^1.15),

35

Figure 9: box display of layout

36

hsv(h=0/6,v=seq(0,1,length=1000)^1.15)),
axes=F,xlab='',ylab='')",

"image(x=0:1,y=0:1,z=matrix(rep(NA,4),ncol=2),xlim=range(c(W.lw,W.up),na.rm=T),
ylim=range(scanLoc,na.rm=T),zlim=c(0,1),axes=F,xlab='',ylab='')")

The first plot call (given below) creates a heatmap image that looks like
Figure 10.

"image(x=x,y=y,z=t(z),zlim=c(-0.5,0.5), ylim=range(scanLoc,na.rm=T),
col=c(hsv(h=2/6,v=seq(1,0,length=1000)^1.15),
hsv(h=0/6,v=seq(0,1,length=1000)^1.15)),axes=F,xlab='',ylab='')",

The second plot call (given below) creates the dendrogram representation of
sample clustering seen in Figure 11.

plot(ddr,axes = FALSE, xaxs = 'i', leaflab = 'none',main=ttl)

The third plot call, given by:

image(x=seq(from=-0.5,to=0.5,length=1000),y=1,z=t(zlgnd),zlim=c(-0.5,0.5),
col=c(hsv(h=2/6,v=seq(1,0,length=1000)^1.15),
hsv(h=0/6,v=seq(0,1,length=1000)^1.15)),
axes=F,xlab='',ylab='')

creates the legend image seen in Figure 12.

The last plot.call, given by:

image(x=0:1,y=0:1,z=matrix(rep(NA,4),ncol=2),
xlim=range(c(W.lw,W.up),na.rm=T),
ylim=range(scanLoc,na.rm=T),
zlim=c(0,1),
axes=F,xlab='',ylab='')

creates a blank image.
Note: The plot call in R adds an automatic buffer that may alter alignment.

For this reason an image call is used for the fourth plot instead of a plot call to
ensure ratios and buffers would be equivalent between the first and fourth plots.

Note: Notice axis and additional plotting such as vertical line breaks have
not yet been plotted. Additional expressions, such as these, can be evaluated
on the plots through the sendplot argument plt.extras, which will be discussed

37

Figure 10: Initial heatmap image from executing plot.call[1]

38

Region: 4q13

Figure 11: Dendrogram created from executing plot.call[2]

39

Figure 12: Legend created from executing plot.call[3]

40

in detail later in this section.

Arguments of type character within any of the character strings are specified
with a single quotation rather than the double quotations used originally, or vice
versa (see second string’s leaflab argument). Any variables used in plot calls
should be in local memory before running the sendplot function. The following
code initializes variables needed for above plot calls:

index of genome - we want to look at region 4q13
the aCGHplus object has already been subset for this region for 10 samples

scanDX = 1:dim(aCGH$mapping.info)[1]
bioDX = scanDX
scanLoc=aCGH$mapping.info$loc.genome[scanDX]
scanLoc[which(diff(scanLoc)<=0)]=scanLoc[which(diff(scanLoc)<=0)]-0.001

add sample names to index of log2 data
colnames(aCGH$log2.ratios.fitted)=aCGH$inventory$sample.ID

perform a sample clustering and create dendrogram
ManDist=dist(t(aCGH$log2.ratios.fitted),method = "manhattan")
hc=hclust(ManDist,method="ward")
ddr=as.dendrogram(hc)

useful sample information
nsmpl = aCGH$data.info$nsmpl
smplDX = 1:nsmpl
ttl = "Region: 4q13"

creates legend scale for log2 ratios from -.5 to .5
zlgnd=array(seq(from=-0.5,to=0.5,length=1000),dim=c(1,1000))

x values = samples
x = 1:length(smplDX)

y values = genomic location
y = scanLoc

z values = log 2 ratios that have been fitted
by circular binary segmentation - min and max cutoffs applied

z.value="log2.ratios.fitted"
z = aCGH$log2.ratios.fitted[,hc$order]
z.raw = z
z[z>0.5]=0.5
z[z<(-0.5)]=-0.5

sorts log2 values and splits into low region and high region
to create fourth plot of avg. means

rowSort=function(i,x) sort(x[i,])
z.sort=t(mapply(rowSort,1:(dim(z.raw)[1]),MoreArgs=list(x=z.raw)))
lwDX=1:ceiling(nsmpl/4)
upDX=(floor((3/4)*nsmpl)+1):nsmpl
W.up=rowMeans(z.sort[,upDX],na.rm=T)
W.lw=rowMeans(z.sort[,lwDX],na.rm=T)

41

The sendplot arguments mai.mat and mai.prc control the margins for each
plot in the display. The mai.mat argument is a numeric n x 4 matrix, where n
is the length of plot calls. Each row of mai.mat is passed into the R graphics
package function par specifying mai. The four columns represent the margins:
bottom, left, top, and right respectively. The first row corresponds to the mar-
gins for layout designates ’1’, the second row to layout designates ’2’ and so
forth. If the numeric values in the mai.mat represent a percentage of the de-
fault margins, the argument mai.prc=TRUE. The following sets up margins for
Figure 8:

mai.mat = matrix(0, ncol=4, nrow=4, byrow=TRUE)
mai.mat[1,] = c(.5,0,.5,0)
mai.mat[2,] = c(0,0,.3,0)
mai.mat[3,] = c(.4,.4,.2,.4)
mai.mat[4,] = c(.5,.2,.5,.2)
mai.prc = FALSE

Note: If figure margins are too large, an error will occur when plotting. If
the user gets an error message like ’Error figure margins too large’, try decreasing
the values in mai.mat.

plt.extras contains additional expressions or plot calls for each displayed
plot. plt.extras is a list which contains sub-lists corresponding to each plot in
plot.calls. Each of these sub-lists is a list of character strings to be evaluated
as R functions. Before examining the plt.extra calls for Figure 8, consider the
following smaller example: The desired display has two plots. The first plot
requires the additional plotting of a vertical line at y=0 and a title while the
second requires no additional plotting.

plt.extras = list()
plt.extras$plot1 = NA
test = list()
test[1] = "abline(v=0, col='gray77', lwd=1)"
test[2] = "title(main='mytest')"
plt.extras$plot2 = test

Notice arguments of type character within any of the character strings are
specified with a single quotation rather than the double quotations used origi-
nally, or vice versa (see col argument).

Now looking back at Figure 8 compared with Figure 10, additional axes on
the top and left with labels, as well as vertical lines to separate x-values are
desired. The following code will achieve this:

plot1 = list()
plt1.ind = 1

nlbl=50
eval.js("sample.colors=as.character(aCGH$inventory$sex)")

42

colorSet =c("hotpink","darkblue", "green")
lev = levels(factor(sample.colors))
for(i in 1:length(lev)){
sample.colors[sample.colors==lev[i]] = colorSet[i]

}
count.arm=sum((aCGH$Band.Aid$Regions[[2]]$Upper>=min(scanLoc,na.rm=T))
&(aCGH$Band.Aid$Regions[[2]]$Lower<=max(scanLoc,na.rm=T)))

count.broadband=sum((aCGH$Band.Aid$Regions[[3]]$Upper>=min(scanLoc,na.rm=T))
&(aCGH$Band.Aid$Regions[[3]]$Lower<=max(scanLoc,na.rm=T)))

count.finband=sum((aCGH$Band.Aid$Regions[[4]]$Upper>=min(scanLoc,na.rm=T))
&(aCGH$Band.Aid$Regions[[4]]$Lower<=max(scanLoc,na.rm=T)))

cat("label counts:",count.arm,count.broadband,count.finband,fill=T)
cat("target number=",nlbl,fill=T)
ilbl=order(abs(c(count.arm,count.broadband,count.finband,length(scanDX))-nlbl))[1]
cat("ilbl=",ilbl,fill=T)
if(ilbl<=3){
if(ilbl==1) bandDX=1:40
if(ilbl==2) bandDX=(

(sum(aCGH$Band.Aid$Regions[[3]]$Upper<=min(scanLoc,na.rm=T),na.rm=T)+1)
:(sum(aCGH$Band.Aid$Regions[[3]]$Lower<=max(scanLoc,na.rm=T),na.rm=T)))

if(ilbl==3) bandDX=(
(sum(aCGH$Band.Aid$Regions[[4]]$Upper<=min(scanLoc,na.rm=T),na.rm=T)+1)
:(sum(aCGH$Band.Aid$Regions[[4]]$Lower<=max(scanLoc,na.rm=T),na.rm=T)))

lbls=paste(aCGH$Band.Aid$Regions[[ilbl+1]]$Chrom[bandDX],
aCGH$Band.Aid$Regions[[ilbl+1]]$Label[bandDX],sep="")

plot1[plt1.ind] = "axis(2,aCGH$Band.Aid$Regions[[ilbl+1]]$Center[bandDX],
tick=F,labels=lbls,las=2,cex.axis=1)"

plt1.ind = plt1.ind +1
plot1[plt1.ind] = "axis(2,aCGH$Band.Aid$Regions[[ilbl+1]]$Lower[bandDX], labels=F)"
plt1.ind = plt1.ind +1

}
if(ilbl==4){
lbls=as.character(aCGH$mapping.info$spot.ID[scanDX])

plot1[plt1.ind] = "axis(2,aCGH$mapping.info$loc.genome[scanDX],tick=F,
labels=lbls, las=2,cex.axis=1)"

plt1.ind = plt1.ind +1
}

plot1[plt1.ind] = "abline(v=(0:nsmpl)+1/2,col=7,lty=1,lwd=1/3)"
plt1.ind = plt1.ind +1

43

if(length(sample.colors)==1){

plot1[plt1.ind] = "axis(3,1:length(smplDX),cex.axis=1,las=2,
labels=aCGHsub$inventory$sample.ID[hc$order])"

plt1.ind = plt1.ind +1
}
if(length(sample.colors)!=1){
unq.colors=unique(sample.colors[hc$order])
lbls2=aCGH$inventory$sample.ID[hc$order]
col.labs=sample.colors[hc$order]
for(j in 1:length(unq.colors)){
iclr = unq.colors[j]
cat("eye color=",iclr,fill=T)
nm = paste("adx",j,sep="")
eval.js(paste(nm, "=which(col.labs==iclr)",sep=""))

plot1[plt1.ind] = paste("axis(3,",nm,",labels=lbls2[",nm,"],
cex.axis=1,las=2,col.axis='",iclr,"')", sep="")

plt1.ind = plt1.ind +1
}

}

The second plot, Figure 11 of the dendrogram, does not require any addi-
tional plotting and is set as NA. The legend created by the third plot call (Figure
12) requires a title and bottom axis. This is achieved with the following:

plot3 = list()
plt3.ind = 1

plot3[plt3.ind] = "mtext('legend: log2 T/C value',side=3,cex=1,line=1/4)"
plt3.ind = plt3.ind + 1
plot3[plt3.ind] = "axis(1,seq(from=-0.5,to=0.5,length=5),line=0)"
plt3.ind = plt3.ind + 1

The fourth graph still needs to be generated since we only set up a blank
image. The following calls create the fourth plot:

plot4 = list()
plt4.ind = 1

plot4[plt4.ind] = "abline(v=0,col='gray77',lwd=1)"
plt4.ind = plt4.ind + 1
plot4[plt4.ind] = "points(W.lw,scanLoc,col='green',pch=3,cex=0.5)"
plt4.ind = plt4.ind + 1
plot4[plt4.ind] = "points(W.up,scanLoc,col='red',pch=3,cex=0.5)"
plt4.ind = plt4.ind + 1
plot4[plt4.ind] = "lines(W.lw,scanLoc,col='green',pch=3,cex=0.5)"

44

plt4.ind = plt4.ind + 1
plot4[plt4.ind] = "lines(W.up,scanLoc,col='red',pch=3,cex=0.5)"
plt4.ind = plt4.ind + 1
plot4[plt4.ind] = "axis(3)"
plt4.ind = plt4.ind + 1
plot4[plt4.ind] = "mtext(text='LOS',side=3,line=2,cex=0.5)"
plt4.ind = plt4.ind + 1
plot4[plt4.ind] = "axis(2,at=scanLoc,labels=F)"
plt4.ind = plt4.ind + 1

Now the above code chunks generate all the sub-lists of the plt.extras list.
The following will put all the sub-lists in the plt.extras list object:

plt.extras = list()
plt.extras$plot1 = plot1
plt.extras$plot2 = NA
plt.extras$plot3 = plot3
plt.extras$plot4 = plot4

Notice how plt.extras adds any additional plot calls to the original plots.
Looking at the third plot’s sub-list, there are two additional calls: one to make
the title and another to make the axis.

> plot3

[[1]]
[1] "mtext('legend: log2 T/C value',side=3,cex=1,line=1/4)"

[[2]]
[1] "axis(1,seq(from=-0.5,to=0.5,length=5),line=0)"

Note: Some of the plt.extras argument can be included in the original
plot.calls argument. The original character string can contain multiple calls
separated by a semicolon. For example, the third plot.call for the heatmap
legend original is the following:

"image(x=seq(from=-0.5,to=0.5,length=1000),y=1,z=t(zlgnd),zlim=c(-0.5,0.5),
col=c(hsv(h=2/6,v=seq(1,0,length=1000)^1.15),

hsv(h=0/6,v=seq(0,1,length=1000)^1.15)),
axes=F,xlab='',ylab='')",

The plt.extras calls for this image are:

"mtext('legend: log2 T/C value',side=3,cex=1,line=1/4)"

and

"axis(1,seq(from=-0.5,to=0.5,length=5),line=0)"

45

These could have been combined thus changing the plt.extra call to NA and
the plot.call to:

"image(x=seq(from=-0.5,to=0.5,length=1000),y=1,z=t(zlgnd),zlim=c(-0.5,0.5),
col=c(hsv(h=2/6,v=seq(1,0,length=1000)^1.15),

hsv(h=0/6,v=seq(0,1,length=1000)^1.15)),
axes=F,xlab='',ylab='');
mtext('legend: log2 T/C value',side=3,cex=1,line=1/4);
axis(1,seq(from=-0.5,to=0.5,length=5),line=0)"

5.2 specifying the interactive points and tool-tip content

The currently supported graph types for the interactive plot are scatterplot and
image. The arguments x, y, z, z.value, xlim, ylim, x.lbls, y.lbls, xy.lbls and type
are defined differently depending on which interactive plot is used.

The sendplot argument type refers to which supported graph type is the
interactive plot. type should either be ’scatterplot’ or ’image’.

5.2.1 scatterplot

The x and y arguments are the x and y coordinates of desired interactive points.
z and z.value are not utilized and should be left as default values (NA).

If the first plot is a scatterplot, no xlim or ylim value should be specified
in the first plot.call. For mapping purposes, xlim and ylim must be given as
separate arguments to the sendplot function. If xlim and ylim are not set in the
arguments, or entered as NA, the range of the x and y values will be used.

The arguments x.lbls, y.lbls, and xy.lbls control what is displayed in the inter-
active window when the user hovers the mouse over plot points. The arguments
x.lbls and y.lbls refer to data that is specific to the x and y values respectively.
The argument xy.lbls governs data specific to both x and y location. In the case
of a scatter-plot, x.lbls, y.lbls, and xy.lbls refer to the same position; it is only
necessary to use either x.lbls or y.lbls. x.lbls and y.lbls are data.frames with the
number of rows equal to the number of interactive data points. The first row
of the data frame should contain column headers; these names will be used as
display names in the interactive window that appears.

Note: Please refer to section 2.2 for more details.

5.2.2 image

The x, y, and z arguments are the x, y, and z used in the image call. x and y are
the locations of the grid lines at which the values of z correspond. z is a matrix
of values (length of x by length of y). These three arguments have already been
defined for the example in the previous section. The function argument z.value
describes what z holds (examples pvalues, logRatios, percentAccepted); this
identifier is used in the interactive display. The data being used as z values for

46

Figure 8 are log2 ratios that have been fitted by circular binary segmentation.
We will call our z.value log2ratios.fitted.

z.value = "log2ratios.fitted"
xlim = NA
ylim = NA
type = "image"

Note: z.value should not contain any spaces or punctuation characters;
numbers and letters only.

Notice in the above code we have set xlim and ylim as NA. When the inter-
active plot is an image, these values are generated from the image call.

As with the scatterplot function, the arguments x.lbls, y.lbls, and xy.lbls
control what is displayed in the interactive window when the user hovers the
mouse over plot points. The arguments x.lbls and y.lbls refer to data that is
specific to the x and y values respectively. x.lbls and y.lbls are data.frames of
the dimension n by m, where n is equal to the length of x or y respectively. Each
row is specific to a certain x or y value and each column is a unique variable
or characteristic of x or y respectively. The first row of the data frames should
contain column headers; these names will be used as display names in the inter-
active window that appears. The xy.lbls argument is a little different because it
governs data specific to both x and y locations. The function argument xy.lbls
is a list of matrices; each matrix is of the dimension n by m, where n is equal
to the length of y and m is equal to the length of x.

Note: the function assumes the data.frame rows are in the same order as
they appear in the x argument (or y argument if y.lbls).

Note: z values automatically display in the interactive window. If x.lbls,
y.lbls, and xy.lbls are NA, the interactive window will only display z values.

For the example, x-values are samples. We have 43 x-values and therefore
43 rows in the x.lbls data.frame. The sample specific data that is selected for
display in the interactive window are sample.IDs and sex. The aCGH object
contains a data.frame that holds information about the samples: the first column
of that data frame holds the sample.ID information and the eighth column holds
the sex data. Earlier we ordered the samples by clustering, this ordering is used
for subsetting. The x.lbls data frame may be attained with the following:

x.lbls=aCGH$inventory[hc$order,c(1,8)]
y.lbls=aCGH$mapping.info[scanDX,c(5,6,8,10,12)]

The y-values for the example are BACs of specific genomic location. A spe-
cific range of BACs was selected previously by setting scanDX. scanDX retrieves
information for a region of chromosome 4. There are 98 different y-value loca-
tions selected and therefore y.lbls will have 98 rows. The selected y-specific data

47

are genomic location, chromosome, arm, broad.band, and fine.band location in
the interactive display. The aCGH object contains a data.frame that holds in-
formation about the BACs; the corresponding columns in that data.frame are
5, 6, 8. 10, and 12.

The xy specific data desired for display in the interactive window are raw log2
ratios and the log2 ratios that have been fitted by circular binary segmentation.
Since the fitted log 2 ratios are used as the z values to create the heatmap, these
values are displayed automatically in the interactive window. The xy.lbls list
contains information for the raw log2 ratios.

xy.lbls=list();
log2.ratio = as.matrix(aCGH$log2.ratios[,hc$order])
xy.lbls$log2.ratio = log2.ratio

5.3 creating the PNG image file

sendplot follows the same process as sendxy for creating the PNG image file.
Please refer to section 2.3 for details.

For the example plot, the final image is made smaller in both width and
height by the following resize value.

resize="600x900"

5.4 creating the image map

The sendplot argument header refers to which java tooltip is used in the html
file. Older versions of the package utilized a tooltip that worked well with
Mozilla Firefox but would not work on Internet Explorer web browsers. header
may either be ’v1’ or ’v2’. The more recent tooltip (’v2’) which is the current
default, works on multiple web browsers.

As mentioned previously, the sendplot functions output an HTML file and
a PNG image. The HTML file contains an image map which identifies the in-
teractive regions of the PNG image (i.e., the regions for which a tool-tip will
appear). The image map requires a mapping of the plotted point coordinates as
specified in the R plotting calls that generated them to the corresponding pixel
location on the final PNG image. The sendplot functions build this map by
identifying the upper-left and lower-right locations in the original plotting coor-
dinate system and in the final pixel coordinate system. The function arguments
for these coordinates are given as:

up.left: The x and y value in pixels of the upper left hand corner of the plot
call

48

low.right: The x and y value in pixels of the lower right hand corner of the plot
call.

The sendplot functions provide convenient options for identifing the upper-
left and lower-right pixil coordinates. There is an automatic detection of bound-
ing points, in most cases eliminating the two step procedure. There are also
options for manual detection of bound points. These options will be discussed
further in the following sections.

5.4.1 automatic dectection of bounding points

As mentioned previously, there is an option for automatic detection of the upper-
left and lower-right pixil coordinates. This option eliminates the two iteration
procedure for linux and unix users. The functions utilizes ImageMagick’s convert
program installed on most linux machines, and the R library rtiff’s readTiff
function. The function arguments implementing this option are:

automap: logical indicating if application should attempt to automatically de-
tect upper-left and lower-right coordinates.

automap.method: if automap is TRUE, the method that will be used to find
bound points. The current options are median and mode

For windows and mac users, this automatic detection of coordinates is viable
if the user has the ability to convert a PNG image to a TIFF image. The current
implemenation still requires two iterations. The first iteration will create the
PNG images. The user then must manually convert the PNG images to the TIF
images using appropriate file names. The function is run again and the auto
detect will function correctly.

Continuing the current example, the following code is executed:

sendplot(mat=mat, plot.calls=plot.calls, mai.mat=mai.mat,
x=x,y=y,z=z,xlim=NA,ylim=NA, z.value=z.value, type="image",
plt.extras=plt.extras, x.lbls=x.lbls, y.lbls=y.lbls,xy.lbls=xy.lbls,
spot.radius=3,up.left=c(673,715),low.right=c(2874,4481),
source.plot=NA, resize=resize,
automap=TRUE, automap.method="mode")

5.4.2 manual detection of bounding points

As mentioned previously, the sendplot functions are typically run in two itera-
tions when creating interactive plots for the first time. In the first iteration, the
PNG file is created and then opened in a program such as mspaint or kolourpaint
so that the upper-left and lower-right pixel coordinates are identified. In the
second iteration, the function is called again using the pixel coordinates iden-
tified in the first iteration and the PNG and HTML output files are created.
Refer back to Figure 1 for a flowchart for this two-iteration procedure.

The sendplot functions include arguments which allow for the convenient
identification of the up.left and low.right values. These arguments are:

49

paint: logical indicating if application should automatically open the .png file
for the user to view .png file and/or to retrieve needed bounding values of
the plot call.

img.prog: if paint is TRUE, the command line call that will open a program
to view .png file to retrieve pixel locations of interactive plot bounds. If
this is left NA, the operating system is checked and a default program is
used. For unix the default application is kolourpaint and for windows it
is microsoft paint (mspaint).

bound.pt: logical indicating if red points should be plotted to aid in finding the
upper left and lower right coordinates. If bound.pt is FALSE, indicates
that up.left and low.right arguments are correct and will make the html
file. Note that if bound.pt is TRUE then the function will not attempt
the task of writing the .html file as that step can be time consuming.

One way to identify the up.left and low.right values in the first iteration of send-
plot construction is to execute the function with: bound.pt=TRUE, paint=TRUE,
and img.prog=NA. With these combination of arguments, the function will cre-
ate the PNG output, add red points to the upper-left and lower-right corners,
and then open the PNG in the default viewer so that the user can readily identify
the up.left and low.right pixel coordinates.

Note: additional points added to upper-left and lower-right corners are red
for scatter-plots and blue for images.

Figure 13 is a snapshot of the sendplot help function example for scatter-plot
opened in kolourpaint:

Notice the mouse is over the upper left red point for the up.left bounding
box. The pixel location is shown on the bottom of the window in the second
box from the left. It shows a location of 188, 200. The lower-right corner should
also be check and the sendplot function used to generate this plot rerun with
bound.pt=FALSE, paint=FALSE, and the corrected up.right and low.left pixel
locations.

Continuing with the example for Figure 8, the following code is executed:

sendplot(mat=mat, plot.calls=plot.calls, mai.mat=mai.mat,
x=x,y=y,z=z,xlim=NA,ylim=NA, z.value=z.value, type="image",
plt.extras=plt.extras, x.lbls=x.lbls, y.lbls=y.lbls,xy.lbls=xy.lbls,
spot.radius=3,up.left=c(673,715),low.right=c(2874,4481),
source.plot=NA, img.prog=TRUE,
resize=resize,bound.pt=TRUE, paint=TRUE)

We have entered dummy values for the up.left and low.right coordinates. Figure
14 contains a screenshot of the example PNG file opened in kolourpaint. Note:

50

Figure 13: A scatter-plot opened in kolourpaint, showing additional red points
to aid in locating boundaries. Notice where pixel location can be found

We have circled the mouse location in blue to aid in viewing. Your mouse will
not have the blue circle surrounding it.

According to the information in kolourpaint, the up.left location should be
83,97. Notice the mouse is over the upper left red point for the up.left bounding
box. The pixel location is shown on the bottom of the window in the second box
from the left. It shows a location of 83,97. If we had checked the low.right coor-
dinate it would read 430,635. To complete the process of generating the sendplot
output, the sendplot function used to created this figure should be rerun with
bound.pt=FALSE, paint=FALSE,up.left=c(83,97) and low.right=c(430,635).

NOTE: As mentioned earlier, the sendxy function does not always need to be
run iteratively. If the user is using the same machine (therefore consistent point
size and operating system), the plot’s xlim, ylim, and margins are the same, and
the resize value is the same, the bounding points will also be the same. Helpful
hint: In may cases if the user is generating similar plots, the xlim and ylim
can be set constant so that all graphs are on the same scale; mai=NA using
the default margins will also be consistent. This process of retrieving bound.pt
needs to be performed once for a certain group of settings.

51

Figure 14: Our example image opened in kolourpaint. The boundaries of the
image is where the pixel location should be taken.

52

5.5 specifying the spot radius

The spot.radius argument controls how large an area will be active when the
mouse is scrolled over. If the user selects a larger region, some spot locations
may overlap and be lost. The interactive application is very sensitive if the user
selects a low region. The users’ discretion is best used here given that the plot
scale and number of data points will also play a role in determining a good
spot.radius.

5.6 creating the sendplot example output

If automap is used to detect bounding points the function automatically con-
tinues making the HTML file and sendxy final example output.

If bounding points are detected manually, after the correct bounding points
are known, the sendplot function call should be run again, changing only the
up.left, up.right, paint, and bound.pt arguments. up.left and low.right should be
updated accordingly. paint and bound.pt should be tripped to FALSE. (NOTE:
these are the correct up.left and low.right boundaries when the .png is created
from the postscript in linux/unix environment. If the .png file was generated di-
rectly the up.left and low.right values of this example may be slightly different).
The following will make the correct interactive plot:

manual detection of points

sendplot(mat=mat, plot.calls=plot.calls, mai.mat=mai.mat,
x=x,y=y,z=z,xlim=NA,ylim=NA, z.value=z.value, type="image",
plt.extras=plt.extras, x.lbls=x.lbls, y.lbls=y.lbls,xy.lbls=xy.lbls,
spot.radius=3,up.left=c(83,97),low.right=c(430,635),
source.plot=NA, img.prog=TRUE,
resize=resize, bound.pt=FALSE, paint=FALSE)

or
automatic detection of points
sendplot(mat=mat, plot.calls=plot.calls, mai.mat=mai.mat,

x=x,y=y,z=z,xlim=NA,ylim=NA, z.value=z.value, type="image",
plt.extras=plt.extras, x.lbls=x.lbls, y.lbls=y.lbls,xy.lbls=xy.lbls,
spot.radius=3,up.left=c(83,97),low.right=c(430,635),
source.plot=NA,resize=resize,

automap=TRUE, automap.method="mode")

The resulting HTML file may be opened in any web browser that is capable
of running Javascript. Figure 15 shows a snapshot of the final graph opened in

53

Figure 15: A snapshot of our example html file opened in Mozilla Firefox. The
information is displayed for the region under the white arrow.

Mozilla Firefox. Notice how the appropriate information for the region located
under the white arrow is displayed in the information box.

54

