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Abstract. This document describes design decisions, and discusses imple-

mentation and algorithmic details in some vegan functions. The proper FAQ

is another document.

Contents

1. Nestedness and Null models 1
1.1. Matrix temperature 1
1.2. Backtracking 3
2. Scaling in redundancy analysis 3
3. Why to use weighted averages scores instead of linear combinations in

constrained ordination 5
3.1. LC Scores are Linear Combinations 5
3.2. Factor constraints 9
3.3. Conclusion 10
References 11

1. Nestedness and Null models

Some indicators of nestedness and null models of communities are only described
in general terms, and they could be implemented in various ways. Here I discuss
the implementation in vegan.

1.1. Matrix temperature. The matrix temperature is intuitively simple (Fig.
1), but the the exact calculations were not explaind in the original publication [1].
The function can be implemented in many ways following the general principles.
Rodŕıguez-Girondés and Santamaria [6] have seen the original code and reveal more
details of calculations, and their explanation is the basis of the implementation in
vegan. However, there are still some open issues, and probably vegan function
nestedtemp will never exactly reproduce results from other programs, although it
is based on the same general principles. I try to give main computation details in
this documents — all details can be seen in the source code of nestedtemp.

• Species and sites are put into unit square [6]. The coordinates for n item
will be (k−0.5)/n for k = 1 . . . n, so that there are no points in the corners
or the margins of the unit square, and a diagonal line can be drawn through
any point. I do not know how the rows and columns are converted to the
unit square in other software, and this may be a considerable source of
differences among implementations.
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Figure 1. Matrix temperature
for Falco subbuteo on island 1 (dot;
Sibbo Svartholmen). The curve is
the fill line, and in a cold matrix,
all presences (red squares) should
be in the upper left corner behind
the fill line. Dashed diagonal
line of length D goes through
the point, and an arrow of length
d connects the point to the fill
line. The “surprise” for this point
is u = (d/D)2 and the matrix
temperature is based on the sum
of surprises: presences outside the
fill line or absences within the fill
line.

●

• Species and sites are ordered alternately using indices [6]:

sj =
∑

i|xij=1

i2

tj =
∑

i|xij=0

(n− i+ 1)2
(1)

Here x is the data matrix, where 1 is presence, and 0 is absence, i and j are
row and column indices, and n is the number of rows. The equations give
the indices for columns, but the indices can be reversed for corresponding
row indexing. Ordering by s packs presences to the topleft corner, and
ordering by t pack zeros away from the topleft corner. The final sorting
should be “a compromise” [6] between these scores, and vegan uses s + t.
The result should be cool, but the packing does not try to minimize the
temperature [6]. I do not know how the “compromise” is defined, and this
can cause some differences to other implementations.

• The following function is used to define the fill line:

(2) y = (1− (1− x)p)1/p

This is similar to the equation suggested by [6], eq. 4, but omits all
terms dependent on the numbers of species or sites, because I could not
understand why they were needed. The differences are visible only in small
data sets. The y and x are the coordinates in the unit square, and the
parameter p is selected so that the curve covers the same area as is the
proportion of presences (Fig. 1). The parameter p is found numerically
using R functions integrate and uniroot. The fill line used in the original
matrix temperature software [1] is supposed to be similar [6]. Small details
in the fill line combined with differences in scores used in the unit square
(especially in the corners) can cause large differences in the results.

• A line with slope −1 is drawn through the point and the x coordinate of the
intersection of this line and the fill line is found using function uniroot. The
difference of this intersection and the row coordinate gives the argument d
of matrix temperature (Fig. 1).

• In other software, “duplicated” species occurring on every site are removed,
as well as empty sites and species after reordering [6]. This is not done in
vegan.
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1.2. Backtracking. Gotelli and Entsminger’s seminal paper [2] on filling algo-
rithms is somewhat confusing: it explicitly deals with “knight’s tour” which is quite
a different problem than the one we face with null models. The chess piece“knight”1

has a track of history: a piece in a certain position could only have entered from
some candidate squares. The filling of incidence matrix no such a history: if we
know that the item last added was in certain row and column, we have no infor-
mation to guess which of the filled items was entered previously. A consequence
of dealing with a different problem is that [2] does not give many hints on imple-
menting a fill algorithm as a community null model.

The backtracking is implemented in two stage: filling and backtracking.
(1) The matrix is filled in the order given by the marginal probabilities. In

this way the matrix will look similar to the final matrix at all stages of
filling. Equal filling probabilities were not used since that was ineffective
and produced strange fill patterns: the rows and columns with one or a
couple of presences were filled first, and the process was cornered to columns
and rows with many presences. As a consequence, the the process tried
harder to fill that corner, and the result was a more tighlty packed quadratic
fill pattern than with other methods.

(2) The filling stage stops when no new points can be added without exceeding
row or column totals. “Backtracking” means removing random points and
seeing if this allows adding new points to the plot. No record of history is
kept (and there is no reason to keep a record of history), but random points
are removed and filled again. The number of removed points increases from
one to four points. New configuration is kept if it is at least as good as
the previous one, and the number of removed points is reduced back to one
if the new configuration is better than the old one. Because there is no
record of history, this does not sound like a backtracking, but it still fits
the general definition of backtracking: “try something, and if it fails, try
something else” [7].

2. Scaling in redundancy analysis

This chapter discusses the scaling of scores (results) in redundancy analysis and
principal component analysis performed by function rda in the vegan library. Prin-
cipal component analysis, and hence redundancy analysis, is a variant of singular
value decomposition (svd). Functions rda and prcomp (library mva) even use svd
internally in their algorithm. In svd a centred data matrix is decomposed into or-
thogonal components so that xij =

∑
k σkuikvjk, where uik and vjk are orthonormal

coefficient matrices and σk are singular values. Orthonormality means that sum of
squared columns is one and their cross-product is zero, or

∑
i u

2
ik =

∑
j v

2
jk = 1,

and
∑

i uikuil =
∑

j vjkvjl = 0 for k 6= l. This is a decomposition, and the original
matrix is found exactly from the singular vectors and corresponding singular values,
and first two singular components give the best rank = 2 least squares estimate of
the original matrix.

Principal component analysis is often presented (and performed in legacy soft-
ware) as an eigenanalysis of covariance matrices. Instead of data matrix, we analyse
a matrix of covariances and variances S. The result will be orthonormal coefficient
matrix U and eigenvalues Λ. The coefficients uik ares identical to svd (except for
possible sign changes), and eigenvalues λk are related to the corresponding singular
values by λk = σ2

k/(n − 1). With classical definitions, the sum of all eigenvalues
equals the sum of variances of species, or

∑
k λk =

∑
j s

2
j , and it is often said that

1“Knight” is “Springer” in German which is very appropriate as Springer was the publisher of
the paper on “knight’t tour”
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Table 1. Alternative scalings for rda used in the functions prcomp and prin-
comp (package mva), and the one used in the vegan function rda and the propri-
etary software Canoco scores in terms of orthonormal species (uik) and site scores
(vjk), eigenvalues (λk), number of sites (n) and species standard deviations (sj). In
rda, const = 4

√
(n− 1)

∑
λk. Corresponding negative scaling in vegan and corre-

sponding positive scaling in Canoco is derived dividing each species by its standard
deviation sj (possibly with some additional constant multiplier).

Site scores u∗ik Species scores v∗jk

prcomp, princomp uik

√
n− 1

√
λk vjk

rda, scaling=1 uik

√
λk/

∑
λk × const vjk × const

rda, scaling=2 uik × const vjk

√
λk/

∑
λk × const

rda, scaling=3 uik
4
√
λk/

∑
λk × const vjk

4
√
λk/

∑
λk × const

rda, scaling < 0 u∗ik
√∑

λk/(n− 1)s−1
j v∗jk

Canoco, scaling=-1 uik
√
n
√
λk/

∑
λk vjk

√
n

Canoco, scaling=-2 uik
√
n vjk

√
n
√
λk/

∑
λk

Canoco, scaling=-3 uik
√
n 4
√
λk/

∑
λk vjk

√
n 4
√
λk/

∑
λk

first axes explain a certain maximized proportion of total variance in the data. The
other orthonormal matrix V can be found indirectly as well, so that we have the
same components in both methods.

The coefficients uik and vjk are of the same (unit) length for all axes k, but
singular values σk or eigenvalues λk give the information of the importance of axes,
or the ‘axis lengths.’ Instead of the orthonormal coefficients, or equal length axes,
it is customary to use eigenvalues to scale at least one of the alternative scores to
reflect the importance of axes or describe the true configuration of points. Table 1
shows some alternative scalings used in various software. These alternatives apply
to principal components analysis in all cases, and in redundancy analysis, they apply
to species scores and constraints or linear combination scores; weighted averaging
scores have somewhat wider dispersion.

In community ecology, it is common to plot both species and sites in the same
graph. If this graph is a graphical display of svd, or a graphical, low-dimensional
approximation of the data, the graph is called a biplot. The graph is a biplot if
the transformed scores satisfy xij = c

∑
k u
∗
ijv
∗
jk where c is a scaling constant. In

functions princomp, prcomp and rda, c = 1 or the plotting scores are the straight
biplot scores so that the singular values (or eigenvalues) are expressed for sites, and
species are left unscaled. For Canoco c = n−1

√
n− 1

√∑
λk with positive Canoco

scaling values. All these c are constants for a matrix, so these are all biplots
with different internal scaling of species and site scores with respect to each other.
For Canoco with positive scaling values and vegan with negative scaling values,
no constant c can be found, but the correction is dependent on species standard
deviations sj , so this alternative does not define a biplot.

There is no natural way of scaling species and site scores to each other, but
all functions and programs above selected different strategies. The eigenvalues
in redundancy and principal components analysis are scale dependent and change
when the the data are multiplied by a constant. If we have percent cover data, the
eigenvalues are typically very high, and the scores scaled by eigenvalues will have
much wider dispersion than the orthonormal set. If we express the percentages as
proportions, or divide the matrix by 100, the eigenvalues will be reduced by factor
1002, and the scores scaled by eigenvalues will have much narrower dispersion than
the orthonormal set. For graphical biplots we should be able to fix the relation
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and make it invariant for scale changes. The solution adoption in the R standard
function biplot.princomp is to scale site and species scores independently, and
typically very differently, but plot each with separate scales so that both sets fill
the graph area. The solution in Canoco and rda is to use proportional eigenvalues
λk/

∑
λk instead of original eigenvalues. These proportions are invariant with scale

changes, and typically they have a nice range for plotting two data sets in the same
graph.

In this chapter, I used always centred data matrices. In principle svd could be
done with original, non-centred data, but there is no option for this in rda, because
I think that non-centred analysis is dubious and I do not want to encourage its
use (if you think you need it, you are certainly so good in programming that you
can change that one line in rda.default). I do think that the arguments for non-
centred analysis are often twisted, and the method is not very good for its intended
purpose, but there are better methods for finding fuzzy classes. Normal, centred
analysis moves the origin to the average of all species, and the dimensions describe
differences from this average. Non-centred analysis leaves the origin in the empty
site with no species, and the first axis usually runs from the empty site to the
average site. Second and third non-centred components are often very similar to
first and second (etc.) centred components, and the best way to use non-centred
analysis is to discard the first component and use only the rest. This is better done
with directly centred analysis.

3. Why to use weighted averages scores instead of linear
combinations in constrained ordination

Constrained ordination methods such as Constrained Correspondence Analysis
(CCA) and Redundancy Analysis (RDA) produce two kind of site scores [5, 8]:

• LC or Linear Combination Scores which are linear combinations of con-
straining variables.

• WA or Weighted Averages Scores which are such weighted averages of
species scores that are as similar to LC scores as possible.

Many computer programs for constrained ordinations give only or primarily LC
scores, following Mike Palmer’s recommendation [5]. However, functions cca and
rda in the vegan package use primarily WA scores. This chapter explains the
reasons for this choice.

Briefly, the main reasons are that
• LC scores are linear combinations, so they give us only the (scaled) environ-

mental variables. This means that they are independent of vegetation and
cannot be found from the species composition. Moreover, identical combi-
nations of environmental variables give identical LC scores irrespective of
vegetation.

• Bruce McCune has demonstrated that noisy environmental variables result
in deteriorated LC scores whereas WA scores tolerate some errors in en-
vironmental variables [4]. All environmental measurements contain some
errors, and therefore it is safer to use WA scores.

This articles studies mainly the first point. The users of vegan have a choice of
either LC or WA (default) scores, but after reading this article, I believe that most
of them do not want to use LC scores, because they are not what they were looking
for in ordination.

3.1. LC Scores are Linear Combinations. Let us perform a simple CCA anal-
ysis using only two environmental variables so that we can see the constrained
solution completely in two dimensions:
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Figure 2. LC scores in CCA of
the original data.
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Figure 3. LC scores of shuffled
species data.
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> library(vegan)

> data(varespec)

> data(varechem)

> orig <- cca(varespec ~ Al + K, varechem)

Function cca in vegan uses WA scores as default. So we must specifically ask for
LC scores (Fig. 2).
> plot(orig, dis = c("lc", "bp"))

What would happen to linear combinations of LC scores if we shuffle the ordering
of sites in species data? Function sample() below shuffles the indices.
> i <- sample(nrow(varespec))

> shuff <- cca(varespec[i, ] ~ Al + K, varechem)

It seems that site scores are fairly similar, but oriented differently (Fig. 3). We can
use Procrustes rotation to see how similar the site scores indeed are (Fig. 4).
> plot(procrustes(scores(orig, dis = "lc"), scores(shuff, dis = "lc")))

There is a small difference, but this will disappear if we use Redundancy Analysis
(RDA) instead of CCA (Fig. 5). Here we use a new shuffling as well.
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Figure 4. Procrustes rotation of
LC scores from CCA of original
and shuffled data.
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Figure 5. Procrustes rotation of
LC scores in RDA of the original
and shuffled data.

> tmp1 <- rda(varespec ~ Al + K, varechem)

> i <- sample(nrow(varespec))

> tmp2 <- rda(varespec[i, ] ~ Al + K, varechem)

LC scores indeed are linear combinations of constraints (environmental variables)
and independent of species data: You can shuffle your species data, or change the
data completely, but the LC scores will be unchanged in RDA. In CCA the LC
scores are weighted linear combinations with site totals of species data as weights.
Shuffling species data in CCA changes the weights, and this can cause changes in
LC scores. The magnitude of changes depends on the variability of site totals.

The original data and shuffled data differ in their goodness of fit2.
> orig

Call: cca(formula = varespec ~ Al + K, data = varechem)

Inertia Rank

2Or probably differ: The randomization is done while generating this article, and different
versions may have different randomizations.
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Figure 6. Procrustes rotation of
WA scores of CCA with the orig-
inal and shuffled data.
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Total 2.083
Constrained 0.476 2
Unconstrained 1.607 21
Inertia is mean squared contingency coefficient

Eigenvalues for constrained axes:
CCA1 CCA2

0.3608 0.1152

Eigenvalues for unconstrained axes:
CA1 CA2 CA3 CA4 CA5 CA6 CA7 CA8

0.37476 0.24036 0.19696 0.17818 0.15209 0.11840 0.08364 0.07567
(Showed only 8 of all 21 unconstrained eigenvalues)

> shuff

Call: cca(formula = varespec[i, ] ~ Al + K, data = varechem)

Inertia Rank
Total 2.0832
Constrained 0.2376 2
Unconstrained 1.8456 21
Inertia is mean squared contingency coefficient

Eigenvalues for constrained axes:
CCA1 CCA2

0.16798 0.06967

Eigenvalues for unconstrained axes:
CA1 CA2 CA3 CA4 CA5 CA6 CA7 CA8

0.46945 0.29536 0.22251 0.19368 0.13666 0.11429 0.10825 0.07979
(Showed only 8 of all 21 unconstrained eigenvalues)

Similarly their WA scores will be (probably) very different (Fig. 6).
The example used only two environmental variables so that we can easily plot

all constrained axes. With a larger number of environmental variables the full
configuration remains similarly unchanged, but its orientation may change, so that
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two-dimensional projections look different. In the full space, the differences should
remain within numerical precision:
> tmp1 <- rda(varespec ~ ., varechem)

> tmp2 <- rda(varespec[i, ] ~ ., varechem)

> tmp1

Call: rda(formula = varespec ~ N + P + K + Ca + Mg + S + Al + Fe + Mn +
Zn + Mo + Baresoil + Humdepth + pH, data = varechem)

Inertia Rank
Total 1825.7
Constrained 1459.9 14
Unconstrained 365.8 9
Inertia is variance

Eigenvalues for constrained axes:
RDA1 RDA2 RDA3 RDA4 RDA5 RDA6 RDA7 RDA8

820.1042 399.2847 102.5617 47.6317 26.8382 24.0481 19.0644 10.1670
RDA9 RDA10 RDA11 RDA12 RDA13 RDA14

4.4288 2.2720 1.5353 0.9255 0.7155 0.3119

Eigenvalues for unconstrained axes:
PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9

186.192 88.464 38.188 18.402 12.839 10.552 5.519 4.521 1.092

> proc <- procrustes(scores(tmp1, dis = "lc", choi = 1:14), scores(tmp2,

+ dis = "lc", choi = 1:14))

> max(residuals(proc))

[1] 2.082183e-14

In cca the difference would be somewhat larger than now observed 2.0822e-14
because site weights used for environmental variables are shuffled with the species
data.

3.2. Factor constraints. It seems that users often get confused when they per-
form constrained analysis using only one factor (class variable) as constraint. The
following example uses the classical dune meadow data [3]:
> data(dune)

> data(dune.env)

> summary(dune.env)

A1 Moisture Management Use Manure
Min. : 2.800 1:7 BF:3 Hayfield:7 0:6
1st Qu.: 3.500 2:4 HF:5 Haypastu:8 1:3
Median : 4.200 4:2 NM:6 Pasture :5 2:4
Mean : 4.850 5:7 SF:6 3:4
3rd Qu.: 5.725 4:3
Max. :11.500

> orig <- cca(dune ~ Moisture, dune.env)

> orig

Call: cca(formula = dune ~ Moisture, data = dune.env)

Inertia Rank
Total 2.1153
Constrained 0.6283 3
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Figure 7. LC scores of the dune
meadow data using only one factor
as a constraint.
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Unconstrained 1.4870 16
Inertia is mean squared contingency coefficient

Eigenvalues for constrained axes:
CCA1 CCA2 CCA3

0.4187 0.1330 0.0766

Eigenvalues for unconstrained axes:
CA1 CA2 CA3 CA4 CA5 CA6 CA7 CA8

0.409782 0.225913 0.176062 0.123389 0.108171 0.090751 0.085878 0.060894
CA9 CA10 CA11 CA12 CA13 CA14 CA15 CA16

0.056606 0.046688 0.041926 0.020103 0.014335 0.009917 0.008505 0.008033

When the results are plotted using LC scores, sample plots fall only in four al-
ternative positions (Fig. 7). In the previous chapter we saw that this happens
because LC scores are the environmental variables, and they can be distinct only if
the environmental variables are distinct. However, normally the user would like to
see how well the environmental variables separate the vegetation, or inversely, how
we could use the vegetation to discriminate the environmental conditions. For this
purpose we should plot WA scores, or LC scores and WA scores together: The LC
scores show where the site should be, the WA scores shows where the site is.

Function ordispider adds line segments to connect each WA score with the
corresponding LC (Fig. 8).

> plot(orig, display = "wa", type = "points")

> ordispider(orig, col = "red")

> text(orig, dis = "cn", col = "blue")

This is the standard way of displaying results of discriminant analysis, too. Moisture
classes 1 and 2 seem to be overlapping, and cannot be completely separated by their
vegetation. Other classes are more distinct, but there seems to be a clear arc effect
or a “horseshoe” despite using CCA.

3.3. Conclusion. LC scores are only the (weighted and scaled) constraints and
independent of vegetation. If you plot them, you plot only your environmental
variables. WA scores are based on vegetation data but are constrained to be as
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Figure 8. A “spider plot” con-
necting WA scores to correspond-
ing LC scores. The shorter
the web segments, the better the
ordination.

similar to the LC scores as only possible. Therefore vegan calls LC scores as con-
straints and WA scores as site scores, and uses primarily WA scores in plotting.
However, the user makes the ultimate choice, since both scores are available.
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