
Umacs: A Universal Markov Chain Sampler

Jouni Kerman

Department of Statistics

Columbia University

kerman@stat.columbia.edu

April 10, 2006

Abstract

Umacs (Universal Markov chain sampler) is an R software package that facilitates the

construction of the Gibbs sampler and Metropolis algorithm for Bayesian inference. Umacs

is a practical tool to write samplers in R. This is sometimes necessary for large problems that

cannot be fit using programs like BUGS.

The user supplies the data, parameter names, updating functions, and a procedure for

generating starting points. The updating functions can be some mix of Gibbs samplers and

Metropolis jumps, with the latter determined by specifying a log-posterior density function.

Using these inputs, Umacs writes a customized R function that automatically updates, keeps

track of Metropolis acceptances (and uses acceptance probabilities to tune the jumping ker-

nels), monitors convergence, returns a summary of the results that can be coerced into random

variable objects for further processing in R.

Umacs is extendable so that users can also write their own updater-generating classes

which may be used in this framework along with the existing Gibbs and Metropolis sampler-

generating classes.

1 Introduction

Markov chain (MC) sampling (also called “Markov Chain Monte Carlo,” or “MCMC” sam-

pling) is now a standard tool in Bayesian inference. To write a MC sampler, we have basically

three choices: (1) use a specialized application that works for certain types of models such as

1

MCMCPack [Martin and Quinn, 2005]; (2) use a general application such as BUGS [Lunn et al.,

2000] that builds and runs a sampler given a probability model; (3) write our own sampler.

These have different advantages and disadvantages: (1) although the sampling algorithm can

be optimized for the particular model, it is limited; (2) for some models and for large datasets

BUGS is not always possible nor practical; (3) writing our own code is time-consuming and

requires debugging.

Since Markov chain sampling takes usually thousands of iterations, the faster the program,

the more convenient it will be. Not all statisticians are comfortable in programming samplers

in languages such as C, C++, or Fortran, but many of us write programs in R. Programming

in R is in general simpler and thanks to its interactive programming environment, it makes

debugging and processing the simulations convenient. It is also possible to write functions in

a compiled language and access them within R. Even though our goal might be to implement

the sampler in a compiled language, to speed up the programming and debugging process,

we prefer to write at least the initial prototype in R.

Here we describe an approach to Markov chain sampling in R that falls between the two

extremes: automatic packages that work with particular classes of models, and programming

the Gibbs sampler and Metropolis algorithm from scratch.

Our approach

The idea of Umacs was conceived of the need for write a combined Gibbs/Metropolis sampler

for a complex research problem on social networks [Zheng et al., 2006]. The model was first

written for BUGS, but the scale of the problem proved to be too large, causing BUGS to run

too slowly. A prototype for the sampler written in R ran satisfactorily; we thought then that

it would be easier to write samplers in R if there was a program that provided the common

structure for a Gibbs/Metropolis sampler, while the user only would provide the functions

and the data that are relevant to the particular model and nothing else.

The structure of a typical Markov chain sampler remains the same for different tasks. A

program implementing a Gibbs sampler contains a loop that calls a series of user-defined

functions that sample values for the parameters. The difference between two Metropolis

samplers is only the joint posterior function to compute the ratio of densities at two points.

In practice, to write a new Markov chain sampler, we take an old program and use it as a

template, changing only some of the parts of the program.

Much of the code of a Markov chain sampler is not time-critical. The core of the program

consists of a loop that calls user-defined sampling routines, but outside this innermost loop,

2

there are no time-consuming loops or computing-intensive tasks to be done. Apart from

the inner Gibbs sampling loop, the user will thus not perceive much difference between a

sampler written in a compiled language and that written in an interpreted language such as

R. Since the updating functions can be written in a compiled language if desired (however,

simple sampling tasks still execute sufficiently fast even when written in R), then it would be

reasonable to use R for writing most of the sampler.

1.0.1 A Universal Sampler Generator

We take advantage of the generality of the Markov chain sampling paradigm and implement

a “Universal Markov chain sampler,” a function that provides the common program structure

for most Gibbs and Metropolis sampling tasks. The user must provide initialization functions

for all unknowns, as well as updating functions for each Gibbs updating step and the loga-

rithms of the posterior density functions for each Metropolis updating step. These functions

are embedded into the sampler function, which is then returned to the user for execution.

In other words, the program “fills in the blanks” with the code relevant to the model and it

actually writes a complete sampler function.

A “universal” sampler implements the Gibbs sampler by constructing the updating func-

tions (using the functions supplied by the user) and then embedding them into a general

sampler program structure. That is, to write a MC sampler to draw from the posterior distri-

bution p(θ1, . . . , θκ|θ0), one just needs to replace the innermost updating loop by a sequence

of updating functions that update each block of parameters θ1, . . . , θκ sequentially. An up-

dater function is a program that generates a draw directly from the conditional distribution,

or it implements an algorithm such as Metropolis.

1.0.2 Updater-generating functions

We do not have to require the user to write every updater function from scratch: Markov

chain algorithms such as Metropolis have a common structure and thus we can automatize

also the generation of such updaters fi themselves.

A Metropolis updater is a function of the joint posterior density p(θi|θ−i) (θ−i denotes

the vector without the ith component block). Also, a function to draw from a proposal-

generating density must be supplied. Typically this is a (multivariate) Gaussian or t-density.

It is then possible to construct a general Metropolis “updater generating function” with these

two densities given as the arguments: instead of specifying the complete updater function,

3

we specify only the parts that vary depending on the probability model.

1.0.3 Adaptive Metropolis algorithm

A Metropolis algorithm requires a proposal-generating distribution, whose performance de-

pends greatly on the covariance structure of the kernel. An adapting Metropolis algorithm

attempts to find the optimal covariance of the proposal kernel as the chain is running, adjust-

ing the distribution periodically. Once the chain is run for a pre-specified number of iterations,

the proposal distributions are fixed and the “actual chain” is run; no iterations for the final

sample are saved during this period. In practice, the burn-in is done during the adaptation

period so we do not have need for a special burn-in period.

2 Implementation in R

The R implementation of Umacs is a collection of various “S4”-style object classes and meth-

ods. The main function is Sampler which takes a list of parameter names and information

about their updating algorithms. Sampler then returns a customized R function that is ac-

tually the sampling function itself. The user needs to specify the number of chains and the

number of iterations as arguments to this function, and run it. The computer-generated sam-

pling function returns the generated parameter sequences θ(`) for each chain.

The sampler function is generated by embedding the user-defined updater functions into

pre-defined R language templates, and then combining these templates to form a function.

2.1 Example: A robust hierarchical model

Let us consider how a simple Bayesian hierarchical model [Gelman et al., 2003, page 451] is fit

using Umacs: (yj|θj, σj) ∼ N(θj, σ
2
j), j = 1, . . . , J (J = 8) and the means θj are given the prior

tν(µ, τ2), thus imposing a correlation structure on θ = (θ1, . . . , θJ). The σj are considered

known. The hyperparameters (µ, τ) are given a uniform prior distribution given ν. We model

ν−1 to be uniform in (0, 1). To draw θj from the t-distribution, we draw first a variance

parameter Vj from an inverse-chi-square distribution with ν degrees of freedom and scale

ντ2, and then draw θj from N(µ, Vj). This gives us a fully specified probability model:

p(y, θ, V, τ2, µ, ν−1|σ2) = N(y|θ, σ2) ·N(θ|µ, V) · Inv-χ2(V |ν, τ2) · p(τ, µ|ν) · p(ν−1).

The parameters of the model and their conditional posterior distributions for the Gibbs

4

sampler are as follows:

J = 8;

y = (28, 8, −3, 7,−1, 1, 18, 12);

σ = (15, 10, 16, 11, 9, 11, 10, 18);

p(θj|τ, σj, µ, J, y) = N

θj

∣∣∣∣∣∣
1
τ2 µ + 1

σ2
j

y

1
τ2 + 1

σ2
j

,
1

1
τ2 + 1

σ2
j

 , j = 1, . . . , J;

p(Vj|θj, τ, ν, µ, J) = Inv-χ2
(

Vj

∣∣∣∣ν + 1,
ντ2 + (θj − µ)2

ν + 1

)
, j = 1, . . . , J;

p(µ|θ, V, J) = N

(
µ

∣∣∣∣∣
∑

j θj/Vj∑
j 1/Vj

,
1∑

j 1/Vj

)
;

p(τ2|V, ν, µ, J) = Gamma

τ2

∣∣∣∣∣∣Jν2 + 1,
ν

2
·
∑

j

1

Vj

 ;

p(ν−1|τ, V, J) ∝
J∏

j=1

(ν/2)ν/2

Γ(ν/2)
· τν · V−(ν/2+1)

j exp
(

−
ντ2

2Vj

)
, ν−1 ∈ (0, 1].

J, y, and σ are observed and are shown as constant vectors. We can easily draw from the

conditional distributions of θ, V, µ, τ2 using standard functions in R, but the distribution of

ν is complicated and no standard function is available; we use the Metropolis algorithm to

generate draws from p(ν−1|τ, V, J), using a function proportional to the conditional density

function. The only thing that is missing from this list is a procedure how to draw starting

values for each Markov chain.

The structure of the sampler is specified with Umacs as a function call:

s <- Sampler(

J = 8,

sigma = c (15, 10, 16, 11, 9, 11, 10, 18),

y = c (28, 8, -3, 7, -1, 1, 18, 12),

nu = function () 1/nu.inv,

theta = Gibbs (theta.update, theta.init),

V = Gibbs (V.update, V.init),

mu = Gibbs (mu.update, mu.init),

tau = Gibbs (tau.update, tau.init),

nu.inv = SMetropolis (nu.inv.log.post, nu.inv.init)

)

5

Sampler is a function that constructs an R function implementing the sampler, given the

parameters and the rules how to update them. The parameters J, sigma, and y are constants

and will remain as such during the iteration process. The function call Gibbs specifies that

the corresponding parameter is updated using a user-defined updating function, for example

theta is updated using theta.update. The function theta.init draws the starting value for

a chain. V, mu, and tau are updated similarly, using user-defined functions that draw directly

from their corresponding conditional distributions.

The parameter nu.inv (ν−1) is updated using the Metropolis algorithm, here using a

special version, SMetropolis, which is optimized for scalars. The arguments are the log

posterior function nu.inv.log.post and the function generating a starting value for ν−1.

We prefer to write code referring to a variable ν (nu) instead of ν−1, so we need to create

an “updater” nu.update for nu that is a deterministic function, and not saved, returning just

1/ν−1. We put the function at the top of the list, so the variable will be immediately available

for the updating functions of V, τ, and ν−1; it is not initialized anywhere else.

2.1.1 Gibbs updating functions

The conditional distributions of θ, µ, V, and τ2 can be easily calculated analytically, so we

update them each by a direct draw from the corresponding conditional distribution. The

distribution of θ given the other parameters is translated into an R function for Umacs as,

theta.update <- function () {

V.theta <- 1/(1/tau^2 + 1/sigma^2)

theta.hat <- (mu/tau^2 + y/sigma^2) * V.theta

rnorm(J, theta.hat, sqrt(V.theta))

}

The updater function takes no arguments, and is embedded into the program as such.

The variables V.theta and theta.hat remain local (and are thus not accessible outside the

function), but the model parameters tau (τ), sigma (σ) and J (J) are assumed to be accessible,

but they do not need to be accessible in the (global) working environment. Umacs guarantees

that the model parameters are visible to the updater functions when the sampler is run, as

long as they are properly defined within the Sampler function call, as shown above. The

distribution of µ is also Gaussian and takes a similar form. Each component of V is an

inverse-Chi-square variable, and τ2 is a Gamma variable.

mu.update <- function () rnorm(1, sum(theta/V)/sum(1/V), sqrt(1/sum(1/V)))

6

V.update <- function () (nu*tau^2 + (theta-mu)^2)/rchisq(J, nu+1)

tau.update <- function () sqrt(rgamma(1, 1+J*nu/2, (nu/2)*sum(1/V)))

Internally, the functions are parsed and re-evaluated within the closure of each chain: each

chain will have its own environment and its own set of parameters such as theta, tau.

2.1.2 A Metropolis updating step

The degrees-of-freedom parameter ν does not have an easy conditional distribution form,

so we use the Metropolis algorithm. The Umacs updater-generating function Metropolis

requires a function returning the logarithm of the posterior density; the function is then

embedded into a program implementing the Metropolis algorithm.

We choose to generate proposals in the inverse-ν scale. For simplicity we use the built-in

Gaussian kernel; in the case the proposals extend beyond the range (0, 1], the log-posterior

density function returns −∞, guaranteeing a rejection. This method is not of course the most

effective method to generate proposals for a fixed range, but it should demonstrate a possible

way of dealing with the problem. The log posterior function for the variable nu.inv is,

nu.inv.log.post <- function () {

nu <- 1/nu.inv

if (nu.inv<=0 || nu.inv>1) return(-Inf)

sum(0.5*nu*log(nu/2) + nu*log(tau) -

lgamma(nu/2) - (1+nu/2)*log(V) - 0.5*nu*tau^2/V)

}

Although the Metropolis algorithm actually generates samples from the distribution of ν−1,

we prefer to write our functions in terms of ν. In the above function, the variable nu is a local

variable with respect to the function, and thus nu will not be visible to the other updating

functions such as tau.update.

To ensure that our other updating functions have access to a variable labeled nu, we have

specified nu to be a deterministic function of the parameters in the parameter list:

nu = function () 1/nu.inv

The difference between deterministic functions and Gibbs updates is that deterministic func-

tions are not initialized and are not saved as simulations. Another possibility would be to

define nu as a regular Gibbs update.

7

2.1.3 Initial starting points

Umacs requires functions returning initial starting points for each of the unknown parameters.

These are just very simple functions generating a single starting point for the parameter; they

should be random so each chain can start at a different point:

theta.init <- function () rnorm(J, mean=0, sd=1)

V.init <- function () runif(J, 0, sd(y))^2

mu.init <- function () rnorm(1,mean(y),sd(y))

tau.init <- function () runif(1,0,sd(y))

nu.inv.init <- function () runif(1)

Besides used for drawing an initial starting value for each of the chains, these functions

are used for determining the dimension of the parameter. Further, this information is used to

allocate space for the matrix of simulations.

2.1.4 Running the sampler

The order of the parameters in the Sampler function call reflects the order of updating: in

this example, the parameters are updated in the order θ, V, µ, τ, ν−1, ν; the observed values

(constants) J, y, and σ are initialized only once and made available within each chain.

Sampler outputs an R function, here s, which accepts several arguments of which the most

important are: n.iter (number of iterations per each chain), n.chains (number of chains to

run), n.sims (size of the final sample). The proportion of the burn-in period (p.burnin) can

be set as the proportion of n.iter. If the size of the final sample is smaller than the number

of iterations after the burn-in period, the iterations are automatically thinned, that is, omitted

from the final sample by skipping the saving of generated iterations at specified interval, as

necessary. Thinning can be disabled by setting thin=FALSE.

Umacs features an adaptation period which is in practice the same as the burn-in pe-

riod. Currently the Metropolis algorithms take advantage of this and attempt to modify the

proposal kernel during this period.

m <- s(n.iter=1000, n.chains=3, n.sims=200, p.burnin=0.5)

Once the function is running, all sequences (chains) are saved within the closure of the

chain inside the sampler function. These chains are not discarded if the function run is

aborted before the desired number of iterations and chains is done. All chains are saved

8

within the closure of the sampling function and thus are not directly accessible from the

workspace (.GlobalEnv).

It is possible to continue running from the last iteration on to any desired number of

iterations, or to change the number of chains to run.

m <- s(n.iter=2000, n.chains=5)

Examine results... then iterate further:

m <- s(n.iter=5000)

The chains alternate at pre-specified intervals: the current chain is stopped and another

is resumed from the point where it was stopped previously, until the pre-specified number

of iterations (n.iter) are done. The R̂ (potential scale reduction) statistics are computed and

saved periodically for each of the scalar components. These can be monitored graphically as

the sampler is running, if desired.

It is possible to monitor the chains for any scalar-valued parameter graphically. By specify-

ing a “trace” parameter within the Sampler function call (e.g., Trace("theta[1]")), a graphics

window is opened as the sampler starts. The window is updated as the iteration proceeds. It

is also possible to monitor the R̂ statistics with the Trace function.

2.1.5 Summarizing the results

The function returns a “Markov chain time series” (mcts) object, which contains the sequences

of all chains up to the point the function was stopped. An R summary of this object gives a

quick summary of means, standard deviations and the most common quantiles, along with the

convergence diagnostics (R̂). Entering the mcts object on the console we can view a summary:

Object of type ’mcts’

mean sd 2.5% 25% 50% 75% 97.5% Rhat n.eff n.sims

theta[1] 14.54 1.11e+01 -2.94 6.62 13.19 20.96 39.43 1.01 210 1002

theta[2] 7.51 7.42e+00 -6.43 2.34 7.34 12.40 21.98 1.00 1000 1002

theta[3] 3.66 1.05e+01 -20.45 -2.14 4.55 10.40 22.72 1.01 580 1002

theta[4] 7.43 7.93e+00 -7.31 2.04 7.23 12.76 22.56 1.00 1000 1002

theta[5] 3.10 7.61e+00 -12.39 -2.00 3.41 8.39 17.85 1.01 290 1002

theta[6] 4.34 7.90e+00 -13.47 -0.56 4.83 9.57 18.99 1.00 430 1002

theta[7] 12.48 8.22e+00 -2.07 7.06 11.82 17.41 30.98 1.00 1000 1002

9

theta[8] 8.77 1.03e+01 -11.42 2.56 8.65 14.54 30.08 1.00 1000 1002

V[1] 305.62 7.18e+02 3.60 31.82 88.56 283.80 1851.93 1.04 67 1002

V[2] 251.56 6.20e+02 3.25 25.89 77.96 215.91 1505.01 1.05 52 1002

V[3] 7015.29 2.12e+05 2.25 28.46 85.00 254.18 2112.63 1.05 44 1002

V[4] 245.51 5.02e+02 2.25 27.37 80.45 226.27 1614.39 1.06 40 1002

V[5] 375.49 3.08e+03 2.60 29.85 80.75 219.66 1623.89 1.07 38 1002

V[6] 276.66 7.23e+02 2.54 27.49 84.70 223.47 1651.92 1.06 46 1002

V[7] 301.69 9.60e+02 3.17 29.04 83.10 238.43 1668.78 1.04 59 1002

V[8] 282.86 6.95e+02 3.04 31.97 86.33 247.23 1748.53 1.06 39 1002

mu 7.61 6.37e+00 -4.49 3.74 7.61 11.65 20.02 1.01 1000 1002

tau 10.27 7.64e+00 1.78 5.04 8.11 13.06 33.03 1.08 34 1002

nu.inv 0.35 2.80e-01 0.01 0.11 0.29 0.56 0.96 1.05 62 1002

nu 11.59 2.35e+01 1.05 1.79 3.49 8.81 113.14 1.05 62 1002

To further process the simulations, the mcts objects can be coerced into random variable

objects that can be manipulated much like any numerical objects. The random variable objects

are enabled by the package rv [Kerman and Gelman, 2005]. We coerce the mcts object to a

vector of random variable objects with as.rv. Then for convenience, we make each of the

subvectors available by their names, (that is, theta, V, mu, tau, nu.inv and nu), using the

function rvattach:

library("rv")

rvattach(as.rv(m))

We can summarize the parameter vector θ by an interval plot:

** Figure here **

The package rv provides convenient functions for manipulating the random variable ob-

jects, for example, to summarize the probability Pr(θj > 0|y) for each j = 1, . . . , J,

> Pr(theta>0)

theta[1] theta[2] theta[3] theta[4] theta[5] theta[6] theta[7] theta[8]

0.925 0.849 0.664 0.831 0.658 0.720 0.946 0.826

For another example, to inspect the individual standard deviations
√

Vj, we would simply

type sqrt(V) to obtain a vector of eight random variable objects summarizing the distribution

of the random vector (
√

V1, . . . ,
√

V8).

10

3 Details

Arguments to the sampler-generating function

The sampler-generating function Sampler takes a named list of parameter-updater objects.

The names represent the actual variable names in the model, and the values are objects that

contain information how to update the variables. If the object corresponding to a variable

name, say sigma, is a constant variable such as a vector or a matrix, then sigma will be

constant during the sampling process, taking that specified value. If the value is a function

call returning an instance of an updater-generating class such as Gibbs and Metropolis, then

the user-supplied function arguments are merged with the program code templates specified

by these classes and eventually embedded in the program that generates the sampler function.

The function Gibbs takes two arguments: one “initializer” function that returns an initial

value for the parameter at the start of a chain, and another that draws a value from the

conditional distribution of the variable given all the others.

The function Metropolis takes three arguments: an initializer function, the log posterior

function, and a proposal-generating function. The proposal-generating function is by default

a Gaussian density whose covariance is adapted to the chain during the adaptation period.

Any arguments in parameter initializing and updating functions are ignored. Any vari-

ables defined within the Sampler function call are always made accessible by storing them in

the closure of the sampler function.

Ideally all variables in the model (including constants such as J) should be provided within

the list of arguments provided to Sampler. This way the sampler function generated will be

self-contained and will not depend on the availability variables defined in the environment

where the function is run. Once the sampler function is generated, the user does not have

to worry about the data variables being accessible in the working environment. Moreover,

defined within the Sampler function call are guaranteed to b

Missing value imputation

Umacs provides an intuitive interface to model missing data. Instead of using separate pa-

rameter names for the missing components, we can model vector components directly using

the square bracket-notation. For an example, suppose that in the previous example the first

component of the observed vector y was missing. The Sampler function call should replace

the definition for y with the two lines,

11

y = c (NA, 8, -3, 7, -1, 1, 18, 12),

"y[1]" = Gibbs (y.1.update, y.1.init),

The quotes around y[1] are mandatory because of the brackets. y1 can be imputed using a

Gibbs algorithm since conditional on the other parameters in the model, y1 is normal with

mean θ1 and standard deviation σ1. For the initialization routine, we might choose a starting

point near the other yi. The two functions are then defined by,

y.1.update <- function () rnorm(1, mean=theta[1], sd=sigma[1])

y.1.init <- function ()

rnorm(1, mean=mean(y, na.rm=TRUE), sd=sd(y, na.rm=TRUE))

We could have also written this in a more general notation,

"y[y.NA]" = Gibbs (y.mis.update, y.mis.init),

which would define a model the missing components. The updating and initializing functions

would then have to be modified to impute the missing components, using the internal variable

y.NA, a vector containing the indices of the missing components. A variable with the .NA

extension is automatically generated for each data parameter. The updating function would

become,

y.mis.update <- function () {

rnorm(length(y.NA), mean=theta[y.NA], sd=sigma[y.NA])

}

returning a vector of the same length as y.NA. During each round of iteration, the value

obtained from this function would be assigned into y[y.NA], that is, into the components

where the missing values are.

A distinct copy of the data vector y is created for each chain to avoid imputing in a common

variable; any variable named y is left untouched in the working environment.

Using the package rv [Kerman and Gelman, 2005], it is possible then to impute the random

variable objects directly into the vector of constants y, creating a new random vector.

rvattach(as.rv(m), impute=TRUE)

In this case the vector y will be coerced into a random variable object (a vector) with the miss-

ing values appearing as random scalar objects, and the existing values appearing as constants,

allowing manipulation of the imputed components along with the observed components as

a whole. If the option impute=TRUE is not specified, rvattach would just bring over the

components that were treated as random variables, that is, y[1].

12

Optimized Metropolis updater-generating classes

The basic Metropolis algorithm moves in a multidimensional space, each proposal being a

point in this space. Often we have a situation where we have a n-dimensional vector of

parameters where each component is conditionally independent of the other parameters in

the model. It would be very inefficient to “do n-dimensional jumps” within this space, but

rather we should define one Metropolis updater for each of the n scalars. To optimize the algo-

rithm for special cases like this, we have written several special Metropolis updater-generating

classes that feature optimized code for several particular types of model. These cases arise, for

example, in hierarchical regression models, with a different vector of regression parameters

for each group.

Vector and Scalar Metropolis classes

The basic Metropolis algorithm, implemented by the class Metropolis, jumps in a multidi-

mensional space, and consequently the proposal-generating kernel has a multidimensional

covariance matrix there.

A special case of the Metropolis algorithm, Scalar Metropolis, implemented by the class

SMetropolis, jumps in a one-dimensional space and therefore a slightly simpler program

code is required, since the covariance matrix is just a scalar.

Parallel Vector and Scalar Metropolis classes

The class SPMetropolis (Scalar-Parallel Metropolis) generates many proposals at once and

accepts or rejects them at once; that is, it is equivalent to specifying several Scalar Metropolis

updating steps separately. A vector-valued variable updated using the SPMetropolis rule

works thus with a vector of proposals rather than each scalar separately). Consequently, the

log-posterior density supplied to a SPMetropolis call must return a vector of the same length

as the parameter.

The most general case is implemented by the Parallel Metropolis class (PMetropolis).

which expects the parameter to be an m × n matrix with conditionally independent vectors

in each row; the m proposals and subsequently their individual rejection or acceptance are

computed efficiently using vectorized code.

The log-posterior density supplied to a PMetropolis function must return a vector of the

same length as the number of rows in the matrix-valued parameter. Just as the SPMetropolis

class, the PMetroplis code keeps track of m separate covariance matrices.

13

Future development and extension

We see several possible areas where to improve the current version of Umacs. Initial starting

values could be generated automatically from the distributions previously generated for the

It is also possible to extend Umacs by adding arbitrary user-defined updater-generating

classes. The structure of the program is not dependent on any sampling algorithm. One

can for example create general updater-generating classes for importance sampling, rejection

sampling, and grid sampling. In general, one can use Umacs for all kinds of tasks involving

generating simulation draws.

4 Acknowledgements

Andrew Gelman suggested that a common framework for Markov chain samplers should be

possible. We thank also Tian Zheng, Yuejing Ding, Shouhao Zhou, Chris Paciorek, Grazia

Pittau, and Aleks Jakulin for testing the program and for giving valuable suggestions.

References

Andrew Gelman, John B. Carlin, Hal S. Stern, and Donald B. Rubin. Bayesian Data Analysis.

Chapman & Hall/CRC, London, 2nd edition, 2003.

Jouni Kerman and Andrew Gelman. Manipulating and summarizing posterior simulations

using random variable objects. Technical report, Department of Statistics, Columbia Uni-

versity, 2005.

D. J. Lunn, A. Thomas, N. Best, and D. Spiegelhalter. WinBUGS – a Bayesian modelling

framework: concepts, structure, and extensibility. Statistics and Computing, 10:325–337, 2000.

Andrew D. Martin and Kevin M. Quinn. MCMCpack 0.6-6. http://mcmcpack.wustl.edu/, 2005.

Tian Zheng, Matthew J. Salganik, and Andrew Gelman. How many people do you know in

prison?: Using overdispersion in count data to estimate social structure in networks. Journal

of the American Statistical Association, 2006. To appear.

14

