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MCMCglmm is a package for fitting Generalised Linear Mixed Models us-
ing Markov chain Monte Carlo techniques [Hadfield and Kruuk, 2009]. Most
commonly used distributions like the normal and the Poisson are supported to-
gether with some useful but less popular ones like the zero-inflated Poisson and
the multinomial. Missing values and left, right and interval censoring are ac-
commodated for all traits. The package also supports multi-trait models where
the multiple responses can follow different types of distribution. The package
allows various residual and random-effect variance structures to be specified in-
cluding heterogeneous variances, unstructured covariance matrices and random
regression (e.g. random slope models). Three special types of variance struc-
ture that can be specified are those associated with pedigrees (animal models),
phylogenies (the comparative method) and measurement error (meta-analysis).
The package makes heavy use of results in Sorensen and Gianola [2002] and
Davis [2006] which taken together result in what is hopefully a fast and efficient
routine. Most small to medium sized problems should take seconds to a few
minutes, but large problems (> 20,000 records) are possible. My interest is
in evolutionary biology so there are also several functions for applying tensor
analysis [Rice, 2004] to real data and functions for visualising and comparing
matrices.

> library("MCMCglmm")

1 An Empirical Example

To demonstrate how to fit and interpret these models we will use some data from
a pilot study on the Indian meal moth (Plodia interpunctella) and its granulosis
virus, PiGV. This data was collected by Hannah Tidbury & Mike Boots at the
University of Sheffield, and highlights a range of model fitting problems that are
hard to solve with standard techniques. The aim of the study was to see if there
was an association between the amount of phenoloxidase (PO) produced by the
caterpillars and resistance to being artificially infected by the virus (measured
as successfully reaching pupation). The difficulty with the experiment is that
measuring PO is lethal, and so it is not possible to have individual measures for
both PO and resistance to the virus. The solution was to take full-sib families
and measure half the individuals for PO and infect the other half with the
virus. The aim then was to estimate the ‘genetic’ correlation between the two
measures.

> data(PlodiaPO)

We’ll start with a simple analysis of PO which was box-cox transformed so
that it was approximately normal.

> model1 <- MCMCglmm(PO ~ 1, random = ~FSfamily, data = PlodiaPO,

+ verbose = FALSE)
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We’ve modelled an in intercept ∼1 and family effects ∼FSfamily. MCMCglmm
returns the output as mcmc objects from the coda package. The first of these is
Sol which returns the fixed effect estimates:

> plot(model1$Sol)
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Figure 1: Posterior distribution of the intercept from model1

On the left of Figure 1 is a time series of the parameter as the MCMC
iterates, and on the right is a posterior density estimate of the parameter (a
smoothed histogram of the output). Making inferences about the parameter(s)
from the MCMC output is simple. For example, the most likely value is where
the posterior distribution peaks:

> posterior.mode(model1$Sol)

[1] 1.163622

The probability that the intercept is greater than 1.15 is simply the propor-
tion of the output that is greater than 1.15:

> table(model1$Sol > 1.15)/1000
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FALSE TRUE
0.188 0.812

and the region of 95% support can be obtained by finding the interval with
the highest posterior density:

> HPDinterval(model1$Sol, 0.95)

lower upper
(Intercept) 1.131230 1.195282
attr(,"Probability")
[1] 0.95

However, these metrics are only an accurate description of the true posterior
distribution when the chain has converged (there is no systematic trend in the
time series) and when each successive value in the output does not show strong
dependence with the previous one. The level of dependence can be measured
using an autocorrelation statistic:

> autocorr(model1$Sol)

, , (Intercept)

(Intercept)
Lag 0 1.00000000
Lag 1 -0.01300480
Lag 5 0.01733648
Lag 10 0.01776713
Lag 50 -0.02985370

As you can see, the autocorrelation between successive values (Lag 1) is small
and we probably have obtained close to 1000 independent samples from the pos-
terior. The chain is said to have mixed well. If the chain had not converged
or mixed we could extend the burn-in in period (burnin), increase the total
number of iterations (nitt) or increase the interval between which successive
samples are stored (thin).

By default MCMCglmm will not store the estimates for each family effect, as
generally we’re not so interested in individual families but about the variation in
these family effects across families. Variance estimates are stored in the object
VCV:

> plot(model1$VCV)

There are two variances, one associated with family effects and one associ-
ated with units (Fig 2). units is a reserved variable which has a factor level
for each row of the response. The default in MCMCglmm is to specify the residual
term as rcov=∼units. In this instance each data point corresponds to a unique
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Figure 2: Posterior distribution of the variance components from model1

level of units and therefore we simply interpret the units variance as we would
the residual variance in most models. Often we’re interested in knowing the
proportion of total variance explained by the random effect, which would in-
volve dividing the family variation by the sum of the two variance components.
Obtaining some measure of confidence for this proportion is not straightfor-
ward using standard methods such as REML, but with MCMC it is easy. For
example, the region of 95% support:

> HPDinterval(model1$VCV[, "FSfamily"]/(model1$VCV[, "FSfamily"] +

+ model1$VCV[, "units"]))

lower upper
var1 0.1290778 0.3210156
attr(,"Probability")
[1] 0.95

A valid posterior for any transformation of model parameters can be ob-
tained by applying that transformation to each sample and analysing the result.
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This model was fitted without explicitly specifying a prior and the default
priors were used. In certain circumstances this can lead to inferential and numer-
ical problems1 and Section 2.5 should be read carefully. To assess the sensitivity
of the analysis to alternative prior specifications lets have a weak prior (n=1)
equal to half the variance in PO for each variance component:

> halfV <- var(PlodiaPO$PO)/2

> prior = list(R = list(n = 1, V = halfV), G = list(G1 = list(n = 1,

+ V = halfV)))

> model2 <- MCMCglmm(PO ~ 1, random = ~FSfamily, data = PlodiaPO,

+ verbose = FALSE, prior = prior)

> plot(mcmc.list(model1$VCV, model2$VCV))
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Figure 3: MCMC output from model1 (black trace) which was fitted without a
prior on the variance components (n=0) and model2 in which a weak but proper
prior (n=1, V=0.02) was used (red trace)

As you can see from Figure 3 the two models do not completely coincide but
they are very close; most of the information is coming from the data.

1When this results in numerical problems (variances close to zero or correlations close to
-1 or 1) MCMCglmm can fail, although I’ve tried make it do so nicely.
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1.1 Simple univariate model - Binomial response

The data on resistance to the virus have been aggregated into a binomial re-
sponse for each family

> data(PlodiaR)

For multinomial data, of which the binomial is a special case, we need to
specify for each category (in this case Pupated (not infected) and Infected) the
number of counts that were recorded, and we do this by passing the multiple
response variables using cbind

> model3 <- MCMCglmm(cbind(Pupated, Infected) ~ 1, family = "multinomial2",

+ data = PlodiaR, verbose = FALSE)

Note that the family is multinomial and the final number is the number of
categories (in this case 2). Also, we have not fitted a random effect. Because the
data are counts for each family we cannot fit FSfamily levels as random effects
because they would be confounded with the residuals. The residual variance
is however estimated and we can interpret this over-dispersion as variation in
the binomial probability across families. Figure 4 shows that there is ample
over-dispersion (the variance is estimated to be well away from zero) leading us
to believe that families vary in their probability of resistance.

> plot(model3$VCV)

Variation in the probabilities are modelled on the logit scale and are assumed
to be normal on that scale. We can get a feel for what this looks like on the
data scale by getting the posterior modes for the intercept and the variance, and
generating random numbers from this distribution. It is clear from Figure 5 that
the variation between families in the probability of resistance is non-negligible:
many families are likely to have a 0.1 probability but many are also likely to
have a 0.5 probability.

> PMmu <- posterior.mode(model3$Sol)

> PMv <- posterior.mode(model3$VCV)

> PMprob <- inv.logit(rnorm(10000, PMmu, sqrt(PMv)))

> hist(PMprob)
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Figure 4: Residual variance from model3 which models binomial over-dispersion

1.2 Simple univariate model - Binary response

There is another way we could have fitted model3, and that is by expanding
the binomial response for each family into a binary response for each individual
within each family.

> data(PlodiaRB)

> prior = list(R = list(V = 1, n = 0, fix = 1), G = list(G1 = list(V = 1,

+ n = 0)))

> model4 <- MCMCglmm(Pupated ~ 1, random = ~FSfamily, family = "categorical",

+ data = PlodiaRB, prior = prior, verbose = FALSE)

Binary responses (or other responses that are discrete) are of the family
"categorical". They pose a special problem because the residual variance
cannot be estimated because the variance is uniquely determined by the mean.
When proper priors are used this does not pose a problem to a Bayesian analyst,
but we do have to be aware that all the information regarding the parameter
is coming from the prior. Because of this it is usual to fix these parameters
at some value (conventionally one for variances and 0 for covariances) and this
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Figure 5: The predicted distribution of resistance probabilities across families
assuming the posterior modes of model3 are correct.

can be done by specifying fix=1 in the appropriate prior element. An identical
procedure for simple models such as this would be to specify a very informative
prior (n is large) around V:

> prior = list(R = list(V = 1, n = 1e+06), G = list(G1 = list(V = 1,

+ n = 0)))

You will notice that the parameters of model3 and model4 do not take on the
same values. This is because in model3 we implicitly assumed that the within
individual variance was zero (as in standard quasi-binomial models) rather than
1. This is essentially an arbitrary choice because we have no way of seeing this
variation in real data. This may seem a bit disconcerting but it should not
worry you unduly; the models are just reparameterisations of each other and
we can see this by approximating the posterior distribution of the mean on the
data scale:

> mu.data.scale <- function(logit.mu, logit.var) {

+ mean(inv.logit(rnorm(10000, logit.mu, sqrt(logit.var))))
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+ }

> mu.model3 <- mcmc(mapply(mu.data.scale, model3$Sol, model3$VCV))

> mu.model4 <- mcmc(mapply(mu.data.scale, model4$Sol, rowSums(model4$VCV)))

> summary(mu.model3)

Iterations = 1:1000
Thinning interval = 1
Number of chains = 1
Sample size per chain = 1000

1. Empirical mean and standard deviation for each variable,
plus standard error of the mean:

Mean SD Naive SE Time-series SE
0.2976256 0.0259197 0.0008197 0.0009884

2. Quantiles for each variable:

2.5% 25% 50% 75% 97.5%
0.2493 0.2793 0.2974 0.3140 0.3503

> summary(mu.model4)

Iterations = 1:1000
Thinning interval = 1
Number of chains = 1
Sample size per chain = 1000

1. Empirical mean and standard deviation for each variable,
plus standard error of the mean:

Mean SD Naive SE Time-series SE
0.294072 0.026090 0.000825 0.001039

2. Quantiles for each variable:

2.5% 25% 50% 75% 97.5%
0.2473 0.2774 0.2926 0.3093 0.3506

The posterior summaries are virtually identical up to Monte Carlo error.

1.3 Bivariate model - Binary and Gaussian response

Expanding the binomial data into binary data allows us to fit a model in which
we can estimate what we’re interested in: the correlation between PO and prob-
ability of resistance at the family level. We start by creating missing PO values
for those individuals in the resistance experiment and missing Pupated/Infected
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values for those individuals only measured for PO. We can do this by creating
id’s for each data point and then merging the two data frames:

> PlodiaPO$ID <- 1:dim(PlodiaPO)[1]

> PlodiaRB$ID <- dim(PlodiaPO)[1] + 1:dim(PlodiaRB)[1]

> PlodiaPORB <- merge(PlodiaPO, PlodiaRB, all = TRUE)

Fitting a sensible model to bivariate data requires a bit more work, because
usually we will need to specify different models for each response but also specify
a model that accounts for dependence between the two responses (otherwise we
may as well just fit to univariate models). Fitting an appropriate model to the
Plodia data is particularly fiddly but it serves as a useful example of the types
of variance structures that can be fitted.

> prior = list(R = list(V = diag(2), n = 0, fix = 2), G = list(G1 = list(V = diag(2),

+ n = 1)))

> model5 <- MCMCglmm(cbind(PO, Pupated) ~ trait - 1, random = ~us(trait):FSfamily,

+ rcov = ~idh(trait):units, family = c("gaussian", "categorical"),

+ data = PlodiaPORB, prior = prior, verbose = FALSE)

For multivariate models we will usually want to make use of the reserved
variable trait which indexes columns of the response. By fitting trait as a
fixed effect we allow the two responses to have different means. I usually fit the
model ∼trait-1 rather than just ∼trait as this fits trait specific intercepts
rather than an intercept for trait 1 (PO) and a contrast for trait 2 (Pupated).
Likewise, just fitting a single family variance using ∼FSfamily implies that
families have respond in the same way to both traits, so we usually want to form
an interaction. The simplest would be ∼trait:FSfamily but this would imply
that the family variance for each trait is equal and the family effects for trait
1 are uncorrelated with the family effects for trait 2. More reasonable variance
structures can be formed using idh and us. idh allows different variances across
the traits but assumes that the family effects for trait 1 are uncorrelated with
the family effects for trait 2. us is the most general variance structure and allows
different variances across the traits and allows covariances to exist between them.
In both these cases the variance structure becomes a 2x2 matrix (because there
are two traits) rather than a scalar (1x1 matrix).

idh(trait):FSfamily =

[
σ2

F (T1)
0

0 σ2
F (T2)

]

us(trait):FSfamily =

[
σ2

F (T1)
σF (T1,T2)

σF (T2,T1) σ2
F (T2)

] (1)

Here, σ2
F (T1)

stands for the variance across families (F ) for trait 1 (T1) and
σF (T1,T2) the covariance between trait 1 and trait 2 across families. Section 2.1
covers this in more detail.
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In model5 we have used an idh structure for the residual component because
both traits have never been measured on the same individual so the residual co-
variance cannot be estimated. As before we have fixed the residual variance of
the binary trait to 1 because it too cannot be estimated from the data. Family
members on the other hand have been measured for both traits and the covari-
ance can be estimated, indeed it was the purpose of the experiment.

We can get the posterior distribution of the correlation between family effects
by using the distribution of the correlation estimated for each iteration of the
chain (Figure 6)

> Pcor <- model5$VCV[, 2]/sqrt(model5$VCV[, 1] * model5$VCV[, 4])

> plot(Pcor)
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Figure 6: The posterior distribution of the family level correlation between
resistance and PO from model5.

1.4 An Animal model

Quantitative geneticists will have noticed that the heritability of PO is not the
proportion of variance explained by family in model1, because full-sibs only
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share 50% of their genes. With such a simple experimental design the estimate
for the heritability can be obtained easily by multiplying the proportion of
variance explained by family by two (Figure 7):

> h2 <- 2 * model1$VCV[, "FSfamily"]/(model1$VCV[, "FSfamily"] +

+ model1$VCV[, "units"])

> plot(h2)
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Figure 7: The posterior distribution of PO heritability from model1.

In this instance the proportion of the variance explained by family was small
enough and known with enough precision that the posterior did not exceed
0.5. If it had of done then the resulting heritability would have had support
at values greater than 1. This would be inconsistent with the model because it
would mean that genes explain more of the variation than actually exists. An
alternative model is to explicitly factor in the proportion of genes shared by two
individuals. This has the advantage that the genetic variance can’t exceed the
total variance, and allows more complicated family structures to be modelled.
For example, when some individuals share 50% of their genes and others 25%
and so on. This type of model is known as an animal model and to be able
to fit them we need to have a pedigree table that represents the genealogy of
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the individuals. This is a 3 column table with id, mother, and father in each
column. Individuals with unknown parents have NA for their mother and/or
father, and all individuals that appear as parents must be represented in the id
column. The Plodia data were collected on 50 families named F1 through to
F50. We can make a pedigree for the individuals in the data by adding ‘dummy’
parents (e.g. F1mother and F1father):

> ID <- c(paste("F", 1:50, "mother", sep = ""), paste("F", 1:50,

+ "father", sep = ""), PlodiaPO$ID)

> DAM <- c(rep(NA, 100), paste(PlodiaPO$FSfamily, "mother", sep = ""))

> SIRE <- c(rep(NA, 100), paste(PlodiaPO$FSfamily, "father", sep = ""))

> pedigree <- cbind(ID, DAM, SIRE)

The model has the same form as model1 except animal is fitted as a random
effect rather than FSfamily. animal is a special variable in MCMCglmm and it
will always be associated with the id levels in the first column of the pedigree.

> PlodiaPO$animal <- 1:dim(PlodiaPO)[1]

> model6 <- MCMCglmm(PO ~ 1, random = ~animal, data = PlodiaPO,

+ pedigree = pedigree, verbose = FALSE)

A warning message appears saying that missing records have been added.
This is because there are 100 parents in the pedigree file that do not have data
records. To allow the model to run these missing data are augmented and
integrated over. For this experiment, fitting the model as an animal model is
inefficient because of this and the chain mixes poorly compared to model1

> autocorr(model6$VCV)

, , animal

animal units
Lag 0 1.00000000 -0.779125329
Lag 1 0.62893205 -0.577521640
Lag 5 0.02671291 -0.004937284
Lag 10 -0.04527634 0.046379767
Lag 50 -0.12431376 0.098593830

, , units

animal units
Lag 0 -0.77912533 1.000000000
Lag 1 -0.54949653 0.508155180
Lag 5 -0.01988529 -0.008323217
Lag 10 0.05968535 -0.047905166
Lag 50 0.07254662 -0.060898826
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That being said the two analyses give the same answer we just have to run
the second for longer to get the same degree of accuracy2(Figure 8):

> h2AM <- model6$VCV[, 1]/(model6$VCV[, 1] + model6$VCV[, 2])

> plot(mcmc.list(h2, h2AM))
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Figure 8: The posterior distribution of PO heritability from the animal model
model6.

2 A Mathematical Tour

The empirical examples only cover a small set of possible models that are pos-
sible using MCMCglmm. In this section I cover a wider range of models using a
combination of code and maths. I will use a notation that is flexible enough to
cover multivariate generalised linear mixed models when the multiple responses

2note that they are not perfectly identical because the default prior of n=0 is not uninfor-
mative. For a single variance component V=0, n=-2 is uninformative and using these priors
the two methods give indistinguishable results at moderate heritabilities.
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come from different distributions. The multiple responses are passed to MCM-
Cglmm as a matrix (Y) using cbind() but it will be easier to think of them
concatenated column-wise into a vector denoted by y. Each element of y is
associated with some probability distribution from the exponential family such
as the Poisson or the normal (See Table 2.9). I denote the canonical parame-
ter of the distribution as l as it is often called a latent variable or liability in
quantitative genetics. The canonical parameter is related to the more familiar
distribution parameter through the canonical link function g(). For example,
the mean of the Poisson distribution λ = g−1(l) where g() is log() and g−1() is
exp(). The probability of the ith data point conditional on li is denoted as

pi(yi|li) (2)

where pi is the probability density function associated with yi. The linear
mixed model is applied to l not y:

l = Xβ + Zu + e (3)

A special case is when pi is the normal distribution. In this case li = yi

(because the canonical link function is the identity link) and the probability
pi(yi|li = yi) is always unity. In this case we can replace the LHS of Equa-
tion 3 with y to obtain the standard linear mixed model. The notation for
the linear model is fairly standard: X is a design matrix relating fixed predic-
tors to the data and Z is a design matrix relating random predictors to the
data. These predictors have associated parameter vectors β and u. In Bayesian
analyses both these parameter vectors are technically random, but I will stick
with the frequentist terminology of referring to them as fixed effects and ran-
dom effects, respectively. The key difference between β and u is that u’s are
assumed to come from some distribution, the parameters of which are usually es-
timated, whereas the β’s are not3. MCMCglmm assumes that the nu u’s follow
a nu-dimensional multivariate normal distribution with null mean vector and a
structured (co)variance matrix. We will call this structure the G-structure. e
is a vector of residuals which also come from a structured multivariate normal
distribution the parameters of which are usually estimated. We will refer to this
(co)variance structure as the R-structure.

The variables trait and units can be used as predictors in the model for-
mulae to index the column and row to which an element of l originally belonged
in L, where L is the liability equivalent of the data before concatenation (Y).
The distribution associated with a data point can be specified in one of two
ways. The easiest way is to specify them in the family argument where each
distribution name is associated with a column of Y. Alternatively, family=NULL

3This is not strictly true in a Bayesian analysis because β are assumed to be distributed
according to the prior
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can be specified if data contains a variable family.4

2.1 Variance structures

The standard variance structure is to have effects i.i.d (independent and identi-
cally distributed). In matrix form this is represented by a diagonal matrix with
a single variance parameter. For example,

R =


σ2

e 0 . . . 0
0 σ2

e . . . 0
...

...
. . .

...
0 0 . . . σ2

e

 = σ2
RI (4)

where all covariances are set to zero (implying independence) and all diag-
onal elements are the same (implying identically distributed). However, there
are alternatives. Imagine that two traits are both measured on a set of indi-
viduals. It would be natural to have different residual variances for each trait,
and also allow residual covariances between the two traits measured in the same
individual. The appropriate R structure would then have the form:

R = VR ⊗ I =



σ2
e1

0 . . . σe1,e2 0 . . .
0 σ2

e1
. . . 0 σe1,e2 . . .

...
...

. . .
...

...
...

σe2,e1 0 . . . σ2
e2

0 . . .
0 σe2,e1 . . . 0 σ2

e2
. . .

...
...

...
...

...
. . .


(5)

where the residual covariance matrix has the form

VR =
[

σ2
e1

σe1,e2

σe2,e1 σ2
e2

]
(6)

This type of structure can be fitted using the us function: us(trait):individual.

If the two traits were measured on different individuals then there would
be no reason to expect covariation between the residuals and an appropriate
residual covariance matrix may be:

VR =
[
σ2

e1
0

0 σ2
e2

]
(7)

giving
4only gaussian, poisson, exponential and categorical distributed data can be specified

this way, not variables where the dimension of Y and L are not equal. Note that this would
be a much more efficient way of fitting model5 in the example section.
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R = VR ⊗ I =


σ2

e1
0 . . . 0 0

0 σ2
e1

. . . 0 0
...

...
. . .

...
...

0 0 . . . σ2
e2

0
0 0 . . . 0 σ2

e2

 (8)

implying independence but not identical distribution. This type of structure
can be fitted using the idh function: idh(trait):individual.

Only a single variance structure can define the R-structure, but more than
one random effect can be fitted by using the + operator, and the the resulting G-
structure is formed from the direct sum of the variance structures. This sounds
complicated but it just means that more than one random effect can be fitted
and that there is no covariance between them.

2.2 Pedigrees and Phylogenies

The variance structures above are formed through a Kronecker product involving
an identity matrix, and therefore have a simple and highly patterned form. For
certain types of model the identity matrix is not appropriate because covariances
may be expected between different levels of the random effect. For example, if
individuals are related we may expect them to be more similar if the response
variable is heritable. However, if individuals are related to different degrees (e.g.
some brothers, some second cousins) we don’t expect them to be equally similar.
Under certain assumptions we can predict the degree of similarity through the
proportion of genes shared by two individuals. This can be represented using
the matrix A, and for a nuclear family consisting of two parents followed by
their two children this would look like:

A =


1 0 0.5 0.5
0 1 0.5 0.5

0.5 0.5 1 0.5
0.5 0.5 0.5 1

 (9)

The diagonal elements are one because an individual shares all of its genes
with itself5 and the off-diagonal elements between parents and offspring, and
between siblings, are 0.5 because on average they share 50% of their genes. The
diagonal element between the parents is zero because they are assumed to be
unrelated. This model is known as an animal model [Henderson, 1976], and
when animal is fitted as a random effect then I in Equations 4:8 is replaced
with A, where A is calculated from a pedigree passed to the pedigree argu-
ment of MCMCglmm. For example, the syntax us(trait):animal in a bivariate
model would fit a G-structure of the form VG ⊗A where VG has the genetic

5I’ve left the interpretation a little loose; the diagonals are not necessarily one with in-
breeding.
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variances for trait 1 and trait 2 along the diagonal, and the genetic covariance
between the two traits in the off-diagonals. The same model can be applied to
phylogenies where a phylo object from the ape package is passed to the pedigree
argument. In this case the animal term would not contain individual identifiers
but taxa names, possibly species.

2.3 Meta-analysis

In meta-analysis each data point has some associated measurement error which
may be known. If the data are published test-statistics the variance around the
true value due to measurement error may be assumed to be roughly the square
of the standard error. These measurement error variances can be passed to
MCMCglmm through the argument mev to fit a random effect meta-analysis. The
variance structure in this case will have the form VG⊗D where D is a diagonal
matrix of measurement error variances and VG is a scalar fixed at one.

2.4 Random regression

Another variation on the simple mixed effect model is random regression. In
standard models Z is a matrix of zeros and ones, with a one in row i and
column j indicating that the ith data point is associated with the jth level of
the random effect. However for random regression models, of which the random
slope model is a special case, the elements of Z can take on alternative numeric
values. For example, lets imagine individuals were weighed twice, once at 6
months (time=0.5) and once after 18 months (time=1.5). If the individuals were
grouped into families we could ask a) whether individuals of certain families are
generally larger at both ages and b) whether individuals of certain families grow
faster between the two time periods. For two individuals from different families,
Z would have the form: 

1 0 . . . 0.5 0
1 0 . . . 1.5 0
...

...
. . .

...
...

0 1 . . . 0 0.5
0 1 . . . 0 1.5

 (10)

where the first and second columns are associated with the (random) inter-
cept’s for families 1 and 2, and the third and fourth columns are associated with
the (random) slopes for families 1 and 2. leg(time,1):family fits a random
intercept-slope model across families for the covariate time. n specifies the order
of the polynomial with n=1 having intercept and slope, and n=2 having an inter-
cept, slope and quadratic term6. An unstructured (co)variance matrix is fitted,

6The design matrix Z is not actually 1’s for the intercept and time for the slope because I use
normailsed Legendre polynmials rather than ordinary polynomials. legendre.polynomials(n,
TRUE) will give the appropriate scalings.
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meaning that the covariance between intercept and slope is always estimated.

2.5 Priors

The prior specification is passed to MCMCglmm by the prior argument. It takes
a list of 3 elements: R, G and B, which specify the priors for the R-structure,
G-structure and the fixed effects. G is also a list with an element for each
random effect. The covariance matrices are assumed to be (conditional) inverse-
Wishart distributed and individual elements for each variance structure take the
arguments V, n and split which specify the (co)variance matrix, the degree of
freedom parameter, and the partition to condition on. For example, the residual
error structure for a trivariate model may look something like:

> prior = list(R = list(V = diag(3), n = 3))

which is inverse Wishart distributed with inverse scale matrix solve(n*V)
and degree of belief parameter n. You can get a feel for this using the rIW func-
tion which generates random samples from the distribution. The default prior
is n=0 and is not proper, but it is informative. The specification V=diag(k)*0,
n=k-1 where k is the dimension of V is uninformative, but I strongly recom-
mend you use proper priors where n is greater than or equal to k. If nothing
else, MCMCglmmm may baulk after many iterations if the parameters are not well
identified. When idh() structures are used each diagonal element of the matrix
is independently distributed a priori. The distribution of the diagonal element
has the same marginal distribution as that element would have in the standard
inverse-Wishart distribution (i.e. ∼ IW (n−k+1, (nσ2)−1)) such that the prior
specification above would actually be equivalent to three priors on each diagonal
element with V=1 and n=1.

The fixed effects have a multivariate normal distribution equal in dimension
to the number of fixed effects. B has two arguments a mean vector mu and
a (co)variance matrix V. The default has a zero mean vector and a diagonal
variance matrix with large variances (1e+10).

2.6 Fixing (co)variances

In meta-analysis we fix the variance component to one because we are assuming
we know the measurement error variances. In some instances however, we may
want to fix the variances because there is no information in the data and we
cannot estimate them. We can fix certain elements of a variance structure by
giving fix a value in the prior specification. For example, we could modify the
previous prior specification:

> prior = list(R = list(V = diag(3), n = 3, fix = 2))

The fix argument partitions V into (potentially) 4 sub-matrices where the
partition occurs on the fixth diagonal element. In this case the partition has
the form
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V =

 1 0 0
0 1 0
0 0 1

 (11)

and the lower right sub-matrix is fixed and not estimated. When fix=1 the
whole matrix is fixed. The default prior for the variance structures do not fix
any component.

2.7 Starting values

Starting values are passed to MCMCglmm by the start argument. It takes a list
of 4 elements: R, G and liab specify the starting R-structure, G-structures and
the liabilities. As with the prior argument, G must also be a list with an element
for each random effect. The starting liabilities are passed as a matrix equal
in dimension to L. By default MCMCglmm will use some very rough and ready
methods for obtaining reasonable starting values for the liabilities, however, this
can be suppressed by passing the fourth element of start as QUASI=FALSE which
will then sample the starting liabilities from a normal distribution with mean
zero and variance one when the liab element is NULL.

2.8 Tuning parameters

For certain types and combinations of distribution the liabilities have to be
sampled using Metropolis-Hastings (MH) updates rather than Gibbs sampling.
The choice of proposal distribution for the MH sampler can strongly effect the
rate of convergence and the mixing properties of the chain. By default an
adaptive MH sampler is used which modifies the proposal distribution so it
has an efficient rate of jumping. Once the burnin period is over this proposal
distribution is fixed so as to ensure that the posterior distribution is valid.
Alternatively, a matrix equal in dimension to the R-structure can be passed to
the tune argument, and this will serve as the covariance matrix for the proposal
distribution centred on the previous value of the liabilities.

2.9 Distributions

Currently the distributions listed in Table 2.9 are those that can be used, al-
though this list will be extended to cover some additional distributions such as
the Weibull.

Multinomial and categorical models are parametrised in k − 1 dimensions
where k is the number of categories. For multinomial data that only have a sin-
gle count the data can be represented by a column of factors. If they are passed
in this way then the baseline category is the first factor level. I’ve done this so
that if a binary trait is passed, the model is predicting ones not zeros as is usual.
If the distribution is specified as multinomialk then the data is expected to have
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Distribution No. Data No. liability Recommended Recommended
Type (Y) columns (L) columns R-structure R-constraint

"gaussian" 1 1 standard none
"poisson" 1 1 standard none

"categorical" 1 k-1 us(trait):units fix=1, V=0.5(I + J)
"multinomialk" k k-1 standard none
"exponential" 1 1 standard none

"cengaussian" 2 1 standard none
"cenpoisson" 2 1 standard none

"cenexponential" 2 1 standard none

fix=2,

"zipoisson" 1 2 idh(trait):units V=as.matrix(c(a,0,0,1),2,2)

Table 1: Distribution types that can fitted using MCMCglmm; their dimension and
recommended residual variance structures. For multi-trait analyses there are no
hard and fast rules although us(trait):units is often a good starting point for
the residual variance structure. The prefix "cen" standards for censored, and
the prefix "zi" stands for zero-inflated. k stands for the number of categories
in the multinomial/categorical distributions and this must be specified in the
family argument for the multinomial distribution. I is the identity matrix and
J the unit matrix of all ones. In this context they both have dimension k − 1
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k columns. In this instance the final column is treated as the baseline category
in keeping with the usual binomial specification cbind(successes, failures)
where the model is predicting successes (not failures).

For censored responses two data columns must be passed. The first column
should contain the minimum value the data could take and the second column
the maximum. If these values are finite the data are said to be interval censored.
For left censored data use -Inf in the first column and for right censored data
use Inf in the second column. If a particular data point is not censored have
the same value in both columns.

Although only a single column of data is passed for the zero-inflated Poisson,
the response is actually expanded to form a bivariate model. The first trait
is the Poisson part of the model and the residual variance can be estimated (to
account for over-disperion) but the second trait is the zero-inflation and as
with a binary model the residual variance cannot be estimated. In addition the
residual (co)variance between the Poisson term and the zero-infaltion term can-
not be estimated because we can’t observe both processes in a single individual.
Nevertheless this does not mean that these covariances cannot be estimated at
the level of some random effect.

2.10 Deviance and DIC

The deviance D is defined as:

D = −2log(p(y|...)) (12)

where again ... stands for the model parameters. This probability can be
calculated in different ways depending on what is in ‘focus’, and MCMCglmm
calculates this probability for the lowest level of the hierarchy [Spiegelhalter
et al., 2002]. For Gaussian response variables the likelihood is the density of y
in the multinormal distribution:

N(Xβ + Zu,R) (13)

but for other response variables variables it is simply the density p(y|l). For
multivariate models with mixtures of Gaussian and non-Gaussian data (includ-
ing missing values) the likelihood of the Gaussian data is the density of yg in
the conditional multinormal distribution:

N(Xgβ + Zgu + Rg,lR−1
l,l (l−Xlβ − Zlu),Rg,g −Rg,lR−1

l,l Rl,g) (14)

where the subscripts g and l denote rows of the data vector/design matrices
that pertain to Gaussian data, and non-Gaussian data respectively. Subscripts
on the R-structure index both rows and columns.
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The deviance is calculated at each iteration if DIC=TRUE and stored each
thinth iteration after burn-in. The mean deviance (D̄) is calculated over all
iterations, as is the mean of the latent variables (l) the R-structure and the
vector of predictors (Xβ+Zu). The deviance is calculated at the mean estimate
of the parameters (D(.̄..)) and the deviance information criterion calculated as:

DIC = 2D̄ −D(.̄..) (15)

Models with lower DIC are preferred.
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