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1 mlegp: an overview

Gaussian processes (GPs) are commonly used as surrogate statistical models for predicting out-
put of computer experiments (Santner et al., 2003). Generlly, GPs are both interpolators and
smoothers of data and are effective predictors when the response surface of interest is a smooth
function of the parameter space. The package mlegp finds maximum likelihood estimates of
Gaussian processes for univariate and multi-dimensional responses, for Gaussian processes with
product exponential correlation structures; constant or linear regression mean functions; no nugget
term, constant nugget terms, or a nugget matrix that can be specified up to a multiplicative con-
stant. The latter is an extension of previous Gaussian process models and provides some flexibility
for using GPs to model heteroscedastic responses. Diagnostic plotting functions, and the sensi-
tivity analysis tools of Functional Analysis of Variance (FANOVA) decomposition, and plotting
of main and two-way factor interaction effects are implemented. Multi-dimensional output can
be modelled by fitting independent GPs to each dimension of output, or to the most important
principle component weights following singular value decomposition of the output. Plotting of
main effects for functional output is also implemented. From within R, a complete list of functions
and vignettes can be obtained by calling ‘library(help = ”mlegp”)’.

2 Gaussian process modeling and diagnostics

2.1 Gaussian processes

Let zknown =
[

z(θ(1)), . . . , z(θ(m))
]

be a vector of observed responses, where z(θ(i)) is the response

observed at the design point θ(i), the parameter vector θ(i) =
[

θ
(i)
1 , . . . , θ

(i)
p

]

, and we are interested

in predicting output z(θ(new)) at the untried parameter setting θ(new). The correlation between
any two responses (observed or unobserved) is assumed to have the (prodcut exponential) form

C(β)i,j ≡ cor
(

z(θ(i)), z(θ(j))
)

= exp

{

p
∑

k=1

(

−βk
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θ
(i)
k − θ

(j)
k

)2
)

}

. (1)

The correlation matrix C(β) = [C(β)]i,j , and depends on the correlation parameters β = [β1, . . . , βp]
Let µ(·) be the mean function for the unconditional mean of any observation, and the mean

matrix of zknown be

M ≡
[

µ
(

θ(1)
)

, . . . , µ
(

θ(m)
)]

. (2)

The vector of observed responses, zknown, is distributed according to

zknown ∼ MV N
m

(M, σ2
GP C(β) + σ2

eI), (3)
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where I is a k x k identity matrix, σ2
GP is the unconditional variance of an expected response and

σ2
e , the nugget term, is variance due to the stochasticity of the response (e.g., random noise). For

convenience, denote the variance-covariance matrix of zknown as

V ≡ σ2
GP C(β) + σ2

eI (4)

Also define ri = cor(z(θ(new)), z(θ(i))), following equation (1), and r = [r1, . . . , rm]
′

. Under the
GP assumption, the predictive distribution of z(θ(new)) is normal with mean

E[z(θ(new))|zknown] = µ(θ(new)) + σ2
GP r′V −1(zknown − M) (5)

and variance
V ar[z(θ(new))|zknown] = σ2

GP + σ2
e − σ4

GP r′V −1r.

For more details, see Santner et al. (2003).

2.2 Maximum likelihood estimation

We first need some additional notation. Mean functions that are constant or linear in design
parameters have the form µ(θ) = x(θ)F , where x(θ) is a row vector of regression parameters, and
F is a column vector of regression coefficients. Note that for a constant mean function, x(·) ≡
1 and F is a single value corresponding to the constant mean. The mean matrix M defined in
equation (2) has the form M = XF , where the ith row of X is equal to x(θ(i)).

Let us also rewrite the variance-covariance matrix V from equation (4) to be

V ≡ σ2
GP(C(β) + σ2

e∗I) ≡ σ2
GPW (β, σ2

e∗), (6)

where σ2
e∗ = σ2

e/σ2
GP, and the matrix W depends on the correlation parameters β = [β1, . . . , βp]

and the scaled nugget term σ2
e∗.

When the matrix W is fully specified, maximum likelihood estimates of the mean regression
parameters and σ2

GP exist in closed form and are

F̂ = (XT W−1X)−1XT W−1zknown (7)

and

σ̂2
GP =

1

m
(zknown − M̂)T W−1(zknown − M̂), (8)

where M̂ = XF̂ .
The package mlegp uses numerical methods in conjunction with equations (7) and (8) to find

maximum likelihood estimates of all GP parameters.

2.3 Diagnostics

The cross-validated prediction z-i(θ
(i)) is the predicted response obtained using equation (5) after

removing all responses at design point θ(i) from zknown. Note that it is possible for multiple θ(i)’s,
for various i’s, to be identical, in which case all corresponding observations are removed. The
cross-validated residual for this observations is

z(θ(i)) − z-i(θ
(i))

se(z-i(θ(i))
, (9)

where se(z−i(θ
(i))) is the standard error of z-i(θ

(i))
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2.4 What does mlegp do?

The package mlegp extends the Gaussian process model of (3) by allowing the user to replace the
identity matrix I in equations (3) and (4) with a diagonal matrix N , thereby specifying the nugget

matrix up to a multiplicative constant. This extension provides some flexibility for modeling
heteroscedastic responses. The user also has the option of fitting a GP with a constant mean (i.e.,
µ(θ) ≡ µ0 ) or mean functions that are linear regression functions in all elements of θ (plus an
intercept term). For multi-dimensional output, the user has the option of fitting independent GPs
to each dimension (i.e., each type of observation), or to the most important principle component
weights following singular value decomposition. The latter is ideal for data rich situations, such
as functional output, and is explained further in Section (5). GP accuracy is analyzed through
diagnostic plots of cross-validated predictions and cross-validated residuals, which were described
in Section (2.3). Sensitivity analysis tools including FANOVA decomposition, and plotting of main
and two-way factor interactions are described in Section (4).

3 Examples: Gaussian process fitting and diagnostics

3.1 A simple example

The function mlegp is used to fit Gaussian processes (GPs) to a vector or matrix of responses
observed under the same set of design parameters. Data can be input from within R or read from
a text file using the command read.table (type ’?read.table’ from within R for more information).
The example below shows how to fit multiple Gaussian processes to multiple outputs z1 and z2 for
the design matrix x. Diagnostic plots are obtained using the plot function, which graphs observed
values vs. cross-validated predicted values for each GP. The plot obtained from the code below
appears in Figure (1).

> x = -5:5

> z1 = 10 - 5 * x + rnorm(length(x))

> z2 = 7 * sin(x) + rnorm(length(x))

> fitMulti = mlegp(x, cbind(z1, z2))

> plot(fitMulti)

After the GPs are fit, simply typing the name of the object (e.g., fitMulti) will return basic
summary information.

> fitMulti

num GPs: 2

Total observations (per GP): 11

Dimensions: 1

We can also access individual Gaussian processes by specifying the index. The code below, for ex-
amples, displays summary information for the first Gaussian process, including diagnostic statistics
of cross-validated root mean squared error (CV RMSE) and cross-validated root max squared error
(CV RMaxSE), where squared error corresponds to the squared difference between cross-validated
predictions and observed values.

> fitMulti[[1]]

Total observations = 11

Dimensions = 1

mu = 10.49854

sig2: 191.4983

nugget: 0
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