
2.4 What does mlegp do?

The package mlegp extends the Gaussian process model of (3) by allowing the user to replace the
identity matrix I in equations (3) and (4) with a diagonal matrix N , thereby specifying the nugget

matrix up to a multiplicative constant. This extension provides some flexibility for modeling
heteroscedastic responses. The user also has the option of fitting a GP with a constant mean (i.e.,
µ(θ) ≡ µ0 ) or mean functions that are linear regression functions in all elements of θ (plus an
intercept term). For multi-dimensional output, the user has the option of fitting independent GPs
to each dimension (i.e., each type of observation), or to the most important principle component
weights following singular value decomposition. The latter is ideal for data rich situations, such
as functional output, and is explained further in Section (5). GP accuracy is analyzed through
diagnostic plots of cross-validated predictions and cross-validated residuals, which were described
in Section (2.3). Sensitivity analysis tools including FANOVA decomposition, and plotting of main
and two-way factor interactions are described in Section (4).

3 Examples: Gaussian process fitting and diagnostics

3.1 A simple example

The function mlegp is used to fit Gaussian processes (GPs) to a vector or matrix of responses
observed under the same set of design parameters. Data can be input from within R or read from
a text file using the command read.table (type ’?read.table’ from within R for more information).
The example below shows how to fit multiple Gaussian processes to multiple outputs z1 and z2 for
the design matrix x. Diagnostic plots are obtained using the plot function, which graphs observed
values vs. cross-validated predicted values for each GP. The plot obtained from the code below
appears in Figure (1).

> x = -5:5

> z1 = 10 - 5 * x + rnorm(length(x))

> z2 = 7 * sin(x) + rnorm(length(x))

> fitMulti = mlegp(x, cbind(z1, z2))

> plot(fitMulti)

After the GPs are fit, simply typing the name of the object (e.g., fitMulti) will return basic
summary information.

> fitMulti

num GPs: 2

Total observations (per GP): 11

Dimensions: 1

We can also access individual Gaussian processes by specifying the index. The code below, for ex-
amples, displays summary information for the first Gaussian process, including diagnostic statistics
of cross-validated root mean squared error (CV RMSE) and cross-validated root max squared error
(CV RMaxSE), where squared error corresponds to the squared difference between cross-validated
predictions and observed values.

> fitMulti[[1]]

Total observations = 11

Dimensions = 1

mu = 10.49854

sig2: 191.4983

nugget: 0
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Figure 1: Gaussian process diagnostic plots. Open circles, cross-validated predictions; solid black
lines, observed values; solid red lines, confidence bands corresponding to cross-validated predictions
± standard deviation.
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Correlation parameters:

beta a

1 0.2030227 2

Log likelihood = -33.34552

CV RMSE: 0.8953252

CV RMaxSE: 3.509689

3.2 Heteroscedastic responses and the nugget matrix

In cases where the responses are heteroscedastic (have non-constant variance), it is possible to
specify the diagonal nugget matrix up to a multiplicative constant. Future versions of mlegp will
allow more complicated forms of the nugget matrix; currently, we recommend specifying the nugget
matrix based on sample variances for replicate design points (which is easily obtained using the
function varPerReps), or the use of prior information. In the example below, we demonstrate how
to fit a Gaussian process with a constant nugget term and a Gaussian process where the diagonal
nugget matrix is specified up to a multiplicative constant. First we generate heteroscedastic data,
with variance related to the design parameter.

> x = seq(1, 10, by = 0.15)

> z = sin(x) + rnorm(length(x), sd = 0.2 * x)

By default, a nugget term is automatically estimated if there are replicates in the design matrix,
and is not estimated otherwise. However, one can estimate a nugget term by specifying an initial
scalar value for the ‘nugget’ argument during the call to mlegp. This is done in the code below.

> fit1 = mlegp(x, z, nugget = mean((0.2 * x)^2))

Alternatively, one can set ‘nugget’ equal to a vector corresponding to the diagonal nugget matrix
as described in Section (2.4). This allows the nugget matrix to be specified up to a multiplicative
constant, and is demonstrated in the code below.

> fit2 = mlegp(x, z, nugget = (0.2 * x)^2)

It is also possible to force a constant nugget term or the diagonal elements of the nugget matrix
to have a minimum value by setting the argument ‘min.nugget’. This is especially important when
the responses are noiseless, and is useful insituations when the variance-covariance matrix of the
GP is not stable.

Finally, we demonstrate the advantage of using a diagonal nugget matrix by comparing the
correlations between the true response and predictions from each fitted GP, and providing diag-
nostic plots, whose output is displayed in Figure 2). Importantly, predictions are biased when a
constant nugget term is assumed.

> cor(sin(x), predict(fit1))

[,1]

[1,] 0.8251486

> cor(sin(x), predict(fit2))

[,1]

[1,] 0.937518
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> par(mfrow = c(1, 2))

> plot(fit1, type = 1)

> lines(sin(x), sin(x), col = "blue")

> plot(fit2, type = 1)

> lines(sin(x), sin(x), col = "blue")
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Figure 2: Diagnostic plots for Gaussian processes with constant nugget term (left) and diago-
nal nugget matrix (right). Open circles, cross-validated predictions; solid black lines, observed
response; solid blue line, true (noiseless) response; solid red lines, confidence bands.

4 Sensitivity Analysis

4.1 Background

For a response y = f(x), where x can be multidimensional, sensitivity analysis (SA) is used to
(a) quantify the extent in which uncertainty in the response y can be attributed to uncertainty
in the design parameters x, and (b) characterize how the response changes as one or more design
parameters are varied. General SA methods can be found in Saltelli et al. (2000). We briefly
describe SA using Gaussian process models, which is described in Schonlau and Welch (2006).

For independent marginal priors on the components of θ, the total variance of the GP predictor
can be decomposed into variance contributions from main and higher order interaction effects, a
technique known as Functional Analysis of Variance (FANOVA) decomposition. The percentage
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