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1 mlegp: an overview

Gaussian processes (GPs) are commonly used as surrogate statistical models for predicting out-
put of computer experiments (Santner et al., 2003). Generlly, GPs are both interpolators and
smoothers of data and are effective predictors when the response surface of interest is a smooth
function of the parameter space. The package mlegp finds maximum likelihood estimates of
Gaussian processes for univariate and multi-dimensional responses, for Gaussian processes with
product exponential correlation structures; constant or linear regression mean functions; no nugget
term, constant nugget terms, or a nugget matrix that can be specified up to a multiplicative con-
stant. The latter is an extension of previous Gaussian process models and provides some flexibility
for using GPs to model heteroscedastic responses. Diagnostic plotting functions, and the sensi-
tivity analysis tools of Functional Analysis of Variance (FANOVA) decomposition, and plotting
of main and two-way factor interaction effects are implemented. Multi-dimensional output can
be modelled by fitting independent GPs to each dimension of output, or to the most important
principle component weights following singular value decomposition of the output. Plotting of
main effects for functional output is also implemented. From within R, a complete list of functions
and vignettes can be obtained by calling ‘library(help = ”mlegp”)’.

2 Gaussian process modeling and diagnostics

2.1 Gaussian processes

Let zknown =
[

z(θ(1)), . . . , z(θ(m))
]

be a vector of observed responses, where z(θ(i)) is the response

observed at the design point θ(i), the parameter vector θ(i) =
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, and we are interested

in predicting output z(θ(new)) at the untried parameter setting θ(new). The correlation between
any two responses (observed or unobserved) is assumed to have the (prodcut exponential) form
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The correlation matrix C(β) = [C(β)]i,j , and depends on the correlation parameters β = [β1, . . . , βp]
Let µ(·) be the mean function for the unconditional mean of any observation, and the mean

matrix of zknown be

M ≡
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µ
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The vector of observed responses, zknown, is distributed according to

zknown ∼ MV N
m
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