
1 Overview of BB

“BB” is a package intended for two purposes: (1) for solving a nonlinear system
of equations, and (2) for finding a local optimum (can be minimum or maximum)
of a scalar, objective function. An attractive feature of the package is that it
has minimum memory requirements. Therefore, it is particularly well suited
to solving high-dimensional problems with tens of thousands of parameters.
However, BB can also be used to solve a single nonlinear equation or optimize a
function with just one variable. The functions in this package are made available
with:

> library("BB")

You can look at the basic information on the package, including all the
available functions wtih

> help(package=BB)

The three basic functions are: spg, dfsane, and sane. You should spg for opti-
mization, and either dfsane or sane for solving a nonlinear system of equations.
We prefer dfsane, since it tends to perform slightly better than sane. There are
also 3 higher level functions: BBoptim, BBsolve, and multiStart. BBoptim is
a wrapper for spg in the sense that it calls spg repeatedly with different algo-
rithmic options. It can be used when spg fails to find a local optimum, or it
can be used in place of spg. Similarly, BBsolve is a wrapper for dfsane in the
sense that it calls dfsane repeatedly with different algorithmic options. It can
be used when dfsane (sane) fails to find a local optimum, or it can be used in
place of dfsane (sane). The multiStart function can accept multiple starting
values. It can be used for either solving a nonlinear system or for optimizing. It
is useful for exploring sensitivity to starting values, and also for finding multiple
solutions.

The package setRNG is not necessary, but if you want to exactly reproduce
the examples in this guide then do this:

> require("setRNG")

> test.rng <- list(kind="Wichmann-Hill", normal.kind="Box-Muller", seed=1236)

> setRNG(test.rng)

after which the example need to be run in the order here (or at least the parts
that generate random numbers).

2 How to solve a nonlinear system of equations
with BB?

The first two examples are from La Cruz and Raydan, Optim Methods and
Software 2003, 18 (583-599).

1

> expo3 <- function(p) {

From La Cruz and Raydan, Optim Methods and Software 2003, 18 (583-599)

n <- length(p)

f <- rep(NA, n)

onm1 <- 1:(n-1)

f[onm1] <- onm1/10 * (1 - p[onm1]^2 - exp(-p[onm1]^2))

f[n] <- n/10 * (1 - exp(-p[n]^2))

f

}

> p0 <- runif(10)

> ans <- dfsane(par=p0, fn=expo3)

Iteration: 0 ||F(x0)||: 0.2024112
iteration: 10 ||F(xn)|| = 0.07536174
iteration: 20 ||F(xn)|| = 0.08777425
iteration: 30 ||F(xn)|| = 0.005029196
iteration: 40 ||F(xn)|| = 0.001517709
iteration: 50 ||F(xn)|| = 0.001769548
iteration: 60 ||F(xn)|| = 0.007896929
iteration: 70 ||F(xn)|| = 0.0001410588
iteration: 80 ||F(xn)|| = 2.002796e-06

> ans

$par
[1] 3.819663e-02 3.031250e-02 2.647897e-02 2.404688e-02 2.233208e-02
[6] 2.101498e-02 1.996221e-02 1.909301e-02 1.835779e-02 -7.493381e-06

$residual
[1] 6.645152e-08

$fn.reduction
[1] 0.6400804

$feval
[1] 96

$iter
[1] 85

$convergence
[1] 0

$message
[1] "Successful convergence"

Let us look at the output from dfsane. It is a list with 7 components. The
most important components to focus on are the two named “par” and “conver-

2

gence”. ans$par provides the solution from dfsane, but this is a root if and
only if ans$convergence is equal to 0, i.e. ans$message should say “Successful
convergence”. Otherwise, the algorithm has failed.

Now, we show an example demonstrating the ability of BB to solve a large
system of equations, N = 10000.

> trigexp <- function(x) {

n <- length(x)

F <- rep(NA, n)

F[1] <- 3*x[1]^2 + 2*x[2] - 5 + sin(x[1] - x[2]) * sin(x[1] + x[2])

tn1 <- 2:(n-1)

F[tn1] <- -x[tn1-1] * exp(x[tn1-1] - x[tn1]) + x[tn1] * (4 + 3*x[tn1]^2) +

2 * x[tn1 + 1] + sin(x[tn1] - x[tn1 + 1]) * sin(x[tn1] + x[tn1 + 1]) - 8

F[n] <- -x[n-1] * exp(x[n-1] - x[n]) + 4*x[n] - 3

F

}

> n <- 10000

> p0 <- runif(n)

> ans <- dfsane(par=p0, fn=trigexp, control=list(trace=FALSE))

> ans$message

[1] "Successful convergence"

> ans$resid

[1] 5.725351e-08

The next example is from Freudenstein and Roth function (Broyden, Math-
ematics of Computation 1965, p. 577-593).

> froth <- function(p){

f <- rep(NA,length(p))

f[1] <- -13 + p[1] + (p[2]*(5 - p[2]) - 2) * p[2]

f[2] <- -29 + p[1] + (p[2]*(1 + p[2]) - 14) * p[2]

f

}

Now, we introduce the function BBsolve. For the first starting value, both
dfsane and BBsolve find the zero of the system.

> p0 <- c(3,2)

> BBsolve(par=p0, fn=froth)

Successful convergence.
$par
[1] 5 4

$residual

3

[1] 3.659749e-10

$fn.reduction
[1] 0.001827326

$feval
[1] 100

$iter
[1] 10

$convergence
[1] 0

$message
[1] "Successful convergence"

$cpar
method M NM

2 50 1

> dfsane(par=p0, fn=froth, control=list(trace=FALSE))

$par
[1] -9.822061 -1.875381

$residual
[1] 11.63811

$fn.reduction
[1] 25.58882

$feval
[1] 137

$iter
[1] 114

$convergence
[1] 5

$message
[1] "Lack of improvement in objective function"

For the next starting value, BBsolve finds the zero of the system, but dfsane
(with defaults) fails.

4

> p0 <- c(1,1)

> BBsolve(par=p0, fn=froth)

Successful convergence.
$par
[1] 5 4

$residual
[1] 9.579439e-08

$fn.reduction
[1] 6.998875

$feval
[1] 1165

$iter
[1] 247

$convergence
[1] 0

$message
[1] "Successful convergence"

$cpar
method M NM

1 50 1

> dfsane(par=p0, fn=froth, control=list(trace=FALSE))

$par
[1] -9.674222 -1.984882

$residual
[1] 12.15994

$fn.reduction
[1] 24.03431

$feval
[1] 138

$iter
[1] 109

$convergence

5

[1] 5

$message
[1] "Lack of improvement in objective function"

Try random starting values. Run the following set of code many times. This
shows that BBsolve is quite robust in finding the zero, whereas dfsane (with
defaults) is sensitive to starting values. Admittedly, these are poor starting
values, but still it would be nice to have a strategy that has a high likelihood of
finding a zero of the nonlinear system.

> p0 <- rpois(2,10) # two values generated independently from a poisson distribution with mean = 10

> BBsolve(par=p0, fn=froth)

Successful convergence.
$par
[1] 5 4

$residual
[1] 7.330654e-08

$fn.reduction
[1] 0.07273382

$feval
[1] 91

$iter
[1] 41

$convergence
[1] 0

$message
[1] "Successful convergence"

$cpar
method M NM

2 50 1

> dfsane(par=p0, fn=froth, control=list(trace=FALSE))

$par
[1] 5 4

$residual
[1] 5.472171e-08

6

$fn.reduction
[1] 490.618

$feval
[1] 32

$iter
[1] 31

$convergence
[1] 0

$message
[1] "Successful convergence"

Now, we introduce the function multiStart. This accepts a matrix of starting
values, where each row is a single starting value. multiStart calls BBsolve for
each starting value. Here is a system of 3 non-linear equations, where each
equation is a high-degree polynomial. This system has 12 real-valued roots and
126 complex-valued roots. Here we will demonstrate how to identify all the 12
real roots using multiStart. Note that we specify the ‘action’ argument in the
following call to multiStart only to highlight that multiStart can be used for
both solving a system of equations and for optimization. The default is ‘action
= ”solve”’, so it is really not needed in this call.

> # Example

> # A high-degree polynomial system (R.B. Kearfoot, ACM 1987)

> # There are 12 real roots (and 126 complex roots to this system!)

> #

> hdp <- function(x) {

f <- rep(NA, length(x))

f[1] <- 5 * x[1]^9 - 6 * x[1]^5 * x[2]^2 + x[1] * x[2]^4 + 2 * x[1] * x[3]

f[2] <- -2 * x[1]^6 * x[2] + 2 * x[1]^2 * x[2]^3 + 2 * x[2] * x[3]

f[3] <- x[1]^2 + x[2]^2 - 0.265625

f

}

We generate 200 randomly generated starting values, each a vector of length
equal to 3.

> set.seed(123)

> p0 <- matrix(runif(600), 200, 3) # 200 starting values, each of length 3

> ans <- multiStart(par=p0, fn=hdp, action="solve")

> sum(ans$conv) # number of successful runs = 190

> pmat <- ans$par[ans$conv,] # selecting only converged solutions

7

Now, we display the 12 unique real solutions.

> ans <- round(pmat, 4)

> ans[!duplicated(ans),]

[,1] [,2] [,3]
[1,] 0.2799 0.4328 -0.0142
[2,] 0.2799 -0.4328 -0.0142
[3,] 0.4670 -0.2181 0.0000
[4,] 0.4670 0.2181 0.0000
[5,] 0.0000 0.5154 0.0000
[6,] 0.5154 0.0000 -0.0124
[7,] -0.2799 0.4328 -0.0142
[8,] -0.2799 -0.4328 -0.0142
[9,] -0.5154 0.0000 -0.0124
[10,] -0.4670 -0.2181 0.0000
[11,] 0.0000 -0.5154 0.0000
[12,] -0.4670 0.2181 0.0000

We can also visualize these 12 solutions beautifully using a ‘biplot’ based on
the first 2 principal components of the converged parameter matrix.

> pc <- princomp(pmat)

> biplot(pc) # you can see all 12 solutions beautifully like on a clock!

−0.15 −0.10 −0.05 0.00 0.05 0.10

−
0.

15
−

0.
10

−
0.

05
0.

00
0.

05
0.

10

Comp.1

C
om

p.
2

12

3

4

5
67

8

9
10

11

12

13
14

15
16

17

18

19

2021

22

23

24

25

26

27

28

29

30

31

32

3334

35

36
37

38
39

40 41

42

43

4445

46

4748
49

50

51
52

5354

55

56 57
585960

61
62

63

64

65

66

67

6869

70

71

72

73

74
75

7677

78
79808182

83

8485

86

87

88

89
90

91

92

93

94

95

96

97
98

99

100 101

102

103
104105

106

107108109110
111

112
113

114

115

116

117

118

119
120

121

122
123

124

125
126

127128
129 130131132

133

134

135

136

137

138139140

141

142

143
144

145

146147

148

149

150

151

152

153

154

155

156157158

159

160

161

162163

164

165
166

167168
169170

171

172

173

174175
176177

178

179

180

181

182

183184

185

186

−6 −4 −2 0 2 4

−
6

−
4

−
2

0
2

4

Var 1

Var 2

Var 3

8

3 How to optimize a nonlinear objective func-
tion with BB?

The basic function for optimization is spg. It can solve smooth, nonlinear op-
timization problems with box-constraints, and also other types of constraints
using projection. We would like to direct the user to the help page for many
examples of how to use spg. Here we discuss an example involving estimation of
parameters maximizing a log-likelihood function for a binary Poisson mixture
distribution.

> poissmix.loglik <- function(p,y) {

Log-likelihood for a binary Poisson mixture distribution

i <- 0:(length(y)-1)

loglik <- y * log(p[1] * exp(-p[2]) * p[2]^i / exp(lgamma(i+1)) +

(1 - p[1]) * exp(-p[3]) * p[3]^i / exp(lgamma(i+1)))

return (sum(loglik))

}

> # Data from Hasselblad (JASA 1969)

> poissmix.dat <- data.frame(death=0:9, freq=c(162,267,271,185,111,61,27,8,3,1))

There are 3 model parameters, which have restricted domains. So, we define
these constraints as follows:

> lo <- c(0,0,0) # lower limits for parameters

> hi <- c(1, Inf, Inf) # upper limits for parameters

Now, we maximize the log-likelihood function using both spg and BBoptim,
with a randomly generated starting value for the 3 parameters:

> p0 <- runif(3,c(0.2,1,1),c(0.8,5,8)) # a randomly generated vector of length 3

> y <- c(162,267,271,185,111,61,27,8,3,1)

> ans1 <- spg(par=p0, fn=poissmix.loglik, y=y, lower=lo, upper=hi,

control=list(maximize=TRUE, trace=FALSE))

> ans1

$par
[1] 0.3598829 1.2560909 2.6634013

$value
[1] -1989.946

$gradient
[1] 2.273737e-06

$fn.reduction
[1] -929.1606

9

$iter
[1] 69

$feval
[1] 78

$convergence
[1] 0

$message
[1] "Successful convergence"

> ans2 <- BBoptim(par=p0, fn=poissmix.loglik, y=y, lower=lo, upper=hi,

control=list(maximize=TRUE))

Successful convergence.

> ans2

$par
[1] 0.3598832 1.2560913 2.6634016

$value
[1] -1989.946

$gradient
[1] 2.273737e-06

$fn.reduction
[1] -929.1606

$iter
[1] 55

$feval
[1] 57

$convergence
[1] 0

$message
[1] "Successful convergence"

$cpar
method M

2 50

10

Note that we had to specify the ‘maximize’ option inside the control list to
let the algorithm know that we are maximizing the objective function, since the
default is to minimize the objective function. Also note how we pass the data
vector ‘y ’ to the log-likelihood function, possmix.loglik.

Now, we illustrate how to compute the Hessian of the log-likelihood at the
MLE, and then how to use the Hessian to compute the standard errors for the
parameters. To compute the Hessian we require the package ”numDeriv.”

> require(numDeriv)

> hess <- hessian(x=ans2$par, func=poissmix.loglik, y=y) # Note that we have to pass data vector `y'

> hess

[,1] [,2] [,3]
[1,] -907.1100 270.22864 341.25415
[2,] 270.2286 -113.47947 -61.68193
[3,] 341.2542 -61.68193 -192.78201

> se <- sqrt(diag(solve(-hess)))

> se

[1] 0.1946834 0.3500300 0.2504768

Now, we explore the use of multiple starting values to see if we can iden-
tify multiple local maxima. We have to make sure that we specify ‘action =
”optimize”’, because the default option in multiStart is ”solve”.

> p0 <- matrix(runif(300, c(0.2,1,1), c(0.8,8,8)), 100, 3, byrow=TRUE) # 3 randomly generated starting values

> ans <- multiStart(par=p0, fn=poissmix.loglik, action="optimize",

y=y, lower=lo, upper=hi, control=list(maximize=TRUE))

> pmat <- ans$par[ans$conv,] # selecting only converged solutions

> ans <- round(pmat, 4)

> ans[!duplicated(ans),]

This seemingly identifies many solutions. However, except for two solutions,
the rest are degenerate (i.e. the mixing proportion, which is the first parameter,
is either 0 or 1). The two non-degenerate solutions are actually the same, except
that the labels for the first and second components are switched.

11

