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CHAPTER 9

Survival Analysis:
Glioma Treatment and Breast Cancer

Survival

9.1 Introduction

9.2 Survival Analysis

9.3 Analysis Using R

9.3.1 Glioma Radioimmunotherapy

Figure 9.1 leads to the impression that patients treated with the novel ra-
dioimmunotherapy survive longer, regardless of the tumor type. In order to
assess if this informal finding is reliable, we may perform a log-rank test via

R> survdiff(Surv(time, event) ~ group, data = g3)

Call:
survdiff(formula = Surv(time, event) ~ group, data = g3)

N Observed Expected (O-E)^2/E (O-E)^2/V
group=Control 6 4 1.49 4.23 6.06
group=RIT 11 2 4.51 1.40 6.06

Chisq= 6.1 on 1 degrees of freedom, p= 0.0138

which indicates that the survival times are indeed different in both groups.
However, the number of patients is rather limited and so it might be danger-
ous to rely on asymptotic tests. As shown in Chapter 3, conditioning on the
data and computing the distribution of the test statistics without additional
assumptions is one alternative. The function surv_test from package coin
(Hothorn et al., 2006b,a) can be used to compute an exact conditional test
answering the question whether the survival times differ for grade III patients:

R> library("coin")
R> surv_test(Surv(time, event) ~ group, data = g3,
+ distribution = "exact")

Exact Logrank Test

data: Surv(time, event) by group (Control, RIT)
Z = 2.1711, p-value = 0.02877
alternative hypothesis: two.sided
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4 SURVIVAL ANALYSIS
R> data("glioma", package = "coin")
R> library("survival")
R> layout(matrix(1:2, ncol = 2))
R> g3 <- subset(glioma, histology == "Grade3")
R> plot(survfit(Surv(time, event) ~ group, data = g3),
+ main = "Grade III Glioma", lty = c(2, 1),
+ ylab = "Probability", xlab = "Survival Time in Month",
+ legend.bty = "n", legend.text = c("Control", "Treated")
+ )
R> g4 <- subset(glioma, histology == "GBM")
R> plot(survfit(Surv(time, event) ~ group, data = g4),
+ main = "Grade IV Glioma", ylab = "Probability",
+ lty = c(2, 1), xlab = "Survival Time in Month",
+ xlim = c(0, max(glioma$time) * 1.05))
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Figure 9.1 Survival times comparing treated and control patients.

which, in this case, confirms the above results. The same exercise can be
performed for patients with grade IV glioma

R> surv_test(Surv(time, event) ~ group, data = g4,
+ distribution = "exact")

Exact Logrank Test

data: Surv(time, event) by group (Control, RIT)
Z = 3.2215, p-value = 0.0001588
alternative hypothesis: two.sided
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which shows a difference as well. However, it might be more appropriate to
answer the question whether the novel therapy is superior for both groups of
tumors simultaneously. This can be implemented by stratifying, or blocking,
with respect tumor grading:
R> surv_test(Surv(time, event) ~ group | histology, data = glioma,
+ distribution = approximate(B = 10000))

Approximative Logrank Test

data: Surv(time, event) by
group (Control, RIT)
stratified by histology

Z = 3.6704, p-value = 1e-04
alternative hypothesis: two.sided

Here, we need to approximate the exact conditional distribution since the exact
distribution is hard to compute. The result supports the initial impression
implied by Figure 9.1

9.3.2 Breast Cancer Survival

Before fitting a Cox model to the GBSG2 data, we again derive a Kaplan-Meier
estimate of the survival function of the data, here stratified with respect to
whether a patient received a hormonal therapy or not (see Figure 9.2).

Fitting a Cox model follows roughly the same rules are shown for linear
models in Chapters 4, 5 or 6 with the exception that the response variable is
again coded as a Surv object. For the GBSG2 data, the model is fitted via
R> GBSG2_coxph <- coxph(Surv(time, cens) ~ ., data = GBSG2)

and the results as given by the summary method are given in Figure 9.3. Since
we are especially interested in the relative risk for patients who underwent
a hormonal therapy, we can compute an estimate of the relative risk and a
corresponding confidence interval via
R> ci <- confint(GBSG2_coxph)
R> exp(cbind(coef(GBSG2_coxph), ci))["horThyes",]

2.5 % 97.5 %
0.7073155 0.5492178 0.9109233

This result implies that patients treated with a hormonal therapy had a lower
risk and thus survived longer compared to women who were not treated this
way.

Model checking and model selection for proportional hazards models are
complicated by the fact that easy to use residuals, such as those discussed in
Chapter 5 for linear regression model are not available, but several possibilities
do exist. A check of the proportional hazards assumption can be done by
looking at the parameter estimates β1, . . . , βq over time. We can safely assume
proportional hazards when the estimates don’t vary much over time. The null
hypothesis of constant regression coefficients can be tested, both globally as
well as for each covariate, by using the cox.zph function
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R> data("GBSG2", package = "ipred")
R> plot(survfit(Surv(time, cens) ~ horTh, data = GBSG2),
+ lty = 1:2, mark.time = FALSE, ylab = "Probability",
+ xlab = "Survival Time in Days")
R> legend(250, 0.2, legend = c("yes", "no"), lty = c(2, 1),
+ title = "Hormonal Therapy", bty = "n")
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Figure 9.2 Kaplan-Meier estimates for breast cancer patients who either received
a hormonal therapy or not.

R> GBSG2_zph <- cox.zph(GBSG2_coxph)
R> GBSG2_zph

rho chisq p
horThyes -2.54e-02 1.96e-01 0.65778
age 9.40e-02 2.96e+00 0.08552
menostatPost -1.19e-05 3.75e-08 0.99985
tsize -2.50e-02 1.88e-01 0.66436
tgrade.L -1.30e-01 4.85e+00 0.02772
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R> summary(GBSG2_coxph)

Call:
coxph(formula = Surv(time, cens) ~ ., data = GBSG2)

n= 686
coef exp(coef) se(coef) z p

horThyes -0.346278 0.707 0.129075 -2.683 7.3e-03
age -0.009459 0.991 0.009301 -1.017 3.1e-01
menostatPost 0.258445 1.295 0.183476 1.409 1.6e-01
tsize 0.007796 1.008 0.003939 1.979 4.8e-02
tgrade.L 0.551299 1.736 0.189844 2.904 3.7e-03
tgrade.Q -0.201091 0.818 0.121965 -1.649 9.9e-02
pnodes 0.048789 1.050 0.007447 6.551 5.7e-11
progrec -0.002217 0.998 0.000574 -3.866 1.1e-04
estrec 0.000197 1.000 0.000450 0.438 6.6e-01

exp(coef) exp(-coef) lower .95 upper .95
horThyes 0.707 1.414 0.549 0.911
age 0.991 1.010 0.973 1.009
menostatPost 1.295 0.772 0.904 1.855
tsize 1.008 0.992 1.000 1.016
tgrade.L 1.736 0.576 1.196 2.518
tgrade.Q 0.818 1.223 0.644 1.039
pnodes 1.050 0.952 1.035 1.065
progrec 0.998 1.002 0.997 0.999
estrec 1.000 1.000 0.999 1.001

Rsquare= 0.142 (max possible= 0.995 )
Likelihood ratio test= 105 on 9 df, p=0
Wald test = 115 on 9 df, p=0
Score (logrank) test = 121 on 9 df, p=0

Figure 9.3 R output of the summary method for GBSG2_coxph.

tgrade.Q 3.22e-03 3.14e-03 0.95530
pnodes 5.84e-02 5.98e-01 0.43941
progrec 5.65e-02 1.20e+00 0.27351
estrec 5.46e-02 1.03e+00 0.30967
GLOBAL NA 2.27e+01 0.00695

There seems to be some evidence of time-varying effects, especially for age and
tumor grading. A graphical representation of the estimated regression coeffi-
cient over time is shown in Figure 9.4. We refer to Therneau and Grambsch
(2000) for a detailed theoretical description of these topics.

The tree-structured regression models applied to continuous and binary
responses in Chapter 8 are applicable to censored responses in survival analysis
as well. Such a simple prognostic model with only a few terminal nodes might
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R> plot(GBSG2_zph, var = "age")
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Figure 9.4 Estimated regression coefficient for age depending on time for the
GBSG2 data.

be helpful for relating the risk to certain subgroups of patients. Both rpart
and the ctree function from package party can be applied to the GBSG2 data,
where the conditional trees of the latter selects cutpoints based on log-rank
statistics;
R> GBSG2_ctree <- ctree(Surv(time, cens) ~ ., data = GBSG2)

and the plot method applied to this tree produces the graphical representation
in Figure 9.6. The number of positive lymph nodes (pnodes) is the most
important variable in the tree, this corresponds to the p-value associated with
this variable in Cox’s regression, see Figure 9.3. Women with not more than
three positive lymph nodes who have undergone a hormonal therapy seem to
have the best prognosis whereas a large number of positive lymph nodes and
a small value of the progesterone receptor indicates a bad prognosis.
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R> layout(matrix(1:3, ncol = 3))
R> res <- residuals(GBSG2_coxph)
R> plot(res ~ age, data = GBSG2, ylim = c(-2.5, 1.5),
+ pch = ".", ylab = "Martingale Residuals")
R> abline(h = 0, lty = 3)
R> plot(res ~ pnodes, data = GBSG2, ylim = c(-2.5, 1.5),
+ pch = ".", ylab = "")
R> abline(h = 0, lty = 3)
R> plot(res ~ log(progrec), data = GBSG2, ylim = c(-2.5, 1.5),
+ pch = ".", ylab = "")
R> abline(h = 0, lty = 3)
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Figure 9.5 Martingale residuals for the GBSG2 data.
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R> plot(GBSG2_ctree)
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Figure 9.6 GBSG2 data: Conditonal inference tree with the survival function, es-
timated by Kaplan-Meier, shown for every subgroup of patients iden-
tified by the tree.
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