
1

OneMap Tutorial
Software for constructing genetic maps in outcrossing species

Gabriel Rodrigues Alves Margarido1

Marcelo Mollinari1

Antonio Augusto Franco Garcia1*

1Department of Genetics

Escola Superior de Agricultura “Luiz de Queiroz” (ESALQ), Universidade de São Paulo (USP)

Av. Pádua Dias, 11 - Caixa Postal 83

CEP: 13400-970 - Piracicaba - São Paulo - Brazil

Tel: +55 19 34294125

Fax: +55 19 34336706

E-mail: aafgarci@esalq.usp.br

*corresponding author

http://www.r-project.org

April 28, 2009

Overview

OneMap is an environment for constructing linkage maps in outcrossing plant species, using

full-sib families derived from two outbred (non-homozygous) parents. It is implemented as a

package to be used under the freely distributed R software, which is a language and environment

for statistical computing (www.r-project.org).

Wu et al. (2002a) proposed a methodology to construct genetic maps in outcrossing species,

which allows the analysis of a mixed set of different marker types containing various segregation

patterns. Also, it allows the simultaneous estimation of linkage and linkage phases between

markers, and it was successfully applied in the analysis of sugarcane data sets (Garcia et al.,

2006; Oliveira et al., 2007). Actually, the analysis of these sugarcane data sets motivated the

implementation of OneMap.

Despite those results, the construction of linkage maps could be greatly enhanced with the

use of multipoint likelihood through Hidden Markov Models (HMM). Jiang and Zeng (1997) ex-

plained in detail this methodology, emphasizing its advantages and limitations, for populations

derived from inbred lines. Merging the ideas of Wu et al. (2002a) and the HMM framework,

as done by Wu et al. (2002b), led us to develop this new version of OneMap.

This new version (1.0-0) handles two-point analysis between markers and performs the

grouping step in the same way in the previous version (0.1-1), following Wu et al. (2002a)

2

approach. However, marker ordering in a linkage group can be done not only using Rapid

Chain Delineation - RCD (Doerge, 1996), but also through HMM-based algorithms, in the

same way as implemented in MAPMAKER/EXP (Lander et al., 1987). The three-point test is

maintained as defunct in version 1.0-0 only for historical reasons.

OneMap is available as source code for Windows� and Unix. It is released under the GNU

General Public License, is open-source and the code can be changed freely. It comes with no

warranty.

To download the free software R, please visit the Comprehensive R Archive Network (cran.r-

project.org). The user of OneMap is supposed to have some experience with R, since the analysis

is done using the command line. R comes with a ‘getting started manual’ and various others

useful documents can be found on CRAN and by searching the web. This tutorial will not

discuss basic R usage and assumes that the user has some experience on it.

After installing R, OneMap can be installed by opening R and issueing the command

> install.packages("onemap")

OneMap can also be installed by downloading the appropriate files directly at the CRAN

web site and following the instructions given in the section“6.3 Installing Packages”of the“R In-

stallation and Administration” manual (http://cran.r-project.org/doc/manuals/R-admin.pdf).

Citation

Margarido, G.R.A., Souza, A.P. and Garcia, A.A.F. OneMap: software for genetic mapping in

outcrossing species. Hereditas 144: 78-79, 2007.

Introduction to OneMap

OneMap is comprised by a small set of functions (listed below). There are other functions used

internally by the software. However, you do not need to use them directly.

Getting started

The following example is intended to show the usage of all OneMap functions. With basic

knowledge of R syntax, one should have no big problems using it. It is assumed that the

user is running Windows�. Hopefully, these examples will be clear enough to help any user to

understand its functionality and start using it.

1. Start R by double-clicking its icon.

3

Function type Function name Function description

Input read.outcross Read data from an outcross

Data manipulation make.seq Creates a sequence of markers based on objects of

other types

marker.type Informs the segregation type of a genetic marker

add.marker Adds markers to a sequence

drop.marker Drops markers from a sequence

Genetic mapping rf.2pts Estimates recombination fractions (two points)

group Assigns markers to linkage groups

rcd Orders markers in a sequence using RCD algorithm

compare Compares all possible orders of markers in a sequence

try.seq Tries to map a marker into a given linkage group

order.seq Automates map construction through “compare” and

“try.seq” functions

ripple Compares alternative orders for a map and displays

the plausible ones

map Constructs a multipoint linkage map for a sequence

in a given order

rf.graph.table Plots a pairwise recombination fraction matrix using

a color scale.

Defunct def.rf.3pts Estimates recombination fractions (three points method)

2. Load OneMap (after installing it):

> library(onemap)

3. To save your project anytime, type:

> save.image("C:/.../yourfile.RData")

or access the toolbar File → Save Workspace.

Creating the data file

This step might be quite difficult, since the data file is not very simple and many errors can

occur while reading it. The input file format is similar to that used by MAPMAKER/EXP

(Lander et al., 1987), so experienced users of genetic analysis software should be familiarized

with it.

Basically, the input file is a text file with a first line indicating the number of individuals and

the number of markers. Then, the genotype information is included separately for each marker.

4

The character “*” indicates the beginning of information input for a new marker, followed by

the marker name. Next, there is a code indicating the marker type, according to Wu’s et al.

(2002a) notation. In short, Wu et al. (2002a) classified marker types in the following way:

Parent Offspring

crosstype Cross Observed

bands

Observed bands Segregation

A 1 ab × cd ab × cd ac, ad, bc, bd 1:1:1:1

2 ab × ac ab × ac a, ac, ba, bc 1:1:1:1

3 ab × co ab × c ac, a, bc, b 1:1:1:1

4 ao × bo a × b ab, a, b, o 1:1:1:1

B B1 5 ab × ao ab × a ab, 2a, b 1:2:1

B2 6 ao × ab a × ab ab, 2a, b 1:2:1

B3 7 ab × ab ab × ab a, 2ab, b 1:2:1

C 8 ao × ao a × a 3a, o 3:1

D D1 9 ab × cc ab × c ac, bc 1:1

10 ab × aa ab × a a, ab 1:1

11 ab × oo ab × o a, b 1:1

12 bo × aa b × a ab, a 1:1

13 ao × oo a × o a, o 1:1

D2 14 cc × ab c × ab ac, bc 1:1

15 aa × ab a × ab a, ab 1:1

16 oo × ab o × ab a, b 1:1

17 aa × bo a × b ab, a 1:1

18 oo × ao o × a a, o 1:1

Actually, it is strongly recommended to check Wu et al. (2002a) paper before using OneMap.

Marker types must be one of the following: A.1, A.2, A.3, A.4, B1.5, B2.6, B3.7, C.8, D1.9,

D1.10, D1.11, D1.12, D1.13, D2.14, D2.15, D2.16, D2.17 or D2.18. The letter and the number

before the dot indicate the segregation type (i.e., 1:1:1:1, 1:2:1, 3:1 or 1:1), while the number

after the dot indicates the offspring observed bands. The paper cited above gives details with

respect to marker types; we will not discuss them here.

Finally, after each marker name, comes the genotype data for the segregating population.

The coding for marker genotypes used by OneMap is also the same one proposed by Wu et al.

(2002a) and the possible values vary according to the marker type. Missing data are indicated

with the character “-” and a comma separates the information for each individual.

Here is an example of such file for 10 individuals and 5 markers:

10 5

*M1 B3.7 ab,ab,-,ab,b,ab,ab,-,ab,b

*M2 D2.18 o,-,a,a,-,o,a,-,o,o

*M3 D1.13 o,a,a,o,o,-,a,o,a,o

*M4 A.4 ab,b,-,ab,a,b,ab,b,-,a

*M5 D2.18 a,a,o,-,o,o,a,o,o,o

5

The input file must be saved in text format, with extensions like “.txt”. It is a good idea to

open the text file called “example out.txt”, available with OneMap, and saved on the directory

you installed it, to see how your file should be.

Importing data

1. Once the input file is created, data can be loaded into R. The function used to import

data is named read.outcross. Its usage is quite simple:

> example_out <- read.outcross("C:/workingdirectory", "example_out.txt")

The first argument is the directory where the input file is located and the second one is

the file name.

2. You can change the working directory in R using function setwd() or in the toolbar

clicking File → Change dir. If you set your working directory to the one containing the

input file, you can just type:

> example_out <- read.outcross(file = "example_out.txt")

If no error has occurred, a message will display some basic information about the data,

such as number of individuals and number of markers:

3. Because this particular data set is distributed along with the package, you can load it

simply typing

> data(example_out)

4. Loading the data creates an object of class outcross, which will further be used in the

analysis. R command print recognizes objects of this class. Thus, if you type

> example_out

you will see some information about the object.

Estimating two-point recombination fractions

1. To start the mapping analysis, the first step is estimating the recombination fraction

between all pairs of markers, using two-point tests:

> twopts <- rf.2pts(example_out)

6

This command uses as default values of LOD-Score 3 and maximum recombination frac-

tion 0.35.

2. Different values for the criteria can be chosen using:

> twopts <- rf.2pts(example_out, LOD = 3, max.rf = 0.4)

3. Although the two-point test was implemented in C language, which is much faster than

R, this step can take quite some time, depending on the number of markers involved and

their segregation type, since all combinations will be estimated and tested. Besides, the

results use a lot of memory and a rather powerful computer is needed. For example, the

analysis of a real data set with 1741 markers (segregating 3:1 and 1:1) took 2.8 hours,

running under Windows� on a Pentium® 4 CPU 3.00 GHz with 1 GB RAM memory.

4. When the two-point analysis is finished, an object of class rf.2pts is created. Typing

> twopts

will show a message with the criteria used in the analysis and information about printing

details of this object:

5. If you want to see the results for given markers, say M1 and M3, the command is:

> print(twopts, "M1", "M3")

Each line indicates a possible linkage phase. 1 denotes coupling phase in both parents

(CC), 2 and 3 denote coupling phase in parent 1 and 2, respectively, and repulsion in the

other (CR and RC), and 4 denotes repulsion phase in both parents (RR).

Assigning markers to linkage groups

1. Once the recombination fractions and linkage phases for all pairs of markers have been

estimated and tested, markers can be assigned to linkage groups. To do this, first use the

function make.seq to create a sequence with all markers:

> mark.all <- make.seq(twopts, "all")

The function make.seq is used to create sequences from objects of several kinds, as will

be seen along this tutorial. Here, the object is of class rf.2pts and the second argument

specifies which markers one want to use. In this example, "all" indicates that all markers

will be analyzed. If one wants to use only markers one and two, for example, the option

will be c(1,2). These numbers refer to the lines where the markers are located on the

data file. Function marker.type could be helpful (M1 and M2 in this case).

7

2. The grouping step is very simple and can be done by using the function group:

> LGs <- group(mark.all)

For this function, optional arguments are LOD and max.rf, which define thresholds to

be used when assigning markers to linkage groups. If none provided (default), criteria

previously defined for the object twopts are used.

3. The previous command generates an object of class group and the command print for

such object has two options. If you simply type:

> LGs

you will get detailed information about the groups, i.e., all linkage groups will be printed,

displaying the names of markers in each one of them.

However, in case you just want to see some basic information (such as the number of

groups, number of linked markers and more), the command is:

> print(LGs, detailed = FALSE)

4. You can notice that all markers are linked to some linkage group. If the LOD-Score

threshold is changed to a higher value, some markers are kept unassigned:

> LGs <- group(mark.all, LOD = 6)

> LGs

5. Changing back to the previous criteria, now setting the maximum recombination fraction

to 0.40:

> LGs <- group(mark.all, LOD = 3, max.rf = 0.4)

> LGs

Genetic mapping of linkage group 3

1. When marker assignment to linkage groups is finished, the mapping step can take place.

First of all, you must set the mapping function that should be used to display the ge-

netic map through the analysis. You can choose between Kosambi or Haldane mapping

function. To use Haldane, type

> set.map.fun(type = "haldane")

To use Kosambi

8

> set.map.fun(type = "kosambi")

Now, you must define which linkage group will be mapped. In other words, a linkage

group must be “extracted” from the object of class group, in order to be mapped. For

simplicity, we will start here with the smallest one, which is linkage group 3. This can be

easily done using the following code:

> LG3 <- make.seq(LGs, 3)

The first argument (LGs) is an object of class group and the second is a number indicating

which linkage group will be extracted, according to the results present in object LGs. The

object LG3, generated by function make.seq, is of class sequence, showing that this

function can be used with several types of objects.

2. If you type

> LG3

you will see which markers are comprised in the sequence, and also that no parameters

are estimated.

3. To obtain a preliminary order of these markers, the rcd function can be used:

> LG3.rcd <- rcd(LG3)

4. To order the markers in linkage group 3 (LG3), by evaluating all possible orders, the

function compare can be used:

> LG3.comp <- compare(LG3)

This step takes some time, because this sequence contains one marker of type D1 and

one of type D2, besides one marker segregating in 3:1 fashion (type C). Thus, although

the number of possible orders is relatively small (60), for each order there are various

possible combinations of linkage phases. Also, the convergence of the EM algorithm takes

considerably more time, since markers of type C are not very informative.

The first argument is an object of class sequence (the extracted group LG3) and the

object generated by this function is of class compare.

5. To see the results of the previous step, type

> LG3.comp

9

By default, the software stores 50 orders, which may or may not be unique.

In this example, note that there are nine possible unique orders. The value of LOD refers

to the overall LOD-Score, considering all orders tested. Nested LOD refers to LOD-Scores

within a given order, i.e., scores for different combinations of linkage phases for the same

order.

For example, order 1 has the largest value of log-likelihood and, therefore, its LOD-Score

is zero for some combination of linkage phases. For this same order and other linkage

phases, LOD-Score is -2.43. g Analyzing the results for order 2, notice that its highest

LOD-Score is very close to zero, indicating that this order is also quite plausible. Notice

also that Nested LOD will always contain at least one zero value, corresponding to the

best combination of phases for markers in a given order.

6. Since it is a good idea to choose the order with the highest likelihood, the final map can

be obtained with the command

> LG3.final <- make.seq(LG3.comp, 1, 1)

The first argument is the object of class compare. The second argument indicates which

order is chosen: 1 is for the order with highest likelihood, 2 is for the second best, and so

on. The third argument indicates which combination of phases is chosen for this specific

order: 1 also means the combination with highest likelihood.

For simplicity, these values are defaults, so typing

> LG3.final <- make.seq(LG3.comp)

will have the same effect.

7. To see the final map, simply type

> LG3.final

At the leftmost position, marker names are displayed. Position shows the cumulative

distance using the Kosambi mapping function, as defined above. Finally, Parent 1 and

Parent 2 show the diplotypes of both parents, that is, the manner in which alleles are

arranged in the chromosomes. Notation is the same as that used by Wu et al. (2002a).

Genetic mapping of linkage group 2

1. Now let us map the markers in linkage group number 2. Again, “extract” that group from

the object LGs:

10

> LG2 <- make.seq(LGs, 2)

> LG2

Note that there are 10 markers in this group, so it is unfeasible to use the compare function

with all of them since it will take a long time to proceed.

2. First, use rcd to get a first order estimate:

> LG2.rcd <- rcd(LG2)

> LG2.rcd

3. Use the marker.type function to check the segregation types of all markers in this group:

> marker.type(LG2)

4. Based on their segregation types and distribution on the preliminary map, markers M4,

M9, M19, M20 and M24 are the most informative ones (type A is the better, followed by

type B). So, let us create a framework of markers using compare:

> LG2.init <- make.seq(twopts, c(4, 23, 19, 20, 24))

> LG2.comp <- compare(LG2.init)

> LG2.comp

Now, the first argument to make.seq is an object of class rf.2pts, and the second

argument is a vector of integers, specifying which molecular markers will constitute the

sequence.

5. Select the best order:

> LG2.frame <- make.seq(LG2.comp)

6. Next, try to map the remaining markers. Since there are more markers of type D1 than

D2, the latter will be tried in the end:

> LG2.extend <- try.seq(LG2.frame, 9)

> LG2.extend

Based on the LOD-Scores, marker M9 is probably located between markers M23 and M24.

However, the “*” symbol indicates that more than one linkage phase is possible. Detailed

results can be seen with:

> print(LG2.extend, 5)

11

where the second argument indicates the position where the marker was placed. Note

that the first allele arrangement is most likely.

7. The best order can be obtained with:

> LG2.frame <- make.seq(LG2.extend, 5, 1)

When using make.seq with an object of class try, the second argument is the position on

the map (according to the scale to the right in the output) and the last argument indicates

the combination of phases. The same can be done with (omitting the combination of

phases):

> LG2.frame <- make.seq(LG2.extend, 5)

> LG2.frame

Continuing with other markers, one by one:

> LG2.extend <- try.seq(LG2.frame, 29)

> LG2.extend

> LG2.frame <- make.seq(LG2.extend, 7)

> LG2.frame

> LG2.extend <- try.seq(LG2.frame, 27)

> LG2.extend

> LG2.frame <- make.seq(LG2.extend, 1)

> LG2.frame

> LG2.extend <- try.seq(LG2.frame, 16)

> LG2.extend

> LG2.frame <- make.seq(LG2.extend, 2)

> LG2.frame

> LG2.extend <- try.seq(LG2.frame, 21)

> LG2.extend

> LG2.final <- make.seq(LG2.extend, 6)

8. Compare the order obtained through rcd and that obtained via HMM:

> LG2.rcd

> LG2.final

Although rcd can result in a few different orders for this linkage group, the likelihood of

the HMM-based order is always higher in this case.

12

9. This process of adding markers sequentially can be automated with the use of function

order.seq.

> LG2.ord <- order.seq(LG2, n.init = 5, THRES = 3)

In the syntax above, n.init = 5 means that five markers (the most informative ones)

will be used in the compare step; THRES = 3 indicates that the try.seq step will only add

markers to the sequence which can be mapped with LOD-Score higher than 3. NOTE:

Although very useful, this function can be misleading, specially if there are not many

fully informative markers, so use it carefully.

10. Check the final order:

> LG2.ord

and note that markers 16, 21 and 29 could not be safely mapped to a single position

(LOD-Score > THRES in absolute value). The output displays the “safe” order and the

most likely positions for unmapped markers, where“***” indicates the most likely position

and “*” corresponds to other plausible positions.

11. To get the safe order, use

> LG2.safe <- make.seq(LG2.ord, "safe")

> LG2.safe

and to get the order with all markers, use

> LG2.all <- make.seq(LG2.ord, "force")

> LG2.all

Notice that, for this linkage group, the “forced” map obtained with order.seq is the same

as that constructed before with compare plus try.seq, but this is not always the case.

12. The order.seq function can perform two rounds of the try.seq step, first using THRES

and then THRES - 1 as threshold. This generally results in safe orders with more markers

mapped, but takes longer to run. To do this,type:

> LG2.ord <- order.seq(LG2, n.init = 5, THRES = 3, touchdown = TRUE)

> LG2.ord

For this particular sequence, the touchdown step could not map any additional marker,

but this will not happen all time.

13. Finally, to check for alternative orders, use the ripple function:

13

> ripple(LG2.final, ws = 4, LOD = 3)

The second argument, ws = 4, means that subsets (windows) of four markers will be

permutated sequentially (4! orders for each window), to search for other plausible orders.

The LOD argument means that only orders with LOD-Score smaller than 3 will be printed.

14. The ripple command showed that the final order obtained is indeed the best for this

linkage group. The map can than be obtained using

> LG2.all

Genetic mapping of linkage group 1

1. Finally, linkage group 1 (the largest one) will be mapped. Extract and map it using rcd:

> LG1 <- make.seq(LGs, 1)

> LG1.rcd <- rcd(LG1)

> LG1.rcd

2. Construct the linkage map:

> LG1.ord <- order.seq(LG1, n.init = 6, touchdown = TRUE)

> LG1.ord

Notice that the second round of try.seq added markers M11 and M25.

3. Now, get the order with all markers:

> LG1.final <- make.seq(LG1.ord, "force")

> LG1.final

Compared to the rcd order, this final map has markers M12 and M30 in different positions

resulting in higher log-likelihood.

4. Check the final map:

> ripple(LG1.final)

5. Print it

> LG1.final

14

Map estimation for a given order

1. If, for any reason, one wants to estimate parameters for a given linkage map, it is possible

to define a sequence and use the map function. For example, for markers M30, M12, M3,

M14 and M2, in this order, use

> any.seq <- make.seq(twopts, c(30, 12, 3, 14, 2))

> any.seq.map <- map(any.seq)

This is a subset of the first linkage group. When used like this, map function searches for

the best combination of phases between markers.

2. Furthermore, a sequence can also have user-defined linkage phases. The next example

shows incorrect phases for the same order of markers:

> any.seq <- make.seq(twopts, c(30, 12, 3, 14, 2), phase = c(4,

+ 1, 4, 3))

> any.seq.map <- map(any.seq)

3. If one needs to add or drop markers from a predefined sequence, use the functions

add.marker and drop.marker. Adding markers 4 to 8 in any.seq can be done using

> any.seq <- add.marker(any.seq, 4:8)

> any.seq

Removing markers 3, 4, 5, 12 and 30 from any.seq:

> any.seq <- drop.marker(any.seq, c(3, 4, 5, 12, 30))

> any.seq

Plotting the Recombination Fraction Matrix

1. For a given sequence, it is possible to plot the recombination fraction matrix based on a

color scale using the function rf.graph.table. This matrix can be useful to make some

diagnostics about the map. For example, using the function group with LOD=2.5:

> LGs <- group(mark.all, LOD = 2.5)

> LGs

This value of LOD wrongly results in linkage groups with markers from distinct ones (LG2

and LG3) in the same group. Ordering markers will provide

15

> LG.err <- make.seq(LGs, 2)

> LG.err.ord <- order.seq(LG.err)

> LG.err.ord

2. The map with option “force” is:

> LG.err.map <- make.seq(LG.err.ord, "force")

3. However, plotting the recombination fraction matrix will result in:

> rf.graph.table(LG.err.map)

The color scale varies from red (small distances) to dark blue. This scale follows the

“rainbow” color palette with start argument equal to 0 and end argument equal to

0.65. Clicking on the cell corresponding to two markers (off secondary diagonal), you

can see some information about them. For example, clicking on the cell corresponding

to markers M4 and M19 you can see their names, types (A.4 and B1.5), recombination

fraction (rf=0.02281) and LOD-Scores for each possible linkage phase.

Looking at the whole matrix, it is possible to see a sub-division in two groups: one with

markers from LG2 (M27 M16 M20 M4 M19 M21 M23 M9 M24 M29) and other with markers

from LG3 (M18 M8 M13 M7 M22). Following the secondary diagonal of the matrix, there is

a gap between markers M18 and M29 (rf=0.4322). At this position, the group should be

divided, that is, a higher LOD-Score should be used. Notice that these two groups were

placed together due to a false linkage (false positive) detected between markers M4 and

M22, which has LOD-Score 2.9.

The rf.graph.table can also be used to check the order of markers based on the mono-

tonicity of the matrix, i.e. as we get away from the secondary diagonal, the recombination

fraction values should increase.

Final comments

At this point it should be clear that any potential OneMap user must have some knowledge

about genetic mapping and also the R language, since the analysis is not done with only one

mouse click. In the future, perhaps a graphical interface will be made available to make this

software a lot easier to use. Any suggestions and critics are welcome.

Currently, there is not a graphical function included in OneMap to draw the map. But once

the distances and the linkage phases are estimated, map figures could be easily done. Also,

there are several free softwares that can be used, such as MapChart (Voorrips, 2002).

16

References

Broman, K. W., Wu, H., Churchill, G., Sen, S., Yandell, B. qtl: Tools for analyzing QTL

experiments R package version 1.09-43, 2008.

Doerge, R.W. Constructing genetic maps by rapid chain delineation. Journal of Agricul-

tural Genomics 2, 1996.

Garcia, A.A.F., Kido, E.A., Meza, A.N., Souza, H.M.B., Pinto, L.R., Pastina, M.M., Leite,

C.S., Silva, J.A.G., Ulian, E.C., Figueira, A. and Souza, A.P. Development of an in-

tegrated genetic map of a sugarcane (Saccharum spp.) commercial cross, based on a

maximum-likelihood approach for estimation of linkage and linkage phases. Theoreti-

cal and Applied Genetics 112, 298-314, 2006.

Haldane, J. B. S. The combination of linkage values and the calculation of distance between

the loci of linked factors. Journal of Genetics 8, 299-309, 1919.

Jiang, C. and Zeng, Z.-B. Mapping quantitative trait loci with dominant and missing markers

in various crosses from two inbred lines. Genetica 101, 47-58, 1997.

Kosambi, D. D. The estimation of map distance from recombination values. Annuaire of

Eugenetics 12, 172-175, 1944.

Lander, E. S. and Green, P. Construction of multilocus genetic linkage maps in humans. Proc.

Natl. Acad. Sci. USA 84, 2363-2367, 1987.

Lander, E.S., Green, P., Abrahanson, J., Barlow, A., Daly, M.J., Lincoln, S.E. and Newburg, L.

MAPMAKER, An interactive computing package for constructing primary genetic linkage

maps of experimental and natural populations. Genomics 1, 174-181, 1987.

Lincoln, S. E., Daly, M. J. and Lander, E. S. Constructing genetic linkage maps with MAP-

MAKER/EXP Version 3.0: a tutorial and reference manual. A Whitehead Institute

for Biomedical Research Technical Report 1993.

Margarido, G. R. A., Souza, A.P. and Garcia, A. A. F. OneMap: software for genetic mapping

in outcrossing species. Hereditas 144, 78-79, 2007.

Oliveira, K.M., Pinto, L.R., Marconi, T.G., Margarido, G.R.A., Pastina, M.M., Teixeira,

L.H.M., Figueira, A.M., Ulian, E.C., Garcia, A.A.F., Souza, A.P. Functional genetic link-

age map on EST-markers for a sugarcane (Saccharum spp.) commercial cross. Molecular

Breeding 20, 189-208, 2007.

Oliveira, E. J., Vieira, M. L. C., Garcia, A. A. F., Munhoz, C. F.,Margarido, G. R.A., Consoli,

L., Matta, F. P., Moraes, M. C., Zucchi, M. I., and Fungaro,M. H. P. An Integrated Molec-

ular Map of Yellow Passion Fruit Based on Simultaneous Maximum-likelihood Estimation

of Linkage and Linkage Phases J. Amer. Soc. Hort. Sci. 133, 35-41, 2008.

Voorrips, R.E. MapChart: software for the graphical presentation of linkage maps and QTLs.

Journal of Heredity 93, 77-78, 2002.

17

Wu, R., Ma, C.X., Painter, I. and Zeng, Z.B. Simultaneous maximum likelihood estimation of

linkage and linkage phases in outcrossing species. Theoretical Population Biology 61,

349-363, 2002a.

Wu, R., Ma, C.-X., Wu, S. S. and Zeng, Z.-B. Linkage mapping of sex-specific differences.

Genetical Research 79, 85-96, 2002b.

Apendix

DEFUNCT - Checking the map with three-point analysis

For historical reasons, three-point analyses are maintained in OneMap, but the same (and a lot

more) can be done using the multipoint approach.

1. The function def.rf.3pts is used as follows:

> def.rf.3pts(example, "M18", "M8", "M13")

The first argument is the object with the input data, of class outcross. Then, three

ordered markers are specified.

In this case, the assignments “A11”, “A12”, . . ., have similar meanings to those of the

two-point analysis: 1 means coupling/coupling, 2 is for coupling/repulsion, 3 is for re-

pulsion/coupling and 4 is for repulsion/repulsion. The first number is the linkage phase

between markers Mi and Mi+1, while the second number is the linkage phase between

markers Mi+1 and Mi+2.

2. Take a look at the default criteria used by this function: LOD = 5, maximum recombi-

nation fraction between adjacent markers = 0.35 and maximum recombination fraction

between markers on the two ends = 0.55. Considering, for example, three markers A

- B - C, in that order, the last criterion indicates the maximum recombination fraction

acceptable between markers A and C. These values are used by the software to decide the

most probable assignment and can be changed by the user:

> def.rf.3pts(example, "M18", "M8", "M13", LOD = 10, max.rf = 0.4)

> def.rf.3pts(example, "M18", "M8", "M13", max.rf = 0.4, max.nolink = 0.6)

The arguments max.rf and max.nolink correspond to the maximum recombination frac-

tion between adjacent markers and the maximum recombination fraction between markers

on the two ends, respectively.

18

3. Do this step for all triplets of markers in linkage group 1:

> def.rf.3pts(example, "M18", "M8", "M13")

> def.rf.3pts(example, "M8", "M13", "M7")

> def.rf.3pts(example, "M13", "M7", "M22")

This last command line shows that the order M13 - M7 - M22 is possibly incorrect, and

a warning message is displayed. However, the HMM-based analyses use information from

every marker in the sequence and, therefore, the order obtained through compare is likely

to be the best order. Anyway, we had noticed that changing the positions of markers M7

and M22 resulted in an order with LOD-Score -0.02, which is very close to zero. This

probably happens because M7 is of type D2 and M22 is of type D1.

These three-point analyses were formerly used to check the final linkage map. In this new

version, the best way to do this is using the new function ripple.

