
> par(mfrow = c(1, 2))

> plot(fit1, type = 1)

> lines(sin(x), sin(x), col = "blue")

> plot(fit2, type = 1)

> lines(sin(x), sin(x), col = "blue")
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Figure 2: Diagnostic plots for Gaussian processes with constant nugget term (left) and diago-
nal nugget matrix (right). Open circles, cross-validated predictions; solid black lines, observed
response; solid blue line, true (noiseless) response; solid red lines, confidence bands.

4 Sensitivity Analysis

4.1 Background

For a response y = f(x), where x can be multidimensional, sensitivity analysis (SA) is used to
(a) quantify the extent in which uncertainty in the response y can be attributed to uncertainty
in the design parameters x, and (b) characterize how the response changes as one or more design
parameters are varied. General SA methods can be found in Saltelli et al. (2000). We briefly
describe SA using Gaussian process models, which is described in Schonlau and Welch (2006).

For independent marginal priors on the components of θ, the total variance of the GP predictor
can be decomposed into variance contributions from main and higher order interaction effects, a
technique known as Functional Analysis of Variance (FANOVA) decomposition. The percentage
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of the total functional variance accounted for by a particular effect provides a measure of the
importance of that effect.

The main effect of parameter θk, defined as E[z(θ)|zknown, θk], predicts output for a fixed value
of θk, averaged over the remaining parameters according to a prior (or weight function) π(θ-k)
on all components of θ except for the kth. The two-way interaction effect for parameters θk and
θl, defined as E[z(θ)|zknown, θk, θl], predicts output for jointly fixed values of θk and θl, averaged
over the remaining parameters according to a prior π(θ-k,-l). Main effects plots and contour plots
conveniently illustrate main effects and two-factor interactions.

In mlegp, we implement FANOVA decomposition and the plotting of main and two-way factor
interactions using indepedent uniform priors on all components of θ. By default, the range of each
component is taken to be the range of that component in the design matrix, but these ranges can
be overwritten via the arguments ‘lower’and ‘upper’.

4.2 Examples

4.2.1 FANOVA decomposition

The function FANOVADecomposition is used to perform FANOVA decomposition on a single
Gaussian processes, or on (a subset) of all Gaussian processes in a list. The function returns
a table that reports the % contribution of each effect to the total functional variance of the
Gaussian process predictor (or each Gaussian process predictor, in the case of a list). The code
below demonstrates the use of the FANOVADecomposition function on a Gaussian process with
two design parameters.

> x1 = kronecker(seq(0, 1, by = 0.25), rep(1, 5))

> x2 = rep(seq(0, 1, by = 0.25), 5)

> y = 4 * x1 - 2 * x2 + x1 * x2 + rnorm(length(x1), sd = 0.001)

> fit = mlegp(cbind(x1, x2), y, param.names = c("x1", "x2"))

> FANOVADecomposition(fit, verbose = F)

param % contribution

1 x1 90.1388705

2 x2 9.4930923

3 x1:x2 0.3740572

4.2.2 Graphical plots for main and interaction effects

The function plotMainEffects is a generic function for plotting multiple main effects for a single
Gaussian process; comparing a main effect across multiple Gaussian processes; and visualizing
main effects of a single parameter on functional output. The first two uses of plotMainEffects are
demonstrated below; an example of the latter can be found in Section (5).

First, we use plotMainEffects to plot the main effects for all input parameters on the Gaussian
process created above. By default, all main effects are plotted, but a subset of effects can be spec-
ified by either name or number through the argument ‘effects’. Setting ‘FANOVA = TRUE’ will
calculate, for each main effect, the percentage contribution of that effect to the total functional
variance of the GP predictor, and this will be reported in the legend. The function plotInter-

actionEffect is used to create a contour plot which visualizes interaction effects, and this is also
demonstrated below. Output from the code can be seen in Figure (3).

> par(mfrow = c(1, 2))

> plotMainEffects(fit, graphStyle = 1, FANOVA = TRUE)

> plotInteractionEffect(fit, effects = c(1, 2))

It is also possible to use plotMainEffects to compare a main effect of a single parameter across
multiple responses. We first create a Gaussian process list object that contains three GPs, each
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Figure 3: Main and Two-Way Interaction Effect Plots. For each main effect, the percent contri-
bution of that effect to the total functional variance of the Gaussian process is also reported.
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with the design parameter x. We then plot the main effect of x on the three GPs. This example
also illustrates how the main effect can be referred to by name instead of by number. The main
effects plot produced by the code is displayed in Figure (4).

> x = -5:5

> z1 = 10 - 5 * x + rnorm(length(x))

> z2 = 4 - 5 * x + rnorm(length(x))

> z3 = 7 * sin(x) + rnorm(length(x))

> fitMulti = mlegp(x, cbind(z1, z2, z3), param.names = "x")

> plotMainEffects(fitMulti, effects = "x", graphStyle = 1)
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Figure 4: Main effects of the parameter x on a Gaussian process list that models three responses.

5 Multivariate Output and Dimension Reduction

5.1 Background

For multivariate or functional output, singular value decomposition can be used to reduce the
dimensionality of the response (Heitmann et al., 2006). Let [z]i,j , i = 1, . . . , k, j = 1, . . . , m be
a matrix of m multivariate responses, where column j of the matrix contains the k-dimensional
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