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1.4 Citing the package/guideTo cite this guide or the package in publications please use the following bibliographic databaseentry.@Manual{key,title = {A User's Guide to the evdbayes Package (Version 1.1)},author = {Stephenson, A. G. and Ribatet, M. A.},year = {2006},month = {April},url = {http://cran.r-project.org/}}1.5 CaveatAlec Stephenson and I have checked these functions as best we can but, as ever, they may containbugs. If you �nd a bug or suspected bug in the code or the documentation please report it tome at ribatet@hotmail.com. Please include an appropriate subject line.1.6 LegaleseThis program is free software; you can redistribute it and/or modify it under the terms of theGNU General Public License as published by the Free Software Foundation; either version 2 ofthe License, or (at your option) any later version.This program is distributed in the hope that it will be useful, but without any warranty; withouteven the implied warranty of merchantability or �tness for a particular purpose. See the GNUGeneral Public License for more details.A copy of the GNUGeneral Public License can be obtained from http://www.gnu.org/copyleft/gpl.html.You can also obtain it by writing to the Free Software Foundation, Inc., 59 Temple Place � Suite330, Boston, MA 02111-1307, USA.1.7 AcknowledgmentsThanks to Ole Christensen and Jonathan Tawn for their comments. Thanks to Alec Stephensonto let me be the �new father� of the evdbayes package.2 An Introduction to Bayes TheoryLet us assume that the data x = (x1, . . . , xn) are independent realizations of a random variablewhose density falls within the parametric family {f(x|θ) : θ ∈ Θ}. The likelihood function isde�ned using
L(θ;x) =

n
∏

i=1

f(xi|θ).It is often easier to work with the log-likelihood function l(θ;x) = log{L(θ;x)}. The maximumlikelihood estimate θ̂(x) is the value at which l(θ;x) attains its maximum, as a function of θ.In Bayes Theory we assume that, without reference to the data, it is possible to formulate beliefsabout θ that can be expressed as a probability distribution. For example, if θ ∈ (0, 1), and you2
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believe that any value in (0, 1) is equally likely, your belief can be expressed using the probabilitydistribution θ ∼ U(0, 1). On the other hand, if θ ∈ R
3, you may be able to express your beliefsusing a trivariate normal distribution. This requires the speci�cation of nine parameters; themean and variance of each marginal distribution, and the correlation coe�cients between eachpair. A distribution on θ, made without reference to the data, is called a prior distribution.The parameters of the prior distribution are called hyperparameters. The speci�cation of aparticular prior distribution requires the speci�cation of all hyperparameters.Let π(θ) denote the density of the prior distribution for θ. Bayes' theorem states that

π(θ|x) =
π(θ)L(θ;x)

∫

Θ π(θ)L(θ;x)dθ
∝ π(θ)L(θ;x), (1)where π(θ|x) is the density of the posterior distribution. The posterior distribution includesthe additional information provided by the data x. Point estimators can be derived by takinge.g. the mean of the posterior distribution (the posterior mean).Computation of the normalizing constant ∫Θ π(θ)L(θ;x)dθ in (1) can be problematic, particu-larly for high-dimensional θ. Simulation methods can bypass this di�culty. In particular, MarkovChain Monte Carlo (MCMC) techniques seek to produce stationary sequences of simulated (vec-tor) values with marginal density π(θ|x). These sequences can then be used to estimate featuresof the posterior distribution.3 Likelihoods for Extremes3.1 Generalized Extreme Value DistributionsThe GEV (generalized extreme value) distribution function is given by

F (z) = exp
{

− [1 + ξ (z − µ) /σ]
−1/ξ
+

}

, (2)where (µ, σ, ξ) are the location, scale and shape parameters respectively, σ > 0 and h+ =
max(h, 0). The case ξ = 0 (the Gumbel distribution) is de�ned by continuity.Let θ = (µ, σ, ξ). If we assume that the data x = (x1, . . . , xn) are independent realizations of arandom variable distributed as GEV(θ), the log-likelihood is

l(θ;x) = −n log σ − (1 + 1/ξ)

n
∑

i=1

log{1 + ξ (xi − µ) /σ} −

n
∑

i=1

{1 + ξ (xi − µ) /σ}−1/ξ , (3)provided that 1 + ξ (xi − µ) /σ is positive for each i = 1, . . . , n. If any of these terms are non-positive the likelihood is zero (since the observed data falls beyond the end point of the GEV(θ)distribution) and the log-likelihood is −∞. The case ξ = 0 is again de�ned by continuity.Due to an asymptotic argument (e.g. Coles, 2001) this model is often used when the data xconsists of maxima (or negated minima) from some underlying process. Annual sea level maximaand annual temperature maxima are used in the examples of Sections 6.1 and 6.2 respectively.3.2 Point Process CharacterizationLet X1, . . . ,Xn be a series of independent random variables with common distribution function F .Suppose that n is large, so that the distribution of Mn = max{X1, . . . ,Xn} can be approximated3



by the GEV(µ, σ, ξ) distribution (e.g. Coles, 2001), with (possibly in�nite) end points∗ z− and
z+. Then for large thresholds u > z− the sequence {X1, . . . ,Xn} viewed on the interval (u, z+)is approximately a non-homogeneous Poisson process with intensity function

λθ(x) =
1

σ

{

1 + ξ

(

x − µ

σ

)}−(ξ+1)/ξ

, u < x < z+,where σ > 0 and θ = (µ, σ, ξ). The intensity measure on (u, z+) is therefore given by
Λθ(u, z+) =

∫ z+

u
λθ(x)dx =

{

1 + ξ

(

u − µ

σ

)}−1/ξ

.The mathematical details of the asymptotic approximation are given in Pickands (1971) andSmith (1989). The approximation yields a likelihood for θ based on observed data x = (x1, . . . , xn).Suppose that nu of the n observations exceed the threshold u. Let x(i) denote the ith exceedence,for i = 1, . . . , nu. The log-likelihood function can be derived (Coles, 2001) as
l(θ;x) = −Λθ(u, z+) +

nu
∑

i=1

log{λθ(x(i))},provided that 1+ξ(u−µ)/σ and 1+ξ(x(i)−µ)/σ for i = 1, . . . , nu are positive. The interpretationof θ depends on the value of n, because the approximate distribution of Mn is GEV(θ). Thefollowing adjustment† to the log-likelihood l(θ;x) avoids this problem.
l(θ;x) = −nyΛθ(u, z+) +

nu
∑

i=1

log{λθ(x(i))}. (4)If the value ny is the number of years of observation (excluding missing values), the annualmaxima are distributed as GEV(θ). More generally, if ny is the number of periods of observation,the maxima over those periods are distributed as GEV(θ). The asymptotic approximationassumes that there are a large number of observations within each period.3.3 Generalized Pareto DistributionsThe GP (Generalized Pareto) distribution function is given by
F (z) = 1 − [1 + ξ (z − µ) /σ]

−1/ξ
+ , (5)where (µ, σ, ξ) are the location, scale and shape parameters respectively, σ > 0 and h+ =

max(h, 0). The case ξ = 0 (the Exponential distribution) is de�ned by continuity.Let θ = (µ, σ, ξ). If we assume that the data x = (x1, . . . , xn) are independent realizations of arandom variable distributed as GP(θ), the log-likelihood is
l(θ;x) = −n log σ − (1 + 1/ξ)

n
∑

i=1

log [1 + ξ (xi − µ) /σ] , (6)provided that 1 + ξ (xi − µ) /σ is positive for each i = 1, . . . , n. If any of these terms are non-positive the likelihood is zero (since the observed data falls beyond the end point of the GP(θ)distribution) and the log-likelihood is −∞. The case ξ = 0 is again de�ned by continuity.Due to an asymptotic argument (e.g. Coles, 2001) this model is often used when the data xconsists of peaks over a high threshold (or peaks under a low threshold) from some underlyingprocess.
∗If ξ > 0, z− = µ − σ/ξ and z+ = ∞. If ξ < 0, z− = −∞ and z+ = µ − σ/ξ. If ξ = 0, the expressions givenare all de�ned by continuity, with z− = −∞ and z+ = ∞.
†The adjustment can be derived by introducing the multiplicative factor ny to the intensity function.4



4 Construction of Prior DistributionsThe likelihoods (3), (6) and (4) are both functions of the parameter vector θ = (µ, σ, ξ). Theconstruction of a prior distribution on θ proceeds in the same manner for both models. Weemploy for di�erent methods of construction. The �rst method uses the trivariate normal dis-tribution. The second method uses also the trivariate normal distribution but with a di�erentparametrization. The third and fourth methods construct priors on the quantile space, for �xedprobabilities, and on the probability space, for �xed quantiles.The trivariate normal distribution, which contains nine hyperparameters, is very �exible but isdi�cult to elicit. At the other extreme, the construction on the probability space is relativelyeasy to elicit but is not very �exible, having only four hyperparameters with which to de�ne atrivariate distribution.The trivariate normal construction is the only construction of those presented below that enablesthe speci�cation of independent parameters (e.g. Section 6.1). This speci�cation is often used fora naive analysis, where there is no external information with which to formulate a dependencestructure. On the other hand, increasing σ or ξ leads to a heavier tailed distribution, so apriori negative dependence between these parameters is expected (Coles and Tawn, 1996). Thequantile space and probability space constructions induce a natural dependence structure usingonly a small number of hyperparameters. They also enable the elicitation of information usingfamiliar quantities (e.g. Section 6.2).4.1 Trivariate Normal Distribution (model 1)A trivariate normal prior distribution on θ
′ = (µ, log σ, ξ) leads to the prior density

π(θ) ∝
1

σ
exp

{

−
1

2
(θ′ − ν)T Σ−1(θ′ − ν)

}

. (7)This approach was used by Coles and Powell (1996). The mean vector ν and the symmetricpositive de�nite (3 × 3) covariance matrix Σ must be speci�ed.4.2 Trivariate Normal Distribution (model 2)A trivariate normal prior distribution on θ
′ = (log µ, log σ, ξ) leads to the prior density

π(θ) ∝
1

µσ
exp

{

−
1

2
(θ′ − ν)T Σ−1(θ′ − ν)

}

. (8)The log-normal parametrization for the location parameter can be usefull if a physical lowerbound for this parameter is required. The mean vector ν and the symmetric positive de�nite
(3 × 3) covariance matrix Σ must be speci�ed.4.3 Gamma Distributions for Quantile Di�erencesThe following approach was used in Coles and Tawn (1996). Let F (qp) = 1 − p, where F (·) isthe GEV distribution function, given in expression (2). It follows that

qp = µ + σ(x−ξ
p − 1)/ξ,where xp = − log(1 − p). A prior distribution can be constructed in terms of the quantiles

(qp1
, qp2

, qp3
) for speci�ed probabilities p1 > p2 > p3. Since qp1

< qp2
< qp3

it is easier to work5



with the di�erences (q̃p1
, q̃p2

, q̃p3
), so that q̃pi = qpi −qpi−1

for i = 1, 2, 3, where qp0
is the physicallower end point of the process variable. The measurement scale can always be transformed tomake the lower end point zero. The evdbayes package therefore assumes that qp0

= 0. Thepriors on the quantile di�erences are taken to be independent, with
q̃pi ∼ gamma(αi, βi), αi, βi > 0,for i = 1, 2, 3. The di�erences (q̃p2

, q̃p3
) only depend on the scale and shape parameters (σ, ξ).The prior information on the location parameter µ arises only through q̃p1

. The hyperparameters
(α1, α2, α3) and (β1, β2, β3), and the probabilities p1 > p2 > p3, must all be speci�ed. (By defaultthe evdbayes package uses pi = 10−i for i = 1, 2, 3.) This construction leads to the prior density

π(θ) ∝ J 3
∏

i=1

q̃αi−1
pi

exp{−q̃pi/βi}, (9)provided that qp1
< qp2

< qp3
. J is the Jacobian of the transformation from (qp1

, qp2
, qp3

) to
θ = (µ, σ, ξ), namely J = σ/ξ2

∣

∣

∣

∣

∣

∣

∣

∑

i,j∈{1,2,3}
i<j

(−1)i+j(xixj)
−ξ log(xj/xi)

∣

∣

∣

∣

∣

∣

∣

,where xi = − log(1 − pi) for i = 1, 2, 3.At ξ = 0 the prior distribution is de�ned by continuity, using
lim
ξ→0

qpi = µ − σ log xi, i = 1, 2, 3,and
lim
ξ→0

J = σ/2

∣

∣

∣

∣

∣

∣

∣

∑

i,j∈{1,2,3}
i<j

(−1)i+j log xi log xj log(xj/xi)

∣

∣

∣

∣

∣

∣

∣

.Derivations of the results given in this section are presented in detail in Section 5.6 of Stephenson(2003).4.4 Beta Distributions for Probability RatiosThe following method of construction was proposed by Crowder (1992). Let F (q) = 1 − pq,where F (·) is the GEV distribution function, given in expression (2). It follows that
pq = 1 − exp

{

− [1 + ξ (q − µ) /σ]
−1/ξ
+

}

.A prior distribution can be constructed in terms of the probabilities (pq1
, pq2

, pq3
) for speci�edquantiles q1 < q2 < q3. De�ne pq0

= 1 and pq4
= 0. Since pq1

> pq2
> pq3

it is easier to workwith the ratios (p̃q1
, p̃q2

, p̃q3
), where p̃qi = pqi/pqi−1

for i = 1, 2, 3.The priors on the probability ratios are then taken to be independent, with
p̃qi ∼ beta(∑4

j=i+1
αj, αi

)

, i = 1, 2, 3.The positive hyperparameters (αi, α2, α3, α4) and the quantiles q1 < q2 < q3 must all be speci�ed.This construction leads to the prior density
π(θ) ∝ J 4

∏

i=1

(pqi−1
− pqi)

αi−1, (10)6



provided that pq1
> pq2

> pq3
and that 1 + ξ(qi − µ)/σ is positive for each i = 1, 2, 3. J is theJacobian of the transformation from (pq1

, pq2
, pq3

) to θ = (µ, σ, ξ), namelyJ = σ/ξ2
{

∏3

i=1
f(qi)

}

∣

∣

∣

∣

∣

∣

∣

∑

i,j∈{1,2,3}
i<j

(−1)i+j(xixj)
−ξ log(xj/xi)

∣

∣

∣

∣

∣

∣

∣

,where xi = − log(1 − pqi) for i = 1, 2, 3, and f(·) is the density of the generalized extreme valuedistribution, so that f(qi) = x1+ξ
i e−xi/σ.De�ne xi0 = limξ→0 xi = exp {−(qi − µ)/σ}, for i = 1, 2, 3. At ξ = 0 the prior distribution isde�ned by continuity, using
lim
ξ→0

pqi = 1 − e−xi0 , i = 1, 2, 3,and
lim
ξ→0

J = σ/2
{

∏3

i=1
f0(qi)

}

∣

∣

∣

∣

∣

∣

∣

∑

i,j∈{1,2,3}
i<j

(−1)i+j log xi0 log xj0 log(xj0/xi0)

∣

∣

∣

∣

∣

∣

∣

=
1

2σ2

{

∏3

i=1
f0(qi)

}

∣

∣

∣

∣

∣

∣

∣

∑

i,j∈{1,2,3}
i<j

(−1)i+jqiqj(qi − qj)

∣

∣

∣

∣

∣

∣

∣

,where f0(·) is the density of the Gumbel distribution, so that f0(qi) = xi0e−xi0/σ. Derivationsof the results given in this section are presented in detail in Section 5.6 of Stephenson (2003).5 Posterior DistributionsGiven our prior density π(θ) and our likelihood L(θ;x) the posterior density π(θ|x) is de�nedby equation (1). Computing π(θ|x) directly is problematic because it requires the computationof the integral ∫Θ π(θ)L(θ|x)dθ. Markov Chain Monte Carlo (MCMC) techniques can bypassthis di�culty.The evdbayes package produces a Markov chain∗
θ0, . . . ,θn with equilibrium distribution†

π(θ|x). Loosely speaking, this means that after the chain has been run for a certain length oftime each subsequent sample within the chain will be (approximately) distributed as π(θ|x),though the samples will not be independent. In this context π(θ|x) is known as the targetdistribution of the Markov chain. The user must specify the run length n, and the initial value
θ0 = (µ0, σ0, ξ0). After the Markov chain has been generated, the user must also decide whenequilibrium has been reached by specifying the burn-in period b. The �rst b samples (includingthe initial value) are then discarded from the chain. Features of the posterior distribution areestimated using θb, . . . ,θn, which we assume to be a stationary sequence of (vector) values withmarginal density π(θ|x). For example, 1

n−b+1

∑n
t=b µt is a consistent (as n → ∞) estimate of theposterior mean of µ. The dependence between the samples θb, . . . ,θn in�uences the accuracy ofthese estimates. As the dependence becomes stronger, the run length n must be larger in orderto achieve the same precision. Dependence exists both within the output for a single parameter(autocorrelations) and across parameters (cross-correlations).

∗Loosely speaking, a (discrete-time) Markov chain is a stochastic process unfolding in time so that the pastand future states are independent given the present.
†The equilibrium distribution is the distribution with density π(θ|x), not π(θ|x) itself. We will often refer toa distribution using the corresponding density function.7



Suppose the initial value of the chain is speci�ed as θ0. Given that the chain is at state θt =
(µt, σt, ξt) at iteration t, the subsequent state θt+1 is generated using the following algorithm.
LN(ν, γ2) denotes the log-normal distribution, with mean exp(ν + γ2/2) and variance exp(2ν +
2γ2) − exp(2ν + γ2), so that X is distributed as LN(ν, γ2) if and only if the logarithm of X isdistributed as N(ν, γ2). The positive values s = (sµ, sσ, sξ) should be speci�ed to ensure thatthe chain has desirable properties. They should be large enough to ensure that the proposalsare made throughout the sample space, but small enough to ensure that the proposed values areaccepted often (e.g. Section 6.1).Propose µ∗ ∼ N(µt, s

2
µ).Set ∆ = π(µ∗,σt,ξt|x)

π(µt,σt,ξt|x) .Set µt+1 = µ∗ with probability min{1,∆}, else set µt+1 = µt.Propose σ∗ ∼ LN(log σt, s
2
σ).Set ∆ = π(µt+1,σ∗,ξt|x)

π(µt+1,σt,ξt|x)
σ∗

σt
.Set σt+1 = σ∗ with probability min{1,∆}, else set σt+1 = σt.Propose ξ∗ ∼ N(ξt, s

2
ξ).Set ∆ = π(µt+1,σt+1,ξ∗|x)

π(µt+1,σt+1,ξt|x) .Set ξt+1 = ξ∗ with probability min{1,∆}, else set ξt+1 = ξt.6 ExamplesThere are �ve main functions in the evdbayes package. The functions prior.norm, prior.quantand prior.prob construct the prior distributions presented in Section 4. The function posteriorgenerates a Markov chain θ0, . . . ,θn with target distribution π(θ|x). The function mposterior(locally) maximizes π(θ|x), as a function of θ. This may be used to specify the initial value
θ0 = arg maxθ π(θ|x).This section presents three examples that illustrate these functions. The �rst and second ex-amples use the generalized extreme value model of Section 3.1. The �rst example replicates theBayesian analysis of sea level maxima from Section 9.1.3 of Coles (2001). The second exam-ple examines annual maximum temperatures recorded at Oxford, England. The third exampleuses the point process characterization of Section 3.2 for daily rainfall observations, followingColes and Tawn (1994). The datasets used in the �rst and second examples are available in theevd package (Stephenson, 2002).The computations in the following sections were performed using a notebook containing a 1.2GHzCeleron processor and 256MB RAM. The generation times of each Markov chain are given insquare brackets. The slowest generation time of all the chains generated within this section isabout two seconds per 1000 iterations.6.1 Port Pirie Sea Level DataThe numeric vector portpirie contains annual maximum sea levels (in metres) recorded at PortPirie, South Australia, from 1923 to 1987. It is included in the evd package, and can be madeavailable using data(portpirie). The data are plotted in Figure 1, which can be reproducedusing the code given below.> data(portpirie) ; ptp <- portpirie> plot(1923:1987, ptp, xlab = "year", ylab = "sea level")8
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Figure 1: Annual maximum sea levels at Port Pirie, South Australia.A �naive Bayesian analysis� of the Port Pirie data is performed in Coles (2001, Section 9.1.3).He uses the word `naive' because he has no external information with which to formulate a priordistribution and he makes little attempt to ensure that the generated Markov chain has desirableproperties. I will begin by replicating his analysis. I will then examine the generated Markovchain and repeat the analysis to ensure that the generated chain does have desirable properties.The prior speci�ed by Coles (2001) can be constructed using the following code. (The functiondiag creates a diagonal matrix.)> mat <- diag(c(10000, 10000, 100))> pn <- prior.norm(mean = c(0,0,0), cov = mat)The function prior.norm is used to construct a multivariate normal prior distribution on (µ, log σ, ξ),with density (7). The o�-diagonal elements of the covariance matrix of this distribution are zero,so the parameters are speci�ed to be independent. The prior is therefore de�ned by the marginaldistributions µ ∼ N(0, 104), σ ∼ LN(0, 104) and ξ ∼ N(0, 102). The high variances lead tonear-�at marginal priors, which re�ect the absence of external information.The function posterior can now be used to generate a Markov chain θ0, . . . ,θn with targetdistribution π(θ|x). Coles (2001) generates a chain of length 1000, using the initial values
θ0 = (5, 1, 0.1) and the proposal standard deviations∗ s = (0.02, 0.1, 0.1). This chain can bereproduced using the following assignment [1.5 secs].> n <- 1000 ; t0 <- c(5,1,0.1) ; s <- c(.02,.1,.1)> ptpmc <- posterior(n, t0, prior = pn, lh = "gev", data = ptp, psd = s)The data ptp consist of annual maxima, so the generalized extreme value likelihood of Section3.1 is speci�ed using lh = "gev". The �rst argument to posterior is the run length. Thesecond argument is the initial value θ0, and the proposal standard deviations s should be passedto psd. The prior distribution which we constructed earlier using prior.norm is passed to theargument prior.The object ptpmc is a matrix with 1001 rows and 3 columns, containing the Markov chain. Therows and columns are labelled using iteration numbers and parameter names respectively. Theobject also contains an attribute named ar, which is a matrix containing information regardingthe acceptance of proposed values within the MCMC algorithm. The ar attribute is shownbelow. It can be printed using attributes(ptpmc)$ar.

∗Strictly speaking, sσ is the standard deviation of the proposal distribution for log σ, not for σ.9



mu sigma xi totalacc.rates 0.75 0.65 0.68 0.69ext.rates 0.00 0.00 0.03 0.01The �rst row contains acceptance rates (i.e. the number of times a proposal was accepted as afraction of the run length) for each parameter and for the entire chain. If the acceptance rates aretoo low there may be substantial periods during which the chain does not move at all, becauseproposals are made that are too far away from the current state. If the acceptance rates are toohigh the chain may be exploring only a small fraction of the parameter space, because proposalsare made that are too close to the current state. If the chain is jumping around, exploring all ofthe parameter space, we say that it is mixing well.The proposal standard deviations s = (sµ, sσ, sξ) can be used to tune the acceptance rates.Higher standard deviations give smaller acceptance rates, and vice-versa. It is di�cult to givegeneral advice on which acceptance rates represent the ideal, because results exist only forparticular classes of target and proposal distributions (e.g. Gelman et al., 1995). The behaviourof a chain for any given value of s can always be determined by plotting the sampled values.Acceptance rates of about 40 percent should lead to chains that mix well. The acceptance ratesfor this chain are quite large. If the proposal standard deviations were a bit higher, the chainwould have better mixing properties.The second row of the ar attribute contains the number of times a proposal was made for whichthe posterior density estimate was zero, as a fraction of the run length. This occurs when theupper/lower end point of the generalized extreme value distribution is less/greater than thelargest/smallest data point. If these values are high, either the proposal standard deviations aretoo large, or the density of the target distribution is large near the boundary of the parameterspace.Once a Markov chain has been generated it needs to be analysed to ensure that it has desirableproperties. I recommend that the R package coda is installed for this purpose. This packageincludes the function mcmc, which creates an mcmc object that coda can recognize as a Markovchain. The iterations of the chain, shown in Figure 2, can be plotted using the following snippet.> ptp.mcmc <- mcmc(ptpmc, start = 0, end = 1000)> plot(ptp.mcmc, den = FALSE, sm = FALSE)Figure 2 recreates Figure 9.1 from Coles (2001). The two �gures exhibit similar behaviour,though Coles (2001) plots the iterations of log σ rather than σ. Other di�erences are due tosampling variability.The burn-in period seems to take about b = 300 iterations. Thereafter, the stochastic variationsin the chain seem reasonably homogeneous. The starting value θ0 = (5, 1, 0.1) is relatively poor†,as it is not close to the centre of the posterior distribution. A good starting value θ0 can bederived using the function mposterior, which (locally) maximizes π(θ|x). The maximization isperformed in the following snippet.> maxpst <- mposterior(t0, prior = pn, lh = "gev", data = ptp)> round(maxpst$par, 2)[1] 3.87 0.20 -0.05
†I imagine that Coles (2001) deliberately selected a poor starting value, so that the burn-in period would beclearly depicted within Figure 2. 10
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Figure 2: MCMC realizations of generalized extreme value parameters in a Bayesian analysis ofthe Port Pirie data, recreating Figure 9.1 from Coles (2001).The arguments of mposterior are the same as those of posterior, except that the �rst argumentis now the initial value for the optimization. The value returned from mposterior is a list ofthe same form as the value returned by the optimization function optim. The component parwithin the returned list contains arg maxθ π(θ|x), which can be used as the initial value of theMarkov chain. The above snippet suggests that we take θ0 = (3.87, 0.2,−0.05).In this example the prior densities are near-�at, re�ecting the absence of prior information. It istherefore approximately true that π(θ|x) ∝ L(θ;x), so we should expect (3.87, 0.2,−0.05) to beclose to maximum likelihood estimates. (In fact, they are the same when rounded to the seconddecimal place.) Maximum likelihood estimates‡ often serve as good starting values.An alternative approach is to generate a (short) Markov chain and examine the output to seewhere the posterior density is large. For example, the iterations shown in Figure 2 suggest taking
θ0 ≈ (3.9, 0.2, 0). The initial value can then be used to generate a further (longer) chain. Thisis essentially the same as maximizing π(θ|x) using a stochastic optimization routine, such assimulated annealing. Simulated annealing can be used to maximize π(θ|x) by including theargument method = "SANN" in the call to mposterior.Another approach entirely is to take multiple initial values, scattered about the parameter space.This generates multiple Markov chains which, loosely speaking, can be compared to see if theyeventually produce the same behaviour (Gelman and Rubin, 1992). Multiple chains are discussedfurther in Section 7.1.2.The code below generates the Markov chain again [1.5 secs] using the starting value θ0 =
(3.87, 0.2,−0.05). After some pilot runs, Alec Stephenson decided to take s = (.06, .25, .25).These values are quite equivalent to those obtain by function ar.choice:> t0 <- c(3.87,0.2,-0.05); psd <- rep(0.01, 3)> psd <- ar.choice(init = t0, prior = pn, lh = "gev", data = ptp, psd =psd, tol = rep(0.02, 3))$psd> round(psd, 2)> t0 <- c(3.87,0.2,-0.05) ; s <- c(.06,.25,.25)> ptpmc <- posterior(n, t0, prior = pn, lh = "gev", data = ptp, psd = s)

‡The functions fgev and fpot in the evd package can calculate maximum likelihood estimates for the modelsof Section 3. 11
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Figure 3: MCMC realizations of generalized extreme value parameters in a Bayesian analysis ofthe Port Pirie data, using di�erent starting values and proposal standard deviations than thoseused to produce the realizations of Figure 2.> ptp.mcmc <- mcmc(ptpmc, start = 0, end = 1000)> plot(ptp.mcmc, den = FALSE, sm = FALSE)Figure 3 shows the iterations of the chain. The starting value θ0 = (3.87, 0.2,−0.05) yields asmaller burn-in period. The proposal standard deviations s = (.06, .25, .25) lead to improvedmixing properties (although this is di�cult to determine from Figures 2 and 3 because of thedi�erent scales on the y-axis).The properties of the chains produced by posterior can be examined using statistical tech-niques. These techniques attempt to assess whether the chain is in equilibrium (or equivalently,whether the burn-in period is su�ciently long). There are also techniques that determine howlong the chain should be in order to achieve a given aim. Reviews of these techniques are given inCowles and Carlin (1996) and Brooks and Roberts (1998). The coda package contains functionsthat implement various diagnostics. The following paragraphs demonstrate the diagnostics in-troduced by Geweke (1992) and Raftery and Lewis (1992). The diagnostic of Gelman and Rubin(1992), designed for multiple chains, is illustrated in Section 7.1.2.The diagnostic of Geweke (1992) is particularly simple. For each parameter, the means of the�rst and last parts of the chain are tested for equality. By default, the �rst 10% and the last 50%are used. The di�erence between the two means is divided by its estimated standard error. Theestimation of the standard error attempts to take into account the autocorrelations. If the chainhas reached equilibrium the distribution of each statistic is approximately standard normal. Thecode below implements this diagnostic on the Markov chain generated previously, where the �rst
b = 200 samples are treated as the burn-in period and are discarded using the coda functionwindow.> ptp.mcmc <- window(ptp.mcmc, start = 200)> geweke.diag(ptp.mcmc)Fraction in 1st window = 0.1Fraction in 2nd window = 0.5mu sigma xi0.4131 -0.0289 -0.3141 12



> geweke.diag(ptp.mcmc, 0.2, 0.4)Fraction in 1st window = 0.2Fraction in 2nd window = 0.4mu sigma xi0.1067 -0.6257 0.3706The test statistics do not give any cause for concern. If any of the values are above two inabsolute value, you may wish to increase the burn-in period and repeat the test. This is thebasis for the plot produced by the function geweke.plot.The diagnostic of Raftery and Lewis (1992) attempts to assess how long the chain should be inorder to achieve a given aim. Speci�cally, it gives the number of samples that are needed toestimate a quantile (on each margin) within a certain accuracy with at least probability s. It isintended for use on short pilot runs. By default the quantile corresponds to the q = 0.025 pointof the distribution function and the probability s = 0.95. The accuracy is de�ned so that thearea to the left of the speci�ed quantile be within a given margin ±r of q. By default, r = 0.005.> raftery.diag(ptp.mcmc, r = 0.01, s = 0.75)Quantile (q) = 0.025Accuracy (r) = +/- 0.01Probability (s) = 0.75Burn-in Total Lower bound Dependence(M) (N) (Nmin) factor (I)mu 10 1033 323 3.20sigma 13 1342 323 4.15xi 12 1211 323 3.75The �rst column gives the additional burn-in that would be useful next time you run the chain.The recommendations are often small, and appear to be of limited use in practice. The secondcolumn is of greatest interest. It speci�es the length of chain (including the additional recom-mended burn-in, but excluding the 200 iterations already discarded) that is needed to achievethe designated aim, for each parameter. The third column gives number of samples Nmin thatwould be required if those samples were independent. If this number is greater than the length ofthe chain being analysed, which in this case is 801, the function simply returns a sentence statingthe value of Nmin. (If the default arguments are used, Nmin = 3746.) The �nal column gives thedependence factor, which is the ratio of the two preceding columns. The factor represents theextent to which the autocorrelation in�ates the required sample size. Autocorrelations can beestimated and plotted using autocorr and autocorr.plot. (There exists similar functions forcross-correlations.) Large dependence factors occur when strong autocorrelations are present.The diagnostics within the coda package should not be used as a substitute for the graphicalexamination of the sampled values. If you are going to use these diagnostics you should implementa range of methods, rather than a single test. I also recommend that you take some timeto examine the theoretical details of each diagnostic that you implement. It is important toemphasize that there are inherent di�culties with all diagnostic procedures. In particular, notechnique can be guaranteed to successfully diagnose convergence. Cowles and Carlin (1996)point out that many statisticians rely heavily on such diagnostics, if for no other reason than �aweak diagnostic is better than no diagnostic at all�.13
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Figure 5: Annual maximum temperatures at Oxford, England.intervals, which contain exactly 100(1 − α)% of the posterior probability on each margin. Thesummary function also gives the iteration numbers, the thinning interval (see Section 7.1.1), thenumber of chains (see Section 7.1.2) and the length of the chain.6.2 Oxford Temperature DataThe numeric vector oxford contains annual maximum temperatures (in degrees Fahrenheit)recorded at Oxford, England, from 1901 to 1980. It is included in the evd package, and can bemade available using data(oxford). The data are plotted in Figure 5, which can be reproducedusing the code given below.> data(oxford) ; ox <- oxford> plot(1901:1980, ox, xlab = "year", ylab = "temperature")Suppose that we have an expert who is prepared to give us his/her beliefs regarding annualtemperature maxima at Oxford, without reference to the data. We will use the construction inSection 4.4, involving prior beta distributions for probability ratios. This induces dependencebetween the parameters (µ, σ, ξ), and is relatively easy to elicit. On the other hand, it is not very�exible, having only four hyperparameters with which to de�ne a trivariate distribution. Theremainder of this section uses the following properties. If X ∼ beta(a, b), with a, b > 0, then Xhas mean ν = a/(a + b) and variance ν(1 − ν)/(a + b + 1). If a, b > 1, the density function hasa mode at (a − 1)/(a + b − 2).Using the notation of Section 4.4, suppose we take q1 = 85, q2 = 88 and q3 = 95. The corre-sponding probabilities are denoted by p85 < p88 < p95. The probability ratios are then given by
p̃85 = p85, p̃88 = p85/p88 and p̃95 = p88/p95. The prior for p̃85 = p85 should be elicited �rst. Inother words, we need to elicit a prior distribution for the probability that the maximum annualtemperature at Oxford will exceed 85 degrees Fahrenheit. Suppose that we elicit a beta(5,4)distribution for this probability. This means that we are satis�ed that the beliefs of the expertcorrespond to the properties de�ned by this distribution. In particular, our expert believes thatthe maximum annual temperature at Oxford will exceed 85 degrees just over half the time, andhe/she is 90% sure that the probability of exceedence is in the interval (0.28, 0.8).As an aid to the elicitation process I have included a simple function called ibeta. This takesthe arguments mean and var, or the arguments shape1 and shape2, all of which can be vectors.It returns a vector or matrix containing the mean (mean), variance (var), mode (mode), and15



shape parameters (shape1/shape2) of the beta distribution(s) corresponding to the speci�edarguments. The code below gives two examples of its use.> xx <- ibeta(shape1 = 5, shape2 = 4)> round(xx, 2)shape1 shape2 mean var mode5.00 4.00 0.56 0.02 0.57> xx <- ibeta(mean = seq(0.1,0.9,0.2), var = 0.03)> round(xx, 2)shape1 shape2 mean var mode1 0.20 1.80 0.1 0.03 NA2 1.80 4.20 0.3 0.03 0.23 3.67 3.67 0.5 0.03 0.54 4.20 1.80 0.7 0.03 0.85 1.80 0.20 0.9 0.03 NAThe �rst example shows that the mean and variance of a beta(5,4) random variable are 0.56 and0.02 respectively. The density function has a mode at 0.57. Quantiles and probabilities of betadistributions can be calculated using qbeta and dbeta. Densities can be calculated (and henceplotted) using dbeta. These tools aid elicitation, and help examine fully the elicited distribution.We have elicited p̃85 ∼ beta(5, 4), so that α1 = 4 and α2+α3+α4 = 5. Suppose our expert thinksthat half the annual maxima that exceed 85 degrees will also exceed 88 degrees. Furthermore,suppose he/she thinks that one tenth of the annual maxima that exceed 88 degrees will alsoexceed 95 degrees. We can equate the means of p̃88 ∼ beta(α3 + α4, α2), and p̃95 ∼ beta(α4, α3)to these ratios, giving α3 + α4 = 0.5 × 5 = 2.5 and α4 = 0.1 × 2.5 = 0.25. This yields
α = (α1, α2, α3, α4) = (4, 2.5, 2.25, 0.25). The parameter vector α can now be used to constructthe prior distribution.The elicitation process demonstrated above is not only hypothetical, but also over-simpli�ed.Elicitation of prior distributions is a notoriously di�cult (and controversial) subject. In partic-ular, you must obtain the expert's opinion of a number of di�erent quantities in order to ensurethat his/her beliefs can be represented by a speci�c distribution.Given that our expert's opinion can be represented in the form of Section 4.4, with α =
(4, 2.5, 2.25, 0.25), the prior can be constructed as follows. The function prior.prob constructsa prior distribution with density (10).> prox <- prior.prob(quant = c(85,88,95), alpha = c(4,2.5,2.25,0.25))In the Port Pirie data, the prior distribution on (µ, log σ, ξ) was taken to be trivariate normal.The prior marginal distributions of µ and ξ were therefore normal, and the marginal distributionof σ was log-normal. The densities of these marginals can easily be calculated (and thereforeplotted) using dnorm and dlnorm. In this example, the prior marginal distributions of (µ, σ, ξ)are di�cult to determine, since they involve the integration of expression (10). We can avoidthis problem using MCMC methods! A Markov chain is generated as before, but now the targetdistribution has density π(θ), rather than π(θ|x). This can be implemented by the functionposterior, using the argument lh = "none", meaning �likelihood is none�.The following code generates two Markov chains using posterior. The �rst chain [45 secs]samples from the prior density π(θ). The second chain [18 secs] samples from the posterior density
π(θ|x). Properties of generated Markov chains were discussed in the previous example, and I will16
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ξ respectively, in a Bayesian analysis of the Oxford data.not repeat the process in any detail. The chains have run lengths 50 000 and 10 000 respectively.A larger chain is generated for the prior distribution because the surface is more complex. Theproposal standard deviations, initial values and burn-in periods have been determined by pilotruns. The function posterior allows the burn-in periods to be speci�ed through the argumentburn. The �rst burn iterations are discarded from the returned matrix.> n <- 50000 ; t0 <- c(84, 1, 0) ; s <- c(5, 1, .5) ; b <- 5000> ox.prior <- posterior(n, t0, prox, lh = "none", psd = s, burn = b)> n <- 10000 ; t0 <- c(84,4.2,-0.3) ; s <- c(1.25,.2,.1) ; b <- 1000> ox.post <- posterior(n, t0, prox, lh = "gev", data = ox, psd = s, burn = b)Marginal prior and posterior density estimates are given in Figure 6. The �gure can be producedusing the code given below. The assignment statements within the code prevent the marginaldensity estimate of the scale parameter from being positive below zero. Density estimates canbe plotted more easily using the coda package (e.g. Section 6.1). Unfortunately, the tools withinthe package do not make it any easier to create plots of the same form as Figure 6.> plot(density(ox.post[,1],adj=2), xlim = c(55,90), ylim = c(0,0.85))> lines(density(ox.prior[,1],adj=2), lty = 2)> plot(density(ox.post[,2],adj=2), xlim = c(0,10), ylim = c(0,1.05))> prsc <- density(c(ox.prior[,2], -ox.prior[,2]), adj=2)> prsc <- list(x = prsc$x[prsc$x > 0], y = 2*prsc$y[prsc$x > 0])> lines(prsc, lty = 2)> plot(density(ox.post[,3],adj=2), xlim = c(-0.9,0.5), ylim = c(0,6.5))> lines(density(ox.prior[,3],adj=2), lty = 2)6.3 Rainfall DataThe numeric vector rainfall contains 20820 daily aggregate rainfall observations (in millimetres)recorded at a rain gauge in England over a period of 57 years, beginning on a leap year. Threeyears contain only missing (NA) values, and the remaining 54 years contain 58 missing valuesin total. The vector is included in the evdbayes package, and can be made available usingdata(rainfall). The data are plotted in Figure 7, which can be reproduced using the codegiven below. 17
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Figure 7: Daily aggregate rainfall recorded at a rain gauge in England over a period of 57 years.The dotted horizontal line represents the threshold used for the likelihood (4).> data(rainfall)> plot(rainfall, type = "h")> abline(h = 40, lty = 3)In this section we will suppose that we have used an expert to elicit a prior distribution using theconstruction of Section 4.3. Suppose that we elicited the distributions q̃p1
∼ gamma(38.9, 1.5),

q̃p2
∼ gamma(7.1, 6.3) and q̃p3

∼ gamma(47, 2.6), where pi = 10−i for i = 1, 2, 3.Quantiles and probabilities of gamma distributions can be calculated using qgamma and pgamma.Densities can be calculated (and hence plotted) using dgamma. The means and variances of theelicited distributions can be derived using igamma, as shown below.> igamma(shape = c(38.9,7.1,47), scale = c(1.5,6.3,2.6))shape scale mean var mode1 38.9 1.5 58.35 87.525 56.852 7.1 6.3 44.73 281.799 38.433 47.0 2.6 122.20 317.720 119.60The prior can be constructed using prior.quant. The probabilities do not need to be speci�edsince they are taken as pi = 10−i by default.> prrain <- prior.quant(shape = c(38.9,7.1,47), scale = c(1.5,6.3,2.6))The generalized extreme value likelihood is only appropriate for maxima. For the rainfall data,we use the point process characterization of Section 3.2. This is speci�ed using lh = "pp" inthe call to posterior. The threshold u within the likelihood (4) is speci�ed using the argumentthresh. The value ny is speci�ed using the argument noy. If the parameters are to representthe generalized extreme value model for annual maxima, ny should be the number of years ofobservation (excluding missing values). In this case noy ≈ 54.The following code generates two Markov chains using posterior. The �rst chain [10 secs]samples from the prior density π(θ). The second chain [20 secs] samples from the posteriordensity π(θ|x). We take the threshold u = 40. The speci�cation of the threshold is a standardtopic in extreme value theory (e.g. Coles, 2001, Ch 4), and will not be discussed here. Both18
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ξ respectively.chains have run length n = 10000 and burn-in period b = 2000. Initial values have been derivedusing mposterior, and the proposal standard deviations s have been determined using pilotruns.> n <- 10000 ; t0 <- c(50.8, 1.18, 0.65) ; s <- c(25, .35, .07) ; b <- 2000> rn.prior <- posterior(n, t0, prrain, "none", psd = s, burn = b)> t0 <- c(43.2, 7.64, 0.32) ; s <- c(2, .2, .07)> rn.post <- posterior(n, t0, prrain, "pp", data = rainfall, thresh = 40,noy = 54, psd = s, burn = b)These chains can be used to estimate features of the prior and posterior distributions. Figure 8shows estimates of the prior and posterior densities. The �gure can be constructed by adaptingthe code, given in Section 6.2, that was used to construct Figure 6.7 Further TopicsThis section provides an introduction to more specialist topics. Section 7.1 introduces the con-cept of thinning, and discusses the use of multiple Markov chains. Section 7.2 depicts posteriordistributions of generalized extreme value quantiles. Predictive distributions are de�ned and illus-trated in Section 7.3. Model diagnostics are implemented in Section 7.4, following Gelman et al.(1995). Three di�erent extensions to the likelihoods of Section 3 are discussed in Section 7.5.7.1 MCMC Topics7.1.1 ThinningSuppose that you create a Markov chain, but you only store every kth iteration. This process iscalled thinning. The integer k is called the thinning interval. The iterations that have beenstored, after an initial burn-in period, are (on assumption) sampled from the target distributionof the original chain, but the dependence between the samples will have been reduced.Let us consider a more concrete example. Suppose we take the run length n = 1000, the burn-inperiod b = 200 and suppose that we only store every �fth (k = 5) iteration. Then we generate the19



161 values θ200,θ205, . . . ,θ1000. Because the values are only stored after every �fth iteration, theyare not as dependent as the 161 values θ200,θ201, . . . ,θ360, so they contain more information,and can estimate features of the target distribution more precisely. However, by thinning a chainyou always loose information, because the 801 values θ200,θ201, . . . ,θ1000 are more informativethan θ200,θ205, . . . ,θ1000. At this point, you may be asking why you would ever want to thin achain. The main advantage of thinning a chain is one of storage. If you have a limited amount ofstorage space you can use thinning to throw away samples in such a way that only the minimumof information is wasted.Thinning can be implemented by passing k to the argument thin of the function posterior.The following code continues the example of Section 6.3. The chain rn.post2 is generated [40secs] in the same manner as rn.post, except that we use a run length of n = 20000, and storeonly every �fth iteration.> n <- 20000 ; t0 <- c(43.2, 7.64, 0.32) ; s <- c(2, .2, .07) ; b <- 2000> rn.post2 <- posterior(n, t0, prrain, lh = "pp", data = rainfall, thresh = 40,noy = 54, psd = s, burn = b, thin = 5)> rn.post2 mu sigma xi2000 43.00410 8.906956 0.31250272005 44.13408 8.599823 0.34894892010 44.13408 9.526747 0.3054351[...]19995 42.21891 7.679970 0.315889520000 44.50139 9.801986 0.28149077.1.2 Multiple ChainsIn Section 6.1 we discussed the possibility of generating multiple Markov chains, with initialvalues scattered about the parameter space. This is the only way to ensure that the chain orchains have fully explored all regions of high probability, particularly when the target distributionis complex. I recommend generating a small number of chains and examining the iterationsgraphically. The burn-in period for each chain can easily be identi�ed using this approach. Inparticular, it is possible to determine whether the chains have reached equilibrium (or not, inwhich case the burn-in period is larger than the current run length), which is very di�cult todetermine using only a single chain. On the other hand, many iterations will be discarded as therewill often be a large burn-in period associated with each chain. Furthermore, if a single chainwith run length 5 000 is generated in preference to �ve chains with length 1 000, the last 4 000iterations will be sampled from a distribution that is likely to be closer to the target distributionthan any of the samples that would have been generated in any of the smaller chains.Continuing the example of Section 6.3, suppose that we generate [2 secs each] the chains rna, rnband rnc in the same manner as rn.post, except that we use the starting values θ
a
0 = (40, 11, 0.2),

θ
b
0 = (50, 5, 0.4) and θ

c
0 = (32, 6, 0.3). I have also reduced the run length to n = 1000 and omittedthe burn-in period (b = 0). The iterations of the location parameter for each of the three chainsare plotted in Figure 9.The diagnostic of Gelman and Rubin (1992) is designed for multiple chains that have been runwith starting values which are over-dispersed relative to the target distribution. (The startingvalues in this example have been arbitrarily selected at points with low posterior density.) Thediagnostic is implemented in coda, and can be performed using the following code. The functionmcmc.list creates an object that coda can recognize as a list of Markov chains.20
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Figure 9: Iterations of the location parameter for each of the three chains rna, rnb and rnc. Thestarting values are µa
0 = 40, µb

0 = 50 and µc
0 = 32.> rn.mcl <- mcmc.list(mcmc(rna), mcmc(rnb), mcmc(rnc))> gelman.diag(rn.mcl, transform = TRUE)Potential scale reduction factors:Point est. 97.5% quantile[1,] 1.03 1.10[2,] 1.03 1.09[3,] 1.03 1.09Multivariate psrf: 1.03The diagnostics are based on estimates of the variance of the (margins of the) target distribution.If the chains have not reached equilibrium, the mean of the empirical variance within each chain(for each parameter) will underestimate the variance, because each chain will not have had thetime to range over the target distribution. Similarly, the empirical between-chain variance (thevariance of the empirical means of each chain, multiplied by the run length) will overestimate thevariance, because the starting values are over-dispersed relative to the target distribution. The�point estimate� potential scale reduction factors (PSRF) are essentially the within-chain dividedby the between-chain estimates of variance. If these factors are substantially larger than one, thesimulated sequences may not have made a full tour of the target distribution. Gelman and Rubin(1992) recommend increasing the run length n until all the reduction factors are close to one,and then taking b = n/2, thus discarding the �rst half of the chain. This is the basis for theplot generated by gelman.plot. The condition of being �close� to one depends on the problemat hand; for most examples, values below 1.2 are acceptable (Gelman et al., 1995).The �97.5% quantile� PSRF is constructed in a similar manner, except that the variance ratiois replaced by the 97.5% quantile of its (estimated) sampling distribution. The multivariatepotential scale reduction factor (MPSRF), due to Brooks and Gelman (1997), generalizes theoriginal �point estimate� method to consider all parameters simultaneously.The values shown here are su�ciently close enough to one to be acceptable. Incidentally, usingthe run length n = 10000, as was used in Section 6.3, produced reduction factors that were allequal to one (to the number of decimal places printed by gelman.diag).As with all diagnostics, there are criticisms. The diagnostic assumes that the initial values aresampled from a distribution that is over-dispersed relative to the target distribution. In practice21



the target distribution is unknown, so this is di�cult∗ to achieve. The diagnostic also relies on anormal approximation to the samples of each parameter within the chain. The parameters canbe transformed so that the normal approximation is more appropriate, but it remains a criticism.7.2 Distributions of QuantilesThe Markov chains generated can be transformed in order to estimate other quantities of inter-est. In particular, the distributions of quantiles can be estimated. Let F be the GEV or GPdistribution function, and let F (qp) = 1 − p, so that
qp(θ) =

{

µ − σ
ξ [1 − y−ξ] ξ 6= 0

µ − σ log y ξ = 0,where y =

{

− log(1 − p) if F is the GEV distribution function
p if F is the GP distribution functionis the quantile corresponding to the upper tail probability p. For each p, the samples θb, . . . ,θncan be substituted into the above expression to yield qp(θb), . . . , qp(θn). We can use these valuesto estimate features of the prior and posterior distributions of qp(θ) in the same way that thevalues θb, . . . ,θn have been used to estimate features of the prior and posterior distributions of

θ.Continuing the example of Section 6.3, prior and posterior density estimates of the quantiles
q0.1, q0.01 and q0.001 are shown in Figure 10. These are density estimates for the value that isexceeded by the annual maximum of daily rainfalls with probabilities 0.1, 0.01 and 0.001. Theestimates can be plotted using the following code.> poq <- mc.quant(rn.post, p = c(.1,.01,.001), lh = "gev")> prq <- mc.quant(rn.prior, p = c(.1,.01,.001))> plot(density(poq[,1], adj = 2), xlim = c(20,100), ylim = c(0,.11))> lines(density(prq[,1], adj = 2), lty = 2)> plot(density(poq[,2], adj = 2), xlim = c(45,200), ylim = c(0,.05))> lines(density(prq[,2], adj = 2), lty = 2)> plot(density(poq[,3], adj = 2), xlim = c(125,350), ylim = c(0,.018))> lines(density(prq[,3], adj = 2), lty = 2)The function mc.quant takes three arguments. The �rst should be an object returned fromposterior, which contains the values θb, . . . ,θn. If the second argument p = p, the functionreturns the vector qp(θb), . . . , qp(θn). If p = (p1, . . . pm) is a vector of length m, the functionreturns a matrix with jth column qpj(θb), . . . , qpj (θn), for j = 1, . . . ,m. The third argument isa character string which speci�es the likelihood function.Although Figure 10 gives us density estimates for q0.1, q0.01 and q0.001, it would be useful tohave a graphical summary of the distributions of qp for all (small) values of p. This can be doneusing a return level plot. A return level plot is a standard tool in extreme value theory. Inthe terminology of extreme value theory, return levels are simply quantiles. We would say thatthe value qp is the return level associated with the return period 1/λp, where λ is the meannumber of events in a year. That is, for example, with block maxima, λ is obviously equal to 1.

∗But not impossible. The target distributions can be approximated using (mixtures of) multivariate normalor multivariate t distributions on (µ, log σ, ξ), the parameters of which can be estimated using the output ofmposterior, upon setting hessian = TRUE. 22
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Figure 10: Prior (dashed lines) and posterior (solid lines) density estimates for the value (inmillimetres) that is exceeded by the annual maximum of daily rainfalls with probabilities 0.1,0.01 and 0.001 respectively.
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Figure 11: Return level plots of prior (left panel) and posterior (right panel) distributions for qp.The curves within the plots represent medians (solid lines) and intervals containing 90% of theprior/posterior probability (dashed lines). Dotted vertical lines are drawn at p = 0.1, 0.01, 0.001.A return level plot is a plot of qp verses −1/λ log(1 − p), for �xed values of (µ, σ, ξ), typicallymaximum likelihood estimates. The x-axis is plotted on a logarithmic scale. This emphasizesthe values in the upper tail (small p), and makes the plot linear when ξ = 0, with slope σ andintercept µ. For small p, −1/λ log(1−p) ≈ 1/λp, so the return level plot is approximately a plotof return levels verses return periods.In our Bayesian framework, we can use a return level plot to illustrate the distributions of quan-tiles, or equivalently, return levels. For each p there is a corresponding sample qp(θb), . . . , qp(θn).We take a summary statistic for each sample, say the median, which we denote by q̌p. We canthen plot q̌p verses −1/ log(1 − p), again using a logarithmic scale on the x-axis. This gives usa curve of the medians of the prior/posterior distributions of qp. We can also plot curves forother summary statistics, such as the empirical sample quantiles corresponding to the percentagepoints 0.05 and 0.95, which yield intervals containing 90% of the prior/posterior probability, foreach qp. Return level plots of this form are given in Figure 11. The plots depict the prior andposterior distributions of qp. They can be created using rl.pst(rn.prior, lh = "gev") andrl.pst(rn.post, lh = "gev") respectively.For a speci�c value of p, it may help to imagine a vertical line superimposed on the return level23



plot at −1/ log(1−p) ≈ 1/p. The estimates for the quantiles of the prior/posterior distribution of
qp are given by the y-coordinate of the intersection of this line with the plotted curves. In Figure11 we have added vertical lines at p = 0.1, 0.01, 0.001, corresponding to the density estimatesgiven in Figure 10.7.3 Predictive DistributionsThe primary objective of an extreme value analysis is often prediction. Let z denote a futureobservation with density function f(z|θ), where θ ∈ Θ. The posterior predictive density of
z, given observed data x, is

f(z|x) =

∫

Θ
f(z|θ)π(θ|x)dθ. (11)If we are to observe a future observation z but we do not observe any data x, our predictionsare based on the prior predictive density

f(z) =

∫

Θ
f(z|θ)π(θ)dθ.Predictive distributions re�ect the uncertainty in the model and the uncertainty due to thevariability of future observations.Let Z ∼ GEV(θ), where θ = (µ, σ, ξ). Using expression (11), the posterior predictive distributionof a future observation z is given by

Pr(Z ≤ z|x) =

∫

Θ
Pr(Z ≤ z|θ)π(θ|x)dθ,where Pr(Z ≤ z|θ) is the generalized extreme value distribution (2), evaluated at z. The priorpredictive distribution Pr(Z ≤ z) is de�ned in a similar manner, replacing the posterior density

π(θ|x) with the prior density π(θ). Using our (prior and posterior) Markov chains θb, . . . ,θn,the predictive distributions can be estimated using
1

n − b + 1

n
∑

i=b

Pr(Z ≤ z|θi). (12)Suppose that Pr(Z > z|x) = p, or that Pr(Z > z) = p, so that z is the return level correspondingto the return period 1/p. For each value of z, we can estimate p using expression (12). Thisinformation can be depicted in a return level plot (see Section 7.2). In other words, we can plot
z verses the estimated values of −1/ log(1 − p) ≈ 1/p, using a logarithmic scale on the x-axis.Continuing the example of Section 6.3, the lower curves within the return level plots of Figure 12depict the prior and posterior predictive distributions, as described above. It may help to imaginea horizontal line superimposed on a return level plot at a speci�c value z. The x-coordinate ofthe point at which this line crosses the lower curve is (for su�ciently large z) approximately theinverse of the prior/posterior probability that the maximum daily rainfall over the next year willexceed z.Let ZL be the maximum daily rainfall over a future period of L years. The predictive distributions
Pr(ZL ≤ z) and Pr(ZL ≤ z|x) can similarly be estimated using

1

n − b + 1

n
∑

i=b

Pr(Z ≤ z|θi)
L,which reduces to expression (12) when L = 1. The curves on the return level plots of Figure 12depict the prior and posterior distributions of ZL, for L = 1, 2, 5. The function rl.pred creates24
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Figure 12: Return level plots of prior (left panel) and posterior (right panel) predictive distribu-tions. The curves within the plots represent predictive distributions for maximum daily rainfallover a future period of one (lower), two (middle) and �ve (upper) years.return level plots for predictive distributions. Figure 12 can be created using the following code.The values of L should be passed to the argument period. The vector qlim represents thequantiles at which the return level plot is evaluated.> rl.pred(rn.prior, period = c(1,2,5), qlim = c(0,500), lh = "gev")> rl.pred(rn.post, period = c(1,2,5), qlim = c(30,500), lh = "gev")7.4 Model Diagnostics and Sensitivity AnalysisAny analysis should include some check of the adequacy of the �t of the model to the data, andof the plausibility of the model for the purposes for which it will be used. In a Bayesian context,the model refers to both the prior distribution π(θ) and the likelihood L(θ;x).In practice, additional information is often available that is not included formally in the likelihoodor the prior distribution. If this information suggests that posterior inferences are false, then moree�ort should be made to incorporate this information within the model. We can perform informaldiagnostic procedures by comparing posterior distributions and posterior predictive distributionswith aspects of reality that are not captured by the model. If there are any discrepancies, themodel should be extended to include these aspects. Some possible extensions are discussed inSection 7.5.A more formal diagnostic procedure compares the posterior predictive distribution to the datathat have been observed (Gelman et al., 1995). The basic technique is simple. We simulatesamples from the posterior predictive distribution. These samples are then compared to theoriginal data. Systematic discrepancies between the samples and the data correspond to featuresthat are poorly �tted by the model. A balanced discussion of the advantages and disadvantagesof this approach is given by Bayarri and Berger (1999, 2000). Further examples are given inGelman et al. (1996).Let us consider a speci�c example. Suppose we have data x = (x1, . . . , xm), which we assumeto be observed values of independent and identically distributed GEV(θ) random variables. Weneed to simulate a sample from the posterior predictive distribution to which the data can becompared. This is done by generating m GEV(θ) random variables, where θ is sampled from theposterior distribution. Our Markov chain gives us n − b + 1 values θb, . . . ,θn, sampled from the25
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Figure 13: The left panel shows a histogram of the annual maxima of daily rainfall. The remainingthree panels show histograms of samples from the posterior predictive distribution.posterior distribution. This leads to n− b + 1 samples of length m that can be compared to theactual data. If the point process likelihood (4) is used, the n − b + 1 samples can be comparedto the period maxima derived from the actual data. Figure 13 demonstrates this process usingthe rainfall data from the example of Section 6.3. The plot on the left is a histogram of theannual maxima of daily rainfalls. The remaining three plots depict samples from the posteriorpredictive distribution of annual maxima. They can be created using the following code, wherethe vector rainmax is constructed to contain the 54 annual rainfall maxima. The code includesthe rgev simulation function, which is available in the evd package.> yrs <- c(rep(c(366,365,365,365), 14), 366)> yrs <- rep(1:57, yrs)> myrs <- (yrs %in% c(32,38,42))> rainmax <- tapply(rainfall[!myrs], yrs[!myrs], max, na.rm = TRUE)> reprn <- cbind(matrix(0, nrow = 54, ncol = 3), rainmax)> for(i in 1:3) {j <- 1000*(i-1) + 1reprn[,i] <- rgev(54, rn.post[j,1], rn.post[j,2], rn.post[j,3])}> range(reprn) ; par(mfrow = c(2,2))> for(i in 1:4) hist(reprn[,i], freq = FALSE, breaks = seq(30,130,10))The three samples from the posterior predictive distribution are generated using the values θ2000,
θ3000 and θ4000 from the Markov chain rn.post. There are no clear systematic discrepanciesbetween the samples and the data.The code can easily be extended to create n − b + 1 posterior predictive samples using all thevalues θb, . . . ,θn, where b = 2000 and n = 10000. It is di�cult to compare 8001 samples tothe actual data using only graphical methods. Instead, we can de�ne some function of the data
T (·). We can then calculate the number of samples from the posterior predictive distributionfor which the test statistic T (·) is greater than that for the actual data. In other words, if thereplications are denoted by xl, for l = b, . . . , n, we de�ne p to be the proportion of the n− b + 1simulations for which T (xl) > T (x). If the value of p is close to zero or one, the test statistic
T (·) corresponds to a feature that is poorly �tted by the model (Gelman et al., 1995). The teststatistic T (·) should be chosen to re�ect aspects of the model that are relevant to the purposesto which the inference will be applied. In particular, T (x) = maxj xj will often be of particularimportance for extreme value models. 26
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Figure 14: Histograms of test statistics of 8001 samples from the posterior predictive distribution.From left to right, the statistics are the largest value, the smallest value, the mean and thestandard deviation. The corresponding values for the actual data are represented by verticallines. The value p is given within each plot.The plots given in Figure 14 demonstrate this process, taking T (x) as the largest value, thesmallest value, the average and the standard deviation. The plot corresponding to T (x) =
maxj xj can be created using the following code. The remaining plots can be constructed in asimilar manner. None of the four test statistics yield a value of p close to zero or one.> reprn <- matrix(0, nrow = 54, ncol = 8001)> for(i in 1:8001)reprn[,i] <- rgev(54, rn.post[i,1], rn.post[i,2], rn.post[i,3])> repmax <- apply(reprn, 2, max)> hist(repmax, freq = FALSE) ; abline(v=max(rainmax), lwd = 3)> pv <- round(sum(repmax > max(rainmax))/8001, 2)> text(300,.006, paste("p =", pv))It is often the case that more than one model provides an adequate �t to the data. Sensitivityanalysis determines by what extent posterior inferences change when alternative models are used.Alternative models may di�er in the likelihood, or in terms of prior speci�cation. The basicmethod of sensitivity analysis is to �t several models to the same problem. Posterior inferencesfrom each model can then be compared. Posterior inferences will typically include marginalposterior distributions of the parameters (µ, σ, ξ), posterior distributions of GEV quantiles andposterior predictive distributions. The sensitivity of the marginal posterior density of the shapeparameter ξ is often of particular interest.7.5 Model ExtensionsThis section illustrates three extensions to the likelihoods of Section 3. Section 7.5.1 generalizesboth the GEV and point process models to a frequently used form of non-stationarity. Section7.5.2 discusses the implementation of a time-varying threshold within the point process charac-terization. Section 7.5.3 extends the GEV likelihood to incorporate upper order statistics. Thelikelihoods presented in this section are de�ned by continuity when ξ = 0.7.5.1 Linear Trend for Location ParameterThe generalized extreme value log-likelihood (3) is based on the assumption that the data tobe �tted are the observed values of independent random variables X1, . . . ,Xn, where Xi ∼27



GEV(µ, σ, ξ) for each i = 1, . . . , n. This assumption can be extended to Xi ∼ GEV(µi, σ, ξ),where
µi = ζ + ηti.The parameters (ζ, η) are to be estimated, and the vector t = (t1, . . . , tn) is speci�ed by the user.It is assumed that t is approximately centred and scaled. If there is a linear trend present inthe data, ti should be some centred and scaled version of the time of the ith observation. Thelog-likelihood (3) is extended to

−n log σ − (1 + 1/ξ)

n
∑

i=1

log{1 + ξ (xi − µi) /σ} −

n
∑

i=1

{1 + ξ (xi − µi) /σ}−1/ξ .The extension of the Poisson process log-likelihood (4) is similar. Recall that nu of the n obser-vations x1, . . . , xn exceed the threshold u, and x(i) denotes the ith exceedence, for i = 1, . . . , nu.The original log-likelihood is
−nu log σ − ny
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, (13)provided that 1 + ξ(x(i) − µ)/σ for i = 1, . . . , nu are positive. We again take µi = ζ + ηti, for
i = 1, . . . , n. Let µ(i) denote the location parameter that corresponds to the ith exceedence x(i).Then the log-likelihood is extended† to
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σ

)}

,provided that 1 + ξ(x(i) − µ(i))/σ for i = 1, . . . , nu are positive.To incorporate the linear trend term within a Bayesian analysis, a prior π(θ) must be speci�edon all four parameters θ = (ζ, σ, ξ, η). The construction of the prior proceeds in two stages.Firstly, a prior is constructed on (ζ, σ, ξ), using one of the techniques given in Section 4. Thenwe specify an independent prior normal distribution for η, with mean zero (since the vector tshould be centred) and standard deviation trendsd, which is speci�ed by the user.When calling the function posterior, the initial value initmust be extended to θ0 = (ζ0, σ0, ξ0, η0),and the proposal standard deviations must be extended to s = (sζ , sσ, sξ, sη). The vector t shouldbe speci�ed using the argument trend.Continuing the example of Section 6.3, the following code generates Markov chains [13 and 32secs respectively] with target distributions π(θ) and π(θ|x), where θ = (ζ, σ, ξ, η). The initialvalues were derived using mposterior. The period 1932− 1988 contains 20820 days, the 6576thof which is 1st January 1950. The trend parameter t is therefore speci�ed so that ζ represents thelocation parameter on 1st January 1950 and η represents the increase (or decrease, if negative)over a period of 40 years (14610 days). We take trendsd = 10, representing a fairly �at marginalprior for η.> shape <- c(38.9,7.1,47) ; scale <- c(1.5,6.3,2.6)> prrain2 <- prior.quant(shape = shape, scale = scale, trendsd = 10)> n <- 10000 ; t0 <- c(50.8,1.18,0.65,0) ; s <- c(25,.35,.07,25) ; b <- 2000
†The term 1

n

Pn
i=1

{1 + ξ(u − µi)/σ}−1/ξ is an approximation to an integral. Since n is often very large, thepackage (by default) calculates 1

|b|

P
i∈b{1 + ξ(u − µi)/σ}−1/ξ for an appropriate subset b ⊂ {1, . . . , n}, with

|b| << n. This behaviour can be overridden by setting exact = TRUE. This also applies to the likelihoods ofSection 7.5.2. 28
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(µ, σ, ξ) given in Figure 8.7.5.2 Variable ThresholdsIn the example of Section 6.3, the threshold for the Poisson process likelihood (13) was chosen tobe u = 40. We can extend this idea to allow variable thresholds. In other words, the threshold
u can be a vector of length n, containing one value for each observation. The observation xi istherefore an exceedence only if xi > ui. Let x(i) denote the ith exceedence. The log-likelihoodis extended to
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,provided that 1+ξ(x(i)−µ)/σ for i = 1, . . . , nu are positive. This likelihood can be implementedby passing a vector of length n to the argument thresh. If a shorter vector is passed to thresh,it is replicated until a vector of length n is created.A linear trend term can also be included in the analysis, using the methods outlined in Section7.5.1. In this case, the log-likelihood becomes
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.7.5.3 Order StatisticsDue to an asymptotic argument (e.g. Coles, 2001) the generalized extreme value log-likelihood(3) is often used when the data x consists of maxima from some underlying process. Suppose that29



the data x consists not only of maxima, but of the r largest order statistics. Speci�cally, supposethat x = (x
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i ) are the largest ri orderstatistics from year/period i, for i = 1, . . . ,m. It will often be the case that r1 = · · · = rm = r.The same asymptotic argument used to justify the log-likelihood (3) for maxima leads to thelog-likelihood for order statistics
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i − µ)/σ is positive for all i = 1, . . . ,m and k = 1, . . . , ri. A linear trendterm can also be included in the analysis, using the methods outlined in Section 7.5.1. In thiscase, the log-likelihood becomes

−

(

m
∑

i=1

ri

)

log σ −

m
∑

i=1

{

1 + ξ

(

x
(ri)
i − µi

σ

)}−1/ξ

−

(

1 +
1

ξ

) m
∑

i=1

ri
∑

k=1

log

{

1 + ξ

(

x
(k)
i − µi

σ

)}

,where µi = ζ + ηti for i = 1, . . . ,m.The number of order statistics used within each year/period comprises a bias-variance trade-o�:small values of r generate few data leading to high variance, whereas large values are likelyto violate the asymptotic support for the model, leading to bias. The considerations involvedin this choice are similar to those involved in the choice of threshold for the point processcharacterization. In practice, it is usual to select the ri as large as possible, subject to ad-equate model diagnostics (Coles, 2001). For use in the evdbayes package, data of the form
(x

(1)
1 , . . . , x

(r1)
1 , x

(1)
2 , . . . , x

(r2)
2 , . . . , x

(rm)
m ) should be stored in a numeric matrix with m rows and

max{r1, . . . , rm} columns. The (i, j)th entry should contain x
(j)
i if j ≤ ri and NA otherwise. Ifno order statistics are available within a particular year, the corresponding row should containonly NA values.The numeric matrix venice contains the 10 largest sea levels (in centimetres) within each yearin Venice for the period 1931�1981, except for the year 1935 in which only the six largest mea-surements are available. It is included in the evd package, and can be made available usingdata(venice).The data are plotted in Figure 16, which can be reproduced using matplot(1931:1981, venice).Figure 16 gives strong visual evidence for an increasing trend. We explicitly model this trendusing µi = ζ + ηti for i = 1, . . . ,m. (There also appears to be some cyclicity in the series, whichwe do not attempt to model.) We perform a naive Bayesian analysis, taking near-�at priors thatre�ect the absence of external information, in a similar manner to Section 6.1. The followingcode generates a Markov chain [40 secs] with target distribution π(θ|x), where θ = (ζ, σ, ξ, η).The likelihood can be speci�ed by setting lh = "os", meaning �likelihood is order statistics�.We take a run length n = 10000, a burn-in period b = 2000 and a thinning interval k = 5. Thestarting value has been derived using mposterior. The trend vector t = (t1, . . . , tm) is speci�edso that ζ represents the location parameter in 1950 and η represents the increase (or decrease, ifnegative) in the location parameter over a period of 10 years. The proposal standard deviationshave, as usual, been determined by pilot runs.> mat <- diag(c(10000, 10000, 100))> pv <- prior.norm(mean = c(0,0,0), cov = mat, trendsd = 100)> t0 <- c(104, 11.7, -0.06, 0.48) ; tt <- (1:51 - 20)/10> v.post <- posterior(10000, t0, pv, lh = "os", data = venice, trend = tt,psd = c(1.5, .05, .03, 1), burn = 2000, thin = 5)30
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Figure 16: The 10 largest sea levels within each year in Venice for the period 1931�1981.
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The marginal posterior density estimates are depicted by the solid lines within Figure 17. Thedashed lines give marginal posterior density estimates under the same model, but using onlythe �ve largest values within each year. The variances of the marginal posterior distributionsinevitably increase when fewer order statistics are used.8 Reversible Markov Chains8.1 Theoretical featuresReversible Markov chains are useful tools to perform Bayesian analysis where the dimension-ality of the parameter vector is typically not �xed. As an application, Stephenson and Tawn(2004) introduced an extended model that explicitly allocates a non-zero probability to theGumbel/Exponential type. More generally, we can allocate a non-zero probability pξ to a �xedshape parameter value ξFix. Thus, we can de�ne a sub-space Θ0 of the parameter space Θ by:
Θ0 =

{

θ = (µ, σ, ξ) : µ ∈ R, σ ∈ R
+
∗ , ξ = ξFix

}The prior must be de�ned to give probability pξ on the sub-space Θ0. That is:
π(θ) =

{

(1 − pξ)πc(θ) for θ ∈ Θ\Θ0

pξπξFix
(θ) for θ ∈ Θ0

(14)where πξFix
(θ) = πc(µ, σ, ξFix)/

∫

µ,σ πc(µ, σ, ξFix)dµdσ for θ ∈ Θ0 and πc is a conventional priordistribution as introduced in Section 4. Note that the latter integral can be easily evaluated bystandard numerical integration methods.The proposed algorithm must deal with two dimensional change: a change to Θ0 from Θ\Θ0space and vice-versa. These two types of special moves must be de�ned cautiously. In particular,quantiles associated to probability of non exceedance p are set to be equal for state θt and proposal
θ∗, p being �xed.For a proposal move to Θ\Θ0 from Θ0, i.e., ξt = ξFix and a proposal shape ξ∗ 6= ξFix, the proposalis to change θt = (µt, σt, ξt) to θ∗ = (µ∗, σ∗, ξ∗) where

µ∗ = µt (15a)
σ∗ = σt

ξ∗(y
−ξt − 1)

ξt(y−ξ∗ − 1)
(15b)

ξ∗ ∼ N(ξ̃, s2
ξ) (15c)where y = 1− p, p being �xed, ξ̃ is taken to be the mode of the marginal distribution for ξ whenthere is no mass on Θ0 (Stephenson and Tawn, 2004), and sξ is the standard deviation selectedto give good mixing properties to the chain. As it is usually the case with Metropolis updates,this move is accepted with probability min(1,∆) where

∆ =
π(µ∗, σ∗, ξ∗|x)

π(µt, σt, ξFix|x)

pξ

1 − pξ

[

φ(ξ∗; ξ̃, s
2
ξ)JξFix

(ξ∗)
]−1 (16)where φ(·;m, s2) denotes the density function of the Normal distribution with mean m andvariance s2, and JξFix

is the Jacobian of the parameter transformation for quantile matching,that is:
JξFix

(ξ) =
ξFix

ξ

y−ξ − 1

y−ξFix − 1
(17)32



If the move is accepted, then θt+1 = (µ∗, σ∗, ξ∗) else θt+1 = θt.For a proposal move to Θ0 from Θ\Θ0, i.e., ξt = ξFix and a proposal shape ξ∗ 6= ξFix, the proposalis to change θt = (µt, σt, ξt) to θ∗ = (µ∗, σ∗, ξ∗) where
µ∗ = µt (18a)
σ∗ = σt

ξ∗(y
−ξt − 1)

ξt(y−ξ∗ − 1)
(18b)

ξ∗ = ξFix (18c)This move is accepted with probability min(1,∆) where
∆ =

π(µ∗, σ∗, ξFix|x)

π(µt, σt, ξt|x)

1 − pξ

pξ
φ(ξt; ξ̃, s

2
ξ)JξFix

(ξt) (19)If the move is accepted, then θt+1 = (µ∗, σ∗, ξ∗) else θt+1 = θt.In the evdbayes package, the Jacobian JξFix
is computed through the jacFun function, specialproposal move to Θ0 from Θ\Θ0 through movTyp1 and special proposal move from Θ0 to Θ\Θ0through movTyp2. Obviously, special moves introduced here are not the only conceivable onesand other reversible jumps can be explored. For this purpose, user can overwrite functionsjacFun, movTyp1 and movTyp2.8.2 Application
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