
Basic uses of the optmatch package

Yevgeniya Kleyman and Ben Hansen

May 19, 2009

For case-control studies, prospective studies with a treatment and a control group,
and studies of a few other types, a statistician may wish to match individuals from
one predesignated group, the cases or the treatment group, to similar members of
another group of control subjects in order to reduce treatment selection bias and
estimate treatment e�ect. This is bipartite matching.

Matching algorithms fall into two categories: greedy and optimal. In each case,
there is a need for a criterion of discrimination between better and worse matches.
Here, it takes form of a \distance". In greedy matching, treated units are considered
in sequence, with each paired to the closest (as measured by distance) control that has
not already been matched to another treated unit. This approach, also called\nearest
available" matching, is easily implemented, but can result in matches that are much
poorer than they need be. \Optimal" matching, on the other hand, assigns controls
to treated units so as to minimize the average of distances among matched units.
(The algorithms needed for optimal matching are not simply described, but they are
functionally similar to sequential pairing procedures that reconsider previously made
matchings at each new step.) When the number of controls is large, greedy and
optimal matching often lead to very similar or same sets of matches; however optimal
matching generally results in smaller distances within each pair (Gu and Rosenbaum
1993)

To see the di�erence between greedy and optimal matching, consider the following
example. Below is a table indicating the quality of potential pairings among four
objects.

y z

w A A-

x A- F

1

A greedy algorithm for pair matching creates pairs sequentially, at each step choos-
ing the pairing that then seems best, without attending to its e�ect on future pairings.
A greedy match might begin with w, in which case w would be paired to y, as y is
w�Ss nearest available counterpart. In and of itself this is a good pairing, as the given
distance matrix rates it a \A"; but it is bad in that it leaves only z as a possible match
to x . The average of its two grades is \C". A luckier implementation would begin
with x , matching it to y and then w to z , for an average of \A-". Optimal matching
removes luck from the picture, immediately matching x to y and w to z.

Full matching is an especially general form of optimal matching. In a full match,
some matched sets may contain one treated subject (or case) alongside one of more
controls, while other matched sets may contain multiple treated units (cases) alongside
one control. This distinguishes full matching from both pair matching, matching with
k � 2 controls, and matching with a variable number of controls, although full match-
ings sometimes coincide with matches produced by these simpler methods (Hansen
and Klopfer 2006). Among all methods of matching for two groups, full matching
alone is demonstrably optimal as a method of producing similarity with matched
sets; this was shown by Rosenbaum (1991), who introduced the method. It shares
these advantages with full matching with restrictions (Hansen and Klopfer 2006), a
procedure that can also mimic pair matching and matching with a �xed or variable
number of controls. The workhorse of \optmatch" is a function, fullmatch(), that
performs full matching and full matching with restrictions.

The following are the functions contained in \optmatch" and their respective pur-
poses:

fullmatch Optimal full matching

pairmatch Optimal pair matching

matched Identi�cation of units placed into matched sets

matchfailed Identi�cation of units/subclasses for which matching was infeasible

unmatched Identi�cation of units not placed into matched sets

matched.distances

makedist

mahal.dist

pscore.dist

maxControlsCap Set thinning cap for full matching
2

minControlsCap Set thickening cap for full matching

You're loading optmatch, by Ben Hansen, a package for flexible

and optimal matching. Important license information:

The optmatch package makes essential use of D. P. Bertsekas

and P. Tseng's RELAX-IV algorithm and code, as well as

Bertsekas' AUCTION algorithm and code.

Bertsekas and Tseng freely permit their software to be used for

research purposes, but non-research uses, including the use of it

to 'satisfy in any part commercial delivery requirements to

government or industry,' require a special agreement with them.

By extension, this requirement applies to any use of the

fullmatch() function. (If you are using another package that has

loaded optmatch, then you will probably be using fullmatch indirectly.)

For more information, enter relaxinfo() at the command line

Optimal Full Matching

To follow this example:

1. Install the optmatch package
2. Install the boot package
3. Use command library(optmatch)

4. Use command help(nuclearplants, package='optmatch')

5. Use command data(nuclearplants, package='optmatch')

6. Use command attach(nuclearplants)

7. Use command help(fullmatch, package='optmatch')

The main function is of the following form:

fullmatch(distance, subclass.indices = NULL, min.controls = 0, max.controls

= Inf,omit.fraction = NULL, tol = 0.01)

The only mandatory argument is distance.

distance: A matrix of nonnegative discrepancies, each indicating the permissibility
and desirability of matching the unit corresponding to its row (a 'treatment')
to the unit corresponding to its column (a 'control'); or a list of such matrices.
Finite discrepancies indicate permissible matches, with smaller discrepancies
indicating more desirable matches. Matrix 'distance', or the matrix elements of
'distance', must have row and column names.

Optmatch has three functions to help create the above-mentioned distance matrix.
The functions are listed and explained below.

3

makedist(): A function de�ned with respect to data and a user-supplied function to
compute desired distances.

mahal.dist(): Calculates Mahalanobis distances between treatment and control ob-
servations on given variables, assembling them into a discrepancy matrix (or
matrices)

pscore.dist(): Extracts scores from a �tted propensity scoring model, assembling
them into a discrepancy matrix (or matrices) from which pairmatch() or full-
match() can determine optimal matches.

It is preferable to use these functions rather than to create a distance matrix by
other means. We will illustrate later that the above methods do the work of keeping
track of the ordering of observations in a working data frame, while an ordinarily
created distance matrix would not.

Example. The following data relate to the 26 light water reactor (LWR) plants
constructed in the U.S.A. in the late 1960's and early 1970's. The data were collected
with the aim of predicting the cost of construction of further LWR plants. To illustrate
the use of distance, consider the problem of matching new to refurbished nuclear
plants, for the purpose of comparing their construction costs. In the nuclear plans
example, seven existing-site plans are to be matched to 19 new-site plants, in order
to allow an adjusted assessment of the cost of building on existing versus new sites.
Variables available for use in the analysis are cost and date of issue of construction
permit. For the illustration, we matched only upon cap and date, but an earnest
analysis might match on other variables as well. Also, in this example, we will use
only the �rst 26 data points in the dataset, for which the variable pt (a binary variable
where '1' indicates those plants withpartial turnkey guarantees) is set to zero.

4

Existing site
date capacity

A 2.3 660
B 3.0 660
C 3.4 420
D 3.4 130
E 3.9 650
F 5.9 430
G 5.1 420

date is date of construction, in years af-

ter 1965; capacity is net capacity of the

power plant, in MWe above 400.

New site
date capacity

H 3.6 290

I 2.3 660

J 3.0 660

K 2.9 110

L 3.2 420

M 3.4 60

N 3.3 390

O 3.6 160

P 3.8 390

Q 3.4 130

R 3.9 650

S 3.9 450

T 3.4 380

U 4.5 440

V 4.2 690

W 3.8 510

X 4.7 390

Y 5.4 140

Z 6.1 730

Creating a distance matrix

The discrepancy matrix should record plants' di�erences on the covariates, here
date of construction and capacity, but the manner in which it combines these di�er-
ences is at the discretion of the analyst. To illustrate, we calculate a distance matrix
from the ranks of the date and the capacity variables (following section 10.3.4 of
(Rosenbaum 2002)). This transforms the covariates as follows:

Existing site
date capacity

A 1.5 22.5
B 4.5 22.5
C 10.0 13.5
D 10.0 3.5
E 18.0 19.5
F 25.0 15
G 23.0 12

Here, date is rank of date of construc-

tion, in years after 1965, and capac-

ity is rank of net capacity of the power

plant, in MWe above 400.

New site
date capacity

H 13.5 7.0

I 1.5 22.5

J 4.5 22.5

K 3.0 2.0

L 6.0 13.5

M 10.0 1.0

N 7.0 11.0

O 13.5 6.0

P 15.5 10.0

Q 10.0 3.5

R 18.0 19.5

S 18.0 17.0

T 10.0 8.0

U 21.0 16.0

V 20.0 25.0

W 15.5 18.0

X 22.0 9.0

Y 24.0 5.0

Z 26.0 26.0

Now we create a matrix whose entries are the total di�erences between the ranks
5

of dates and capacities for each pair. For example, the di�erence for the pair AH is
(13.5-1.5)+(22.5-7.0) = 27.5 (which we round to 28, for simplicity).

This matrix, which we name plant.dist, is formed as follows:

Creating a distance matrix: direct method

> attach(nuclearplants)

> plant.dist <- round(abs(outer(rank(cap)[pr == 1], rank(cap)[pr ==

+ 0], "-")) + abs(outer(rank(date)[pr == 1], rank(date)[pr ==

+ 0], "-")))

> dimnames(plant.dist) <- list(row.names(nuclearplants)[pr == 1],

+ row.names(nuclearplants)[pr == 0])

> detach()

> plant.dist

H I J K L M N O P Q R S T U V W X Y Z d e f

A 36 0 6 31 20 39 24 38 34 36 22 28 30 32 24 22 41 49 31 22 18 9

B 30 6 0 28 14 33 18 32 28 30 16 22 24 26 18 16 35 43 25 28 24 10

C 13 24 18 22 4 16 6 14 10 13 17 12 6 14 24 13 18 26 32 22 17 14

D 7 36 30 8 17 2 12 6 14 0 30 24 6 26 38 26 20 16 44 18 26 28

E 23 22 16 38 21 32 24 24 16 30 0 6 24 10 8 4 18 26 14 38 34 20

F 22 37 31 38 20 32 23 24 16 30 14 9 23 5 18 16 10 14 15 38 34 28

G 17 38 32 32 19 26 18 18 10 24 16 10 18 6 20 17 4 10 20 32 28 30

a 28 9 10 22 10 30 15 28 24 28 20 19 21 23 28 16 32 40 35 18 14 0

b 18 22 28 13 18 21 15 20 22 18 38 33 15 35 46 34 28 31 53 0 8 18

c 28 9 10 22 10 30 15 28 24 28 20 19 21 23 28 16 32 40 35 18 14 0

Creating a distance matrix using convenience functions

Alternatively, we can use an optmatch convenience function, such as mahal.dist
or pscore.dist a distance.

> plant.dist.m <- mahal.dist(pr ~ cap + date, nuclearplants)

> plant.dist.m

$m

H I J K L M N O P Q R S T U

A 5.60 0.00 0.42 8.80 2.400 12.00 3.100 8.700 4.10 9.2 2.40 3.80 3.500 5.90

B 4.30 0.42 0.00 8.40 1.700 10.00 2.200 7.500 2.70 8.2 0.81 2.10 2.500 3.60

C 0.54 2.80 1.80 2.80 0.059 3.70 0.032 1.900 0.13 2.4 1.60 0.25 0.054 1.10

D 0.70 9.20 8.20 0.24 2.400 0.15 1.900 0.048 2.00 0.0 7.70 3.00 1.700 3.80

E 3.70 2.40 0.81 8.80 1.900 9.90 2.100 6.700 1.90 7.7 0.00 1.10 2.200 1.50

F 5.60 14.00 9.80 11.00 7.100 9.40 6.300 7.000 4.50 8.1 5.30 3.80 5.900 1.90
6

G 2.60 9.00 5.90 6.80 3.400 6.10 2.900 3.900 1.70 4.8 2.80 1.30 2.600 0.34

a 1.70 1.20 0.91 3.90 0.230 5.50 0.490 3.500 1.10 3.9 1.80 1.20 0.670 2.70

b 1.80 2.80 3.30 1.90 0.940 3.70 1.100 2.700 2.20 2.6 5.10 2.90 1.300 5.00

c 1.70 1.20 0.91 3.90 0.230 5.50 0.490 3.500 1.10 3.9 1.80 1.20 0.670 2.70

V W X Y Z d e f

A 3.2 2.60 7.50 17.0 13.0 2.80 1.70 1.20

B 1.3 1.20 4.90 14.0 9.0 3.30 2.20 0.91

C 2.5 0.32 1.50 6.2 9.1 1.40 1.50 0.45

D 9.1 4.10 3.20 3.8 16.0 2.60 3.90 3.90

E 0.1 0.54 2.50 9.6 4.5 5.10 4.20 1.80

F 4.9 4.70 1.50 2.5 2.5 13.00 13.00 9.10

G 2.9 1.90 0.19 2.4 3.5 7.60 8.00 4.90

a 2.8 0.81 3.50 9.9 11.0 0.84 0.52 0.00

b 6.6 2.80 5.50 11.0 17.0 0.00 0.17 0.84

c 2.8 0.81 3.50 9.9 11.0 0.84 0.52 0.00

Creating an Unrestricted Match

Having created the distance matrix, we are in a position to match new to refur-
bished plants. Enter

> plants.fm <- fullmatch(plant.dist)

The result is:

a A b B c C d D e E f F G H I J

m.1 m.2 m.3 m.4 m.1 m.6 m.3 m.7 m.3 m.8 m.1 m.9 m.10 m.7 m.2 m.4

K L M N O P Q R S T U V W X Y Z

m.7 m.6 m.7 m.6 m.7 m.6 m.7 m.8 m.8 m.7 m.9 m.8 m.8 m.10 m.10 m.8

where m.1, m.2, etc. are the indices for matches. plants.fm pairs A to I, B- to J,
etc.

An advantage of the convenience functions for making distances

Compare plants.fm to

> (plants.fm.m <- fullmatch(plant.dist.m))

H I A J B K L M C N O P Q R S T

m.6 m.2 m.2 m.4 m.4 m.7 m.6 m.7 m.6 m.6 m.7 m.6 m.7 m.8 m.6 m.6

U D V E W F X G Y Z d e f a b c

m.10 m.7 m.8 m.8 m.6 m.9 m.10 m.10 m.10 m.9 m.3 m.3 m.1 m.1 m.3 m.1

The matches are di�erent, as one would expect, given that the distances they're
based on are di�erent. However, you'll not that the orderings of observations they

7

assume are di�erent, as is indicated by the di�erence in their row names. The match
based on plants.fm.m is ordered as is the data frame it's based on, nuclearplants.
The ordering of plants.fm, in constrast, is incorrect. Looking at the �rst six rows
of our dataset below, it can be seen that the actual order of plants di�ers from the
order of the fullmatch object.

cost date t1 t2 cap pr ne ct bw cum.n pt

H 460.05 68.58 14 46 687 0 1 0 0 14 0

I 452.99 67.33 10 73 1065 0 0 1 0 1 0

A 443.22 67.33 10 85 1065 1 0 1 0 1 0

J 652.32 68.00 11 67 1065 0 1 1 0 12 0

B 642.23 68.00 11 78 1065 1 1 1 0 12 0

K 345.39 67.92 13 51 514 0 1 1 0 3 0

That's because the distance object plant.dist.m carries the metadata needed to
reconstruct the proper ordering after matching, whereas the matrix plant.dist does
not, forcing fullmatch() to guess the proper ordering of row names. (It does this by
sorting on the row names, which sometimes gets the right answer but doesn't here.)

Matching with Restrictions

Matching within Calipers

The statistician may wish to forbid the matching of certain treatment-control
pairs, perhaps those that are quite dissimilar. On the other hand, it may be too
restrictive to insist that matched units have the same covariates: for instance, in the
nuclear plants example only four exactly matched pairs are possible, namely AI, BJ,
DQ, and ER. For continuous covariates, matching within calipers enforces similarity
of matches (if not that they be exactly the same) (Hansen and Klopfer 2006).

Continuing the nuclear plants illustration, we impose a caliper of 3 years in the
date of construction. This forbids matches between plants whose date of construction
di�ers by more than three years. Note that this may not minimize total distance,
since total distance is a combination of date and capacity.

Coding a caliper when using optmatch and R:

To incorporate such a caliper, invoke fullmatch() after modifying the distance
matrix as follows,

> attach(nuclearplants)

> datediffs <- outer(date[pr == 1], date[pr == 0], "-")

> (plant.dist <- plant.dist/(abs(datediffs) < 3))

H I J K L M N O P Q R S T U V W X Y Z d e f

A 36 0 6 31 20 39 24 38 34 36 22 28 30 32 24 22 41 Inf Inf 22 18 9
8

B 30 6 0 28 14 33 18 32 28 30 16 22 24 26 18 16 35 43 Inf 28 24 10

C 13 24 18 22 4 16 6 14 10 13 17 12 6 14 24 13 18 26 32 22 17 14

D 7 36 30 8 17 2 12 6 14 0 30 24 6 26 38 26 20 16 44 18 26 28

E 23 22 16 38 21 32 24 24 16 30 0 6 24 10 8 4 18 26 14 38 34 20

F 22 Inf 31 Inf 20 32 23 24 16 30 14 9 23 5 18 16 10 14 15 Inf Inf Inf

G 17 38 32 32 19 26 18 18 10 24 16 10 18 6 20 17 4 10 20 32 28 30

a 28 9 10 22 10 30 15 28 24 28 20 19 21 23 28 16 32 40 Inf 18 14 0

b 18 22 28 13 18 21 15 20 22 18 38 33 15 35 46 34 28 Inf Inf 0 8 18

c 28 9 10 22 10 30 15 28 24 28 20 19 21 23 28 16 32 40 Inf 18 14 0

> plant.dist.m <- plant.dist.m/(abs(datediffs) < 3)

The in�nite entries occur where the matrix datediffs has an entry less than �3
or greater than +3, indicating an unwanted match.

Maintaining balance between treatment and control using min.controls and
max.controls

The statistician may wish to place restrictions on the relative proportions with
which treated and control subjects are combined into matched sets, perhaps to control
the variability of an estimate based on the matching (See Hansen 2004, x3). The
following are two arguments of the fullmatch() function that allow that adjustment.

min.controls: The minimum ratio of controls to treatments that is to be permitted
within a matched set: should be nonnegative and �nite. If min.controls is not
a whole number, the reciprocal of a whole number, or zero, then it is rounded
down to the nearest whole number or reciprocal of a whole number.

max.controls: The maximum ratio of controls to treatments that is to be permitted
within a matched set: should be positive and numeric. If max.controls is not
a whole number, the reciprocal of a whole number, or Inf, then it is rounded
up to the nearest whole number or reciprocal of a whole number.

Specifying min.controls and/or max.controls amounts to full matching with

restrictions, which improves matched sets' treatment-control balance.
To determine the largest value of min.controls with which the matching prob-

lem is possible to solve, use minControlsCap. To get the smalles feasible value of
max.controls, use maxControlsCap. (Note: these function calls fullmatch repeat-
edly, in a line search of the positive half-line. They can be time-consuming in large
matching problems.)

> (mincc <- minControlsCap(plant.dist))

9

$strictest.feasible.min.controls

m

2

$given.max.controls

m

Inf

> maxControlsCap(plant.dist, min.controls = mincc$strictest.feasible)

$given.min.controls

m

2

$strictest.feasible.max.controls

m

3

Omitting a fraction of controls

The statistician may wish to discard a portion of the control data. This may be
done if a cost issue arises or if the statistician would like to discard outliers on the
distance.

omit.fraction: Optionally, specify what fraction of controls or treated subjects are
to be rejected. If 'omit.fraction' is a positive fraction less than one, then
'fullmatch' leaves up to that fraction of the control reservoir unmatched. If
omit.fraction is a negative number greater than -1, then fullmatch leaves
up to jomit.fractionj of the treated group unmatched. Positive values are
only accepted if max.controls >= 1; negative values, only if min.controls
<= 1. If omit.fraction is not speci�ed, then only those treated and control
subjects without permissible matches among the control and treated subjects,
respectively, are omitted.

Suppose we wish to omit 50% of the control subjects:

> (plants.fm2 <- fullmatch(plant.dist, omit.fraction = 0.5))

a A b B c C d D e E f F G H I J

m.1 m.2 m.3 m.4 m.1 m.6 m.3 m.7 <NA> m.8 m.1 m.9 m.10 <NA> m.2 m.4

K L M N O P Q R S T U V W X Y Z

<NA> m.6 m.7 <NA> <NA> <NA> m.7 m.8 <NA> <NA> m.9 <NA> m.8 m.10 <NA> <NA>
10

> table(plants.fm2, ifelse(pr, "treated", "control"))

plants.fm2 control treated

m.1 2 1

m.10 1 1

m.2 2 0

m.3 1 1

m.4 2 0

m.6 1 1

m.7 3 0

m.8 2 1

m.9 2 0

If before we had a total of 19 controls, of them all were matched, now we have
matched only 10 of them. The �rst nine rows of the above table are not matched sets,
but rather indicators for unmatched controls. Controls H, K, N, O, P, T, V, Y, and
Z are now not matched to a treated subject.

Rounding

If the matching is taking too long, increasing the tol argument may speed up the
process.

tol: Because of internal rounding, 'fullmatch' may solve a slightly di�erent match-
ing problem than the one speci�ed, in which the match generated by fullmatch

may not coincide with an optimal solution of the speci�ed problem. tol speci�es
the extent to which fullmatch's output is permitted to di�er from an optimal
solution to the original problem, as measured by the sum of discrepancies for
all treatments and controls placed into the same matched sets.

Evaluating the quality of the match

Treatment-control balance by matched set

stratumStructure: Tabulate treatment:control ratios occurring in matched sets,
and the frequency of their occurrence.

> stratumStructure(plants.fm)

2:1 1:1 1:2 1:3 1:5 1:6

1 3 2 1 1 1

attr(,"comparable.num.matched.pairs")

[1] 11.88095
11

> table(plants.fm, ifelse(pr, "treated", "control"))

plants.fm control treated

m.1 2 1

m.10 1 2

m.2 2 0

m.3 1 2

m.4 2 0

m.6 1 3

m.7 7 0

m.8 4 2

m.9 2 0

In this unrestricted match, the number of controls per treatment subject varies
widely. Such imbalance can be prevented as follows.

> plants.fm1 <- fullmatch(plant.dist, min.controls = 2, max.controls = 3)

> stratumStructure(plants.fm1)

1:2 1:3

8 2

attr(,"comparable.num.matched.pairs")

[1] 13.66667

Matched treatment-control distances:

> unlist(matched.distances(plants.fm1, plant.dist))

m.1.f m.1.W m.10.X m.10.Y m.2.e m.2.I m.3.d m.3.K m.4.J m.4.V m.5.L

0 16 4 10 18 0 0 13 0 18 10

m.5.N m.6.H m.6.P m.6.T m.7.M m.7.O m.7.Q m.8.R m.8.S m.9.U m.9.Z

15 13 10 6 2 6 0 0 6 5 15

Matched treatment-control distances, by matched set:

> matched.distances(plants.fm1, plant.dist, TRUE)

$m.1

f W

a 0 16

$m.10

X Y

G 4 10
12

$m.2

e I

A 18 0

$m.3

d K

b 0 13

$m.4

J V

B 0 18

$m.5

L N

c 10 15

$m.6

H P T

C 13 10 6

$m.7

M O Q

D 2 6 0

$m.8

R S

E 0 6

$m.9

U Z

F 5 15

For example, in m.6, we see that the biggest di�erence in the dates of F,U, and Z is
the di�erence between U and Z: 71.08 - 69.50 = 1.58.

Matched, Unmatched, and Matchfailed

An easy way to check which plants were matched and unmatched is to use com-
mands matched() and unmatched(). In our original matching attempt, full matching
was performed so we see:

> matched(plants.fm)

13

[1] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE

[16] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE

[31] TRUE TRUE

> table(unmatched(plants.fm))

FALSE

32

After we omitted half of our controls, however, the output is

> table(matched(plants.fm2))

FALSE TRUE

11 21

> table(unmatched(plants.fm2))

FALSE TRUE

21 11

Names of the controls that were not matched can be retrieved as follows:

> names(plants.fm2)[unmatched(plants.fm2)]

[1] "e" "H" "K" "N" "O" "P" "S" "T" "V" "Y" "Z"

When fullmatch has been presented with an inconsistent combination of con-
straints and discrepancies between potential matches, so that there exists no match-
ing (i) with �nite total discrepancy within matched sets that (ii) respects the given
constraints, then the matching problem is said to be infeasible. TRUEs in the output
of matchfailed indicate that this has occurred.

> table(matchfailed(fullmatch(plant.dist, min.controls = 5)))

TRUE

32

To understand the output of matchfailed element-wise, note that fullmatch han-
dles a matching problem in three steps. First, if fullmatch has been directed to
match within subclasses, then it divides its matching problem into a subproblem for
each subclass. Second, fullmatch removes from each subproblem those individual
units that lack permissible potential matches (i.e. potential matches from which they
are separated by a �nite discrepancy). Such \isolated" units are
agged in such a

14

way as to be indicated by unmatched, but not by matchfailed. Third, fullmatch
presents each subproblem, with isolated elements removed, to an optimal matching
routine. If such a reduced subproblem is found at this stage to be infeasible, then
each unit contributing to it is so
agged as to be indicated by matchfailed.

In this case there were no inconsistencies in the constraints, so the command
returns:

> table(matchfailed(plants.fm))

FALSE

32

> detach()

References

X.S. Gu and Paul R. Rosenbaum. Comparison of multivariate matching methods:
Structures, distances, and algorithms. Journal of Computational and Graphical

Statistics, 2(4):405{420, 1993.

Ben B. Hansen. Full matching in an observational study of coaching for the SAT.
Journal of the American Statistical Association, 99(467):609{618, September 2004.

Ben B. Hansen and Stephanie Olsen Klopfer. Optimal full matching and re-
lated designs via network
ows. Journal of Computational and Graphical

Statistics, 15(3):609{627, 2006. URL http://www.stat.lsa.umich.edu/%7Ebbh/

hansenKlopfer2006.pdf.

Paul R. Rosenbaum. A characterization of optimal designs for observational studies.
Journal of the Royal Statistical Society, 53:597{ 610, 1991.

Paul R. Rosenbaum. Observational Studies. Springer-Verlag, second edition, 2002.

15

http://www.stat.lsa.umich.edu/%7Ebbh/hansenKlopfer2006.pdf
http://www.stat.lsa.umich.edu/%7Ebbh/hansenKlopfer2006.pdf

