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spBayes: an R package for Univariate and Multivariate

Hierarchical Point-referenced Spatial Models

ABSTRACT

Scientists and investigators in such diverse fields as geological and environmental sciences, ecology, forestry,

disease mapping, and economics often encounter spatially referenced data collected over a fixed set of

locations with coordinates (latitude–longitude, Easting–Northing etc.) in a region of study. Such point–

referenced or geostatistical data are often best analyzed with Bayesian hierarchical models. Unfortunately,

fitting such models involves computationally intensive Markov chain Monte Carlo (MCMC) methods whose

efficiency depends upon the specific problem at hand. This requires extensive coding on the part of the user

and the situation is not helped by the lack of available software for such algorithms. Here, we introduce a

statistical software package, spBayes, built upon the R statistical computing platform that implements a

generalized template encompassing a wide variety of Gaussian spatial process models for univariate as well

as multivariate point–referenced data. We discuss the algorithms behind our package and illustrate its use

with a synthetic and real data example.

Key Words: Bayesian inference, coregionalization, kriging, Markov chain Monte Carlo, multivariate spa-

tial process, R

1. INTRODUCTION

Recent advances in Geographical Information Systems (GIS) and Global Positioning Systems (GPS) have

led to increased interest in modeling and analysis of geocoded data arising in scientific research. This

interest has, in turn, led to significant developments in such modeling; see, for example, the books by

Cressie (1993), Chilés and Delfiner (1999), Møller (2003), Schabenberger and Gotway (2004), and Banerjee

et al. (2004) for a variety of methods and applications. Two underlying configurations are encountered

commonly in practice: locations that are areas or regions with well–defined neighbors (such as pixels in a

lattice, counties in a map, etc.), called areally referenced data, and locations that are points with coordinates

(latitude–longitude, Easting–Northing, etc.), termed point–referenced or geostatistical. Statistical modeling

approaches differ depending upon the underlying configuration: for areal data, one seeks to build models

using conditional independence assumptions based upon the neighborhood or adjacency structure of the

regions, while for the geostatistical setting, one incorporates spatial correlations as decaying continuously

with direction and distance.

It is also well recognized in the statistics literature that spatial associations are captured most effectively

using hierarchical models that build dependencies in different stages. These models follow the Bayesian

paradigm of statistical inference (see, e.g., Carlin and Louis, 2000; Gelman et al., 2004), where analysis is
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based upon sampling from the posterior distributions of the different model parameters. Hierarchical models

are especially advantageous with data sets having several lurking sources of variation and dependence, where

they can estimate much richer models with less stringent assumptions.

Recent computational advances with regard to Markov chain Monte Carlo (MCMC) methods have

contributed enormously to the popularity of hierarchical models in a wide array of disciplines (e.g., Gilks

et al., 1996), and spatial modeling is no exception (see, e.g., Banerjee et al., 2004). In the realm of spatial

statistics, hierarchical models have been widely applied to analyze both areally referenced as well as point–

referenced or geostatistical data. For the former, a class of models known as Conditionally Autoregressive

(CAR) models have become very popular as they are easily implemented using MCMC methods such as

the Gibbs sampler. In fact, these models are somewhat naturally suited for the Gibbs sampler which

draws samples from conditional distributions that are fully specified by the CAR models. Their popularity

has increased in no small measure also due to their automated implementation in the WinBUGS software

package. This is an offshoot of the BUGS (Bayesian inference Using Gibbs Sampling) project for the

Windows platform and provides a flexible and user-friendly interface to construct hierarchical models that

are implemented using a Gibbs sampler. This is performed by identifying an hierarchical model with

a directed acyclic graph (DAG) whose nodes form the different components of the model and allow the

language identify the full conditional distributions that need to be updated.

From an automated implementation perspective, however, the state of affairs is less encouraging for

point–referenced models. While BUGS can be used to build such models, its scope is somewhat limited.

First, these models involve relatively expensive matrix computations that can become prohibitive with

large data sets. Second, the routines fit unmarginalized models which are less suited for direct updating

using a Gibbs sampler in the BUGS paradigm and results in slower convergence of the chains. Thirdly,

investigators often encounter multivariate spatial data sets with several spatially dependent responses, whose

analysis requires multivariate spatial models that involve matrix computations that are poorly implemented

in BUGS. Several other models for point–referenced spatial data analysis (such as non–stationary models,

spatially varying regression models, multi–resolution models, and spatiotemporal models) are difficult to

implement in BUGS and require specialized programming. In particular, lower–level languages such as

C/C++ and Fortran are needed in conjunction with efficient matrix computation libraries such as BLAS

(Basic Linear Algebra Subprograms) and LAPACK (Linear Algebra Package) to implement these models.

BLAS and LAPACK subroutines and documentation are available at http://www.netlib.org/blas and

http://www.netlib.org/lapack, respectively.

An exciting development in bringing bring such sophisticated statistical methodology to users is the R

project (http://www.r-project.org). Not only does R offer an environment with several built-in functions

for mathematical computations, it also provides an edifice for developers to build packages (or libraries)
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offering specialized functions. These packages can be written in lower–level languages for optimizing per-

formance, while maintaining a friendly user-interface.

Several R packages that facilitate spatial modeling exist, but most of them do not implement Bayesian

hierarchical models. The most notable exception is geoR (Ribeiro and Diggle, 2001) which implements

Bayesian spatial regression models for univariate geostatistical data. In addition to handling only the

simplest spatial regression models with a single dependent variable, the package does not provide a full

Bayesian approach, opting rather to discretize some prior distributions for computational purposes.

This manuscript discusses a generalized template that can be used to fit a wide variety of spatial process

models for univariate as well as multivariate point–referenced data. We discuss the design of our R package

spBayes that implements this template using efficient MCMC algorithms. For the current article, we restrict

ourselves to the Gaussian response setting as our focus is on the wide variety of Gaussian process models for

spatial data analysis. Section 2 discusses spatial regression models arising in multivariate process contexts.

Next, in Section 3 we outline the generalized template we propose to implement these models and explain

how we carry out inference and spatial predictions in a sampling–based framework. The R package we

envision for implementing this template is described in Section 4 along with two illustrations. Finally,

Section 5 concludes the paper and indicates upcoming work.

2. SPATIAL REGRESSION MODELS

We consider a multivariate spatial regression model for each site s comprising an m × 1 response vector

Y(s) = [Yi(s)]mi=1 along with an m× p matrix of regressors XT (s) = [xTi (s)]mi=1 connected through

Y(s) = XT (s)β + W(s) + ε(s), (1)

where W(s) = [Wi(s)]mi=1 is an m × 1 zero-centered multivariate Gaussian Process, denoted W(s) ∼

MVGP (0,K(·, ·; θ)) and capturing spatial variation, and ε(s) ∼MVN(0,Ψ) models the measurement error

effect for the response with the m×m dispersion matrix Ψ. It follows that the univariate spatial regression

model is the special case where m = 1. The multivariate Gaussian process is completely specified by an

m×m cross–covariance matrix function K(s, s′; θ) = [Cov(Wi(s),Wj(s′))]mi,j=1 whose (i, j)-th element is the

covariance between Wi(s) and Wj(s′), with θ being certain parameters that may control correlation decay

and smoothness of the process. Then, for any integer n and any collection of sites S = {s1, . . . , sn}, the

mn×1 vector W = [W(si)]ni=1 is distributed as a multivariate normal distribution W ∼MVN(0,ΣW(θ)),

known as a realization of the spatial process. Here ΣW(θ) = [K(si, sj ; θ)]ni,j=1 is the mn × mn matrix

with K(si, sj ; θ) forming the (i, j)-th m×m block. The dispersion matrix of the observed response vector

Y = [Y(si)]ni=1 is ΣW(θ) + In ⊗ Ψ, where In is the n × n identity matrix and ⊗ denotes the Kronecker

product (e.g., Harville, 1997).
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Care is needed in choosing K(s, s′; θ) so that ΣW(θ) is symmetric and positive definite. Modeling

K(s, s′; θ) is indeed more demanding than choosing real-valued covariance functions in univariate spatial

modeling that are characterized by Bochner’s Theorem (see, e.g., Cressie, 1993, p84) . In the multivariate

setting, we require that for an arbitrary number and choice of locations, the resulting ΣW(θ) be symmetric

and positive definite. Note that the cross-covariance matrix function need not be symmetric or positive

definite but must satisfy K(s′, s; θ) = KT (s, s′; θ) so that ΣW(θ) is symmetric. In the limiting sense,

as s′ → s, K(s, s; θ) = [Cov(Wi(s),Wj(s))]mi,j=1 becomes the symmetric and positive definite variance-

covariance matrix of W(s) within site s. A theorem by Cramér (see, e.g., Chilés and Delfiner, 1999)

characterizes cross-covariance functions, akin to Bochner’s theorem for univariate covariance functions,

but using Cramér’s result in practical modeling is trivial. Recent work by Majumdar and Gelfand (2006)

reviews other cross-covariance modeling approaches, such as averaging and convolving correlation functions,

but point out the computational and modeling difficulties involved.

Since our primary objective is to develop a computationally feasible template that accommodates suffi-

ciently rich multivariate spatial models, we adopt a constructive approach through coregionalization models

(Wackernagel, 2003). To motivate this approach, one considers simpler cross-covariance functions and

builds richer models by linearly transforming them. For instance, let W̃(s) = [W̃i(s)]mi=1 be an m× 1 pro-

cess with independent zero-centered spatial processes with unit variance; that is, each W̃i(s) ∼ GP (0, ρ(·, ·))

with V ar(W̃k(s)) = 1 and Cov(W̃i(s), W̃i(s′)) = ρi(s, s′; θi) and Cov(W̃i(s), W̃j(s′)) = 0 whenever i 6= j

(irrespective of how close s and s′ are), where ρi(·; θi) is a correlation function associated with W̃i(s)

and θi are parameters therein. This yields a diagonal cross-covariance matrix function K̃(s, s′; θ) =

Diag[ρi(s, s′; θi)]mi=1 with θ = {θi}mi=1. It is easy to verify that K̃(s, s′; θ) is a valid cross-covariance

matrix.

The Matérn correlation function allows control of spatial association and smoothness (see, e.g., Stein,

1999) and is given by

ρ(s, s′;φ, ν) =
1

2ν−1Γ(ν)
(‖s− s′‖φ)νKν(‖s− s′‖;φ); φ > 0, ν > 0, (2)

where φ controls the decay in spatial correlation and ν is a smoothness parameter with higher values yielding

smoother process realizations. Also, Γ is the usual Gamma function while Kν is a modified Bessel function

of the third kind with order ν, and ‖s − s′‖ is the Euclidean distance between sites s and s′. Covariance

functions that depend upon the distance metric only are often referred to as isotropic. Several other choices

for valid correlation functions are discussed in Banerjee et al. (2004). For W̃i(s) we choose isotropic Matérn

functions ρi(s, s′; θi) with θi = (φi, νi) for i = 1, . . . ,m.

For building richer covariance structures, we assume the process W(s) = A(s)W̃(s) to be a linear

transformation of W̃(s), where A(s) is a space-varying matrix transform that is nonsingular for all s. Then,
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the cross-covariance matrix functions are related as K(s, s′; θ) = A(s)K̃(s, s′)AT (s′). It is worth noting that

K̃(s, s; θ) = Im (the m×m identity matrix), so that K(s, s; θ) = A(s)AT (s). Therefore A(s) = K1/2(s, s; θ)

is identified as a Cholesky square-root of K(s, s; θ) and can be taken to be lower–triangular without loss of

generality. Indeed, the one-one correspondence between the elements of the Cholesky square-root matrix

and the original matrix is well known (see, e.g., Harville, 1997, p229). Turning to the validity of K(s, s′; θ),

we argue that since K̃(s, s′; θ) is a valid cross-covariance matrix, so is K(s, s′; θ). To see this, first observe

that the dispersion matrix of realizations of W(s) over S , ΣW = [K(si, sj ; θ)]ni,j=1, can be written as:

[A(si)K̃(si, sj ; θ)AT (sj)]ni,j=1 = [⊕ki=1A(si)][⊕mk=1ρk(si, sj ; θk)]ni,j=1[⊕ki=1A
T (si)]

= A ΣW̃A T , (3)

where ⊕ is the “diagonal” or direct-sum matrix operator (e.g., [?]). Thus, ⊕mk=1ρk(si, sj ; θk) is an m ×m

diagonal matrix with ρk(si, sj ; θ) as its diagonals while A is a block-diagonal matrix with the i-th diagonal

block being A(si). Since K̃(si, sj ; θ) is a valid cross-covariance, ΣW̃ is positive–definite and so is ΣW (by

virtue of 3).

Stationary cross-covariance functions necessarily imply the linear transformation to be independent of

space. Here, since the cross-covariance is a function of the separation between sites, we have K(s, s; θ) =

K(0; θ) so that A(s) = A = K1/2(0; θ). In such cases, A = I ⊗A and (3) reduces to

ΣW = (In ⊗A)ΣW̃(In ⊗AT ). (4)

As a further simplification, suppose we choose K̃(s, s′; θ) = ρ(s− s′; θ)Im, i.e., a single correlation function

for each component of W̃(s). This yields ΣW̃ = R(θ) ⊗ Im, where R(θ) = [ρ(si, sj ; θ)]ni,j=1 and results in

a separable or intrinsic specification (see, e.g., Wackernagel, 2003):

ΣW = (In ⊗A)(R⊗ Im)(In ⊗AT ) = R(θ)⊗K(0; θ). (5)

Here, the dispersion structure separates into a spatial component R(θ) and a within-site dispersion matrix

K(0; θ). While such models have nicer interpretability, they are often too simplistic, resulting in poorer

fits.

3. BAYESIAN IMPLEMENTATION USING A GENERALIZED TEMPLATE

3.1 Estimation of model parameters

We adopt a Bayesian approach specifying prior distributions on the parameters to build hierarchical models

that are estimated using a Gibbs sampler, with Metropolis–Hastings updates when required, for fitting our

models. Although such algorithms are usually problem–specific, often requiring intensive coding, casting

the problem in a general template allows several models to be fit without rewriting vast amounts of code.
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We cast the data model into the following generic template:

Y = Xβ + A W̃ + ε; ε ∼ N(0, Im ⊗Ψ), (6)

where Y is the mn × 1 response vector, X is the mn × 1 matrix of regressors, and β is the corresponding

vector of regression coefficients. The specifications for the mn×mn matrices A and W̃ give rise to different

multivariate spatial regression models. MCMC model fitting proceeds via a Gibbs sampler with Metropolis

steps (see, e.g., Carlin and Louis, 2000, p159) on the marginalized scale, after integrating out W̃, to reduce

the parameter space. In the marginalized model, the response vector is distributed as,

Y ∼MVN(Xβ, A ΣW̃A T + In ⊗Ψ). (7)

Bayesian hierarchical models are completed by assigning prior distributions on the parameters. Cus-

tomarily, we let β ∼MVN(µβ ,Σβ), a p dimensional multivariate normal distribution. The measurement

error dispersion Ψ could be assigned an inverse–Wishart prior, although one usually assumes independence

of measurement error for the different response measurements in each site and thus sets Ψ = Diag[τ2
i ]mi=1

as a diagonal matrix. Also recall that A itself is unknown and needs to be stochastically specified. As

mentioned in Section 2, the specific form of A will depend upon the exact form of A. For the stationary

setting, we have A = In ⊗A and we assign an inverse-Wishart prior to AAT .

Finally, recall that ΣW̃ = [K̃(si−sj ; θ)]ni,j=1 and one needs to assign priors on θ = {φk, νk}mk=1. This will

again depend upon the specific choice of the correlation functions. In general the spatial decay parameters

are weakly identifiable and prior selection becomes an even more delicate issue, with reasonably informative

priors needed for satisfactory MCMC behavior. Typically we set prior distributions for the decay parameters

relative to the size of their domains; for instance, by setting the prior means to values that imply spatial

ranges of approximately a certain fraction of the maximum intersite distance. For the Matérn correlation

function, the smoothness parameter ν is often estimated using a uniform prior distribution with support on

the interval (0, 2). This choice is motivated by earlier findings (e.g., Stein, 1999) that it is almost impossible

for the data to distinguish between these smoothness parameters for values greater than 2.

The set of parameters that are to be updated in the marginalized model from (6) are generically denoting

by Ω = (β,A ,θ,Ψ) with posterior distribution sampled from

P (Ω |Data) ∝ P (β)P (A )P (θ)P (Ψ)P (Y |β,A ,θ,Ψ). (8)

An efficient MCMC algorithm is obtained by updating β from its MVN(µβ|·,Σβ|·) full conditional,

where

Σβ|· = [Σ−1

β
+ XT (A ΣW̃A T + In ⊗Ψ)−1X]−1

and µβ|· = Σβ|·X
T (A ΣW̃A T + In ⊗Ψ)−1Y. (9)

6



All the remaining parameters have to be updated using Metropolis steps. Depending upon the applica-

tion, this may be implemented using block-updates (e.g., separate multivariate proposals and subsequent

acceptance or rejections for parameters in Ψ, A, and θ). On convergence, the MCMC output generates L

samples, say {Ω(l)}Ll=1, from the posterior distribution in (8).

3.2 Posterior predictive inference

In updating Ω using the marginal model as outlined above, we do not directly sample the spatial coefficients

W̃ and hence cannot directly obtain W = A W̃. This shrinks the parameter space, resulting in a more

efficient MCMC algorithm. A primary advantage of the Gaussian likelihood (as in (6)) is that the posterior

distribution of W̃ can be recovered in a posterior predictive fashion by sampling from

P (W̃| Data) ∝
∫
P (W̃|Ω, Data)P (Ω| Data)dΩ. (10)

Once we have the posterior samples from P (Ω| Data), {Ω(l)}Ll=1,posterior samples from P (W̃| Data) drawn

by sampling W̃
(l)

for each Ω(l) from P (W̃ |Ω(l), Data). This composition sampling is routine because

P (W̃ |Ω, Data) in (10) is Gaussian; in fact, from (6) we have this distribution as

MVN
[
(Σ−1

W̃
+ A T (In ⊗Ψ−1)A )−1A T (In ⊗Ψ−1)(Y−Xβ), (Σ−1

W̃
+ A T (In ⊗Ψ−1)A )−1

]
.

The posterior estimates of these realizations can subsequently be mapped with contours to produce image

and contour plots of the spatial processes.

Next, let {s0i}n
∗

i=1 be a collection of n∗ locations where we seek to predict the responses. It might also be

of interest to compute the posterior predictive distribution P (W̃
∗ |Data) where W̃

∗
= [W̃(s0k)]n

∗

k=1. Note

that

P (W̃
∗| Data) ∝

∫
P (W̃

∗|W̃,Ω, Data)P (W̃|Ω, Data)P (Ω| Data)dΩdW̃. (11)

This can be computed by composition sampling by first obtaining the posterior samples {Ω(l)}Ll=1 ∼

P (Ω| Data), then drawing W̃
(l) ∼ P (W̃|Ω(l), Data) for each l as described in (10) and finally drawing

W̃
∗(l) ∼ P (W̃

∗|W̃(l)
, Ω(l), Data). This last distribution is derived as a conditional multivariate normal

distribution, namely: W̃

W̃
∗

 ∼MVN

 0

0

 ,

 ΣW̃ ΣW̃,W̃
∗

ΣW̃
∗
,W̃ ΣW̃

∗

 ,

where ΣW̃ = [⊕mk=1ρk(si, sj ; θk)]ni,j=1, ΣW̃∗ = [⊕mk=1ρk(s0i, s0j ; θk)]n
∗

i,j=1,

and ΣTW,W∗ = ΣW̃∗,W̃ = [⊕mk=1ρk(s0i, sj ; θk)]n
∗,n
i=1,j=1.

Therefore, the distribution P (W̃
∗|W̃,Ω, Data) is MVN(µW̃

∗|W̃,ΣW̃
∗|W̃), where

µW̃
∗|W̃ = ΣT

W̃,W̃∗Σ−1

W̃
W̃ and ΣW̃

∗|W̃ = ΣW̃
∗ − ΣT

W̃,W̃
∗Σ−1

W̃
ΣW̃,W̃

∗ .
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Once {W̃∗(l)}Ll=1 have been obtained, we can easily predict the responses, say Y∗ = [Y(s0i)]n
∗

i=1 at those

sites as long as the mn∗ × p matrix of regressors for those locations, say X∗, is available. This can be

done by simply sampling the conditional expectations E[Y∗| Data](l) = X∗β(l) + A (l)W̃
∗l

for l = 1, . . . , L.

Equivalently, predictions can be executed by drawing posterior samples from the marginal distribution

below, without resorting to direct updates of the W̃ as follows:

P (Y∗| Data) ∝
∫
P (Y∗|Ω, Data)P (Ω| Data)dΩ. (12)

In the stationary setting with the marginalized model, observe that Y

Y∗

 ∼MVN

 Xβ

X∗β

 ,

 ΣY,Y ΣY,Y∗

ΣTY,Y∗ ΣY∗,Y∗

 ,

where ΣY,Y = A ΣW̃A T + In ⊗Ψ with A = In ⊗A,

ΣY∗,Y∗ = A ∗ΣW̃∗A ∗T with A ∗ = (In∗ ⊗A),

and ΣTY,Y∗ = A ∗ΣW̃∗,W̃A T .

Therefore, the distribution P (Y∗|Ω, Data) is MVN(µY∗|Y,ΣY∗|Y), where

µY∗|Y = X∗β + ΣTY,Y∗Σ−1
Y,Y(Y−Xβ) and ΣY∗|Y = ΣY∗,Y∗ − ΣTY,Y∗Σ−1

Y,YΣY,Y∗ .

Simulating from P (Y∗|Ω, Data) is routine for any given Ω. Hence, the predictive distribution is again

obtained using composition sampling: for each Ω(l) ∼ P (Ω |Data), we draw Y∗,(l) ∼ P (Y∗|Ω(l), Data) to

obtain posterior predictive samples {Y∗,l}Ll=1.

3.3 Model selection

Since we consider several alternative models with varying degrees of spatial richness, we use the Deviance

Information Criterion (DIC) (Spiegelhalter et al., 2002) as a measure of model choice. The DIC has nice

properties for Gaussian likelihoods such as ours, and is particularly convenient to compute from posterior

samples. This criterion is the sum of the Bayesian deviance (a measure of model fit), and the effective

number of parameters (a penalty for model complexity). Lower DIC values indicate the preferred models.

The deviance, up to an additive quantity not depending upon Ω, is simply the negative of twice the log-

likelihood, D(Ω) = −2 logL(Data| Ω), where L(Data| Ω) is the first stage Gaussian likelihood from (6)

for the respective models. The Bayesian deviance is the posterior mean, D(Ω) = EΩ|Y[D(Ω)], while the

effective number of parameters is given by pD = D(Ω)−D(Ω̄), where Ω̄ is the posterior mean of the model

parameters Ω. The DIC is then given by D(Ω) + pD.

DIC and associated statistics can be calculated from either the unmarginalized (6) or marginalized

(7) likelihood. In addition to lower DIC scores, shrinkage among the random spatial effects might be
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considered a metric for improved model fit. This shrinkage can be seen in reduced pD values calculated

with the unmarginalized model.

4. ILLUSTRATING SPBAYES

4.1 spBayes

spBayes is an R package that currently hosts two core functions, ggt.sp and sp.predict, which implement

the methods presented in Section 3. The underlying MCMC sampling and associated matrix algebra

is written in C++ and leverages BLAS, LAPACK, and LINPACK Fortran subroutines (available at http:

//www.netlib.org). spBayes was written specifically as an R extension; therefore, lower–level calls to C++

and Fortran functions are through R’s foreign language interfaces which allow portability across operating

systems.

Because spBayes relies on lower–level calls to BLAS and LAPACK routines, users can realize substantial

gains in sampling efficiency by using processor optimized versions of these packages. Depending on the

operating system and processor, R can interface with several efficient BLAS and LAPACK implementations;

including AMD Core Math Library (ACML); Math Kernel Library (MKL); Goto BLAS; and Automatically

Tuned Linear Algebra Software (ATLAS).

4.2 Synthetic data

A synthetic data set serves to validate our proposed modeling approach and to demonstrate the use of DIC

to assess model fit. The synthetic data set describes a stationary, isotropic, non–separable multivariate

process. For simplicity, we consider only two response variables (i.e., m = 2). The Matérn correlation

function (2) with ν = 0.5 was used to produce the data’s spatial dependence structure. Fixing ν at 0.5

reduces the Matérn to the familiar exponential correlation function, ρ(s − s′;φ) = exp(−φ‖s − s′‖). Thus

we take K̃(s − s′; θ) = Diag[ρi(s − s′;φi)]2i=1 where θ = (φ1, φ2). The multivariate process was generated

with the following parameters:

β =

 1

1

 , K(0; θ) =

 1 −2

−2 8

 , Ψ =

 9 0

0 2

 , φ =

 0.6

0.1

 .

This yields A = K1/2(0; θ) =

 1 0

−2 2

. The above specifications describe a multivariate process

with independent non–spatial variance among the response surfaces and a strong negative cross–correlation

between the spatial processes (-0.707 to be precise).

The effective range of spatial dependence (i.e., the distance at which the correlation drops to 0.05) is de-

termined by −log(0.05)/φ. The range parameters in φ provide an effective range of ∼ 5.0 units for the first

response surface and ∼ 30.0 units for the second. Given these parameters and the marginalized likelihood
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(7), we can draw realizations of the desired co–varying response surfaces. Given the 150 randomly selected

locations (•) in Figure 1(a), Figures 1(b) and 1(c) offer one such realization of these spatial processes. Uni-

variate empirical semivariograms for this synthetic data along with restricted maximum likelihood (REML)

estimates for the exponential covariance function parameters are provided in Figure 2.

(a)

(b) (c)

Figure 1: (a) Random points used to generate the synthetic data set. Subsequent parameter estimation

is based on 150 (•) locations, and prediction at the 100 open triangle locations (M). Plots (b) and (c)

are interpolated surfaces of the first and second response variables, respectivly, generated with the random

points in (a), given parameters, and the marginalized likelihood 7.
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Figure 2: Empirical semivariograms and exponential function REML parameter estimates for the two

synthetic response surfaces. The estimates of the nugget (bottom horizontal line), sill (upper horizontal

line), and range (vertical line) for the first surface are approximately 7.2, 9.3, and 3.2 respectively. The

corresponding semivariogram estimates of nugget, sill, and range for the second response surface (right plot)

are 4.0, 11.0, and 21.0, respectively.
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4.3 Inference and model choice using ggt.sp

The generalized template introduced in Section 3 suggests several potential models. Here we consider seven

stationary process models of increasing complexity. Our focus is on the alternative specifications of A

and W̃ within (6). For each model, we assume an isotropic spatial process that can be modeled with the

exponential correlation function.

A simple linear regression model (no random effects) is

Model 1: A W̃ = 0.

This model would suffice in the presence of negligible extraneous variation beyond what is explained by the

model’s regressors. However, if autocorrelation is seen in each response variable’s surface, as in Figure 1,

and the regressors do not account for this association as a function of distance between locations, then this

model violates the implicit assumption of conditionally independent observations.

The next four spatial models impose separable association structures as in (5). For each model, ΣW̃ =

[K̃(si − sj ; φ)]ni,j=1, φ = {φ}mk=1 implies the response variables share a common spatial decay parameter.

The first, and simplest, of these models assumes common spatial variance (i.e., σ2) and no non–spatial

variance,

Model 2: A = σIm and Ψ = 0.

The second spatial model allows for a common pure error variance term (i.e., τ2),

Model 3: A = σIm and Ψ = τ2Im.

The next model extends Model 3 to allow response specific spatial and pure error variance terms,

Model 4: A = Diag[σi]mi=1 and Ψ = Diag[τ2
i ]mi=1.

Where Model 4 assumes independence among the response surfaces’ spatial variance, Model 5 explicitly

models the off–diagonal element in the cross–covariance matrix K,

Model 5: A and Ψ = Diag[τ2
i ]mi=1

where, recall, A is the square root of the m × m cross–covariance matrix. The sixth model is the non–

separable form of Model 5, allowing response specific spatial range terms,

Model 6: A,Ψ = Diag[τ2
i ]mi=1, and φ = {φk}mk=1

The final candidate model, extends the diagonal pure error cross–covariance matrix in Model 6 to a full

matrix, allowing for non–spatial variance dependence among the response surfaces,

Model 7: A,Ψ, and φ = {φk}mk=1 .
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The ggt.sp function within spBayes was used to fit each candidate model to the synthetic data. Fol-

lowing the methods described in Section 3.1, the ggt.sp function generates samples from each parameter’s

posterior distribution. The following code blocks detail the ggt.sp arguments used to fit Model 6; the other

candidate models can be fit using variations on these specifications.

The arguments for the ggt.sp function follow a logical progression through a Bayesian modeling process.

The initial step is to assign appropriate prior distributions to each parameter. The prior distributions used

in ggt.sp are consistent with definitions found in Appendix A of Gelman et al. (2004). The variance

parameters in Model 6 are a m×m spatial cross-covariance matrix K, diagonal non–spatial cross–covariance

matrix Ψ, and m spatial range parameters φ. The code block below specifies an inverse–Wishart prior for

K, separate inverse–Gamma priors for the diagonal elements of Ψ, and a single uniform prior which will

be used for both of the φ. The empirical semivariograms (Figure 2) were used to help define the priors’

hyperparameters. For instance, the semivariograms suggest partial sills of about 3 and 6 for the two

conditional response surfaces (i.e., conditional on the regressors), and therefore these values serve as the

diagonal elements in the m×m shape hyperparameter of the inverse–Wishart prior used for K. The nugget

estimates from the semivariograms can guide the choice of the inverse–Gamma scale hyperparameters (i.e.,

7 and 5, respectively). A shape of 2 in the inverse–Gamma suggests a distribution with infinite variance

centered on the scale hyperparameter. An alternative to the inverse–Gamma is the half–Cauchy also

available in spBayes (see Gelman, 2006 for further discussion). The LOGUNIF prior on φ indicates a uniform

distribution with support strictly greater than zero. As noted at the end of Section 4.2, ∼ 3/φ can be

considered the effective spatial range. Therefore, a vague prior on φ is a uniform distribution with support

on the interval (3/3, 3/0.06) or (1, 50) distance units.

K.prior <- prior(dist="IWISH", df=2, S=diag(c(3, 6)))

Psi.prior.1 <- prior(dist="IG", shape=2, scale=7)

Psi.prior.2 <- prior(dist="IG", shape=2, scale=5)

phi.prior <- prior(dist="LOGUNIF", a=0.06, b=3)

The next portion of code describes how each variance parameter is updated, the assigned prior, starting

values, and the order in which blocks of parameters are updated. The variance parameters within the

proposed model template are updated with the Metropolis–Hastings algorithm. This algorithm requires a

tuning or step–size value which defines the variance term in the multivariate normal proposal density. A

tuning value or matrix of the appropriate dimension must be assigned to each variance parameter. If a

matrix tuning value is specified, it must be invertible. Within the R list data structure below, the element

tags (e.g., K, Psi, phi, and if the Matérn correlation function is used, nu) are keywords used by ggt.sp to
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link the directives with the given model parameter. Below, for example, the identity matrix serves as the

starting value for K. Only three elements need to be updated in the symmetric K matrix; therefore, the

tuning matrix is 3× 3 with diagonal elements assigned to K’s lower–triangle column major elements (i.e.,

the tuning values are K1,1 = 0.1, K2,1 = 0.5, K2,2 = 0.1).

Updating parameters in blocks often provides finer control on Metropolis–Hastings acceptance rate.

The value assigned to the sample.order list tag controls the block update sequence. The code below

describes a sequential Metropolis–Hastings sampling scheme that first accepts/rejects the proposed K given

the currently accepted Ψ and φ samples, then accepts/rejects Ψ given the currently accepted K and φ,

then accepts/rejects φ given the currently accepted K and Ψ.

var.update.control <-

list("K"=list(sample.order=0, starting=diag(1, 2),

tuning=diag(c(0.1, 0.5, 0.1)), prior=K.prior),

"Psi"=list(sample.order=1, starting=1,

tuning=0.3, prior=list(Psi.prior.1, Psi.prior.2)),

"phi"=list(sample.order=2, starting=0.5,

tuning=0.5, prior=list(phi.prior, phi.prior))

)

In the var.update.control list, the data structure assigned to the prior tags determines several model

characteristics. Model 6 is non–separable; therefore, the prior list within the phi tag defines two priors,

corresponding to the first and second spatial process. If, as in the phi and Psi lists above, multiple priors

are defined, the starting and tuning values are recycled. Alternatively, starting value and tuning vectors

can be passed in place of the scalars.

The regression parameters, β, also receive a prior and update method. Unlike the variance parameters,

the β are updated using either Gibbs (9) or Metropolis–Hastings. The code below specifies a flat prior with

Gibbs updating for each element in the β parameter vector.

beta.control <- list(update="GIBBS", prior=prior(dist="FLAT"))

The last argument that is passed to ggt.sp defines the number of posterior samples to collect and, if

random spatial effects, A W̃, should be recovered.

run.control <-
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list("n.samples"=5000, "sp.effects"=TRUE)

These arguments are then passed to ggt.sp along with additional model specifications and data as given

in the code below.

ggt.Model.6 <- ggt.sp(formula=list(Y.1~1, Y.2~1),

run.control=run.control,

coords=coords,

var.update.control=var.update.control,

beta.update.control=beta.control,

cov.model="exponential")

Specifically, the ggt.sp call includes: a list of m symbolic model statements

formula=list(Y.1∼1, Y.2∼1) along with an optional data argument similar to R’s lm() function; a

coords argument which specifies the n × 2 matrix of observation coordinates; and the covariance model,

cov.model, to be used (i.e., exponential, matern, spherical, or gaussian). The return object, ggt.Model.6

includes posterior samples for each parameter and random spatial effect samples.

Finally, as described in Section 3.3, a call to sp.DIC provides both the marginalized and unmarginalized

DIC for the given ggt.sp return object. The code below calculates DIC over the interval of 1,000 to 5,000

samples. The sp.DIC function also accepts thin and end to control the sample interval over which DIC is

calculated.

sp.DIC(ggt.Model.6, DIC.marg=TRUE, DIC.unmarg=TRUE, start=1000)

4.4 Synthetic data analysis results

We fit the seven competing models to the synthetic data. For each of these models, three MCMC chains

were run for 5,000 iterations. Chain mixing occurred within 1,000 iterations, therefore the remaining 12,000

samples (4,000×3) were retained for posterior analysis.

DIC was used to select the best candidate model to produce response specific surfaces of random spatial

effects E[W| Data], and subsequent predictions E[W∗ |Data] and E[Y∗| Data].

Table 1 provides pD and DIC scores for the candidate models. As noted in Section 3.3, lower DIC scores

suggest better model performance; therefore, Models 5, 6, and 7 are preferred. Based on the actual number

of parameters, Model 5 is the most parsimonious of the three. Separability is the distinction between Model

5 and 6. Even though Model 6 gave rise to the data, it is common that the notoriously ill–defined φ does

not contribute much to model distinctions in formal model fit comparisons (e.g., DIC). Rather, we might

look to the interpolated residual surfaces, empirical semivariograms, and φ estimates to determine if there

is an advantage to the non–separable model. In this case, there is a strong distinction in spatial dependence
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trends in Figure 1 surfaces and Figure 2, and between estimates of φ1 and φ2 in Table 2. Following these

diagnostics, we select Model 6 over Model 5.

The remaining choice is between Model 6 and 7. Unlike Model 6, Model 7 explicitly models the off–

diagonal element in Ψ. The unmarginalized DIC score in Table 1 suggests that Model 7 might be the

best fit. However, the marginalized DIC score for Model 7 does not show an advantage over Model 6. To

better understand the contribution of the off–diagonal elements in Ψ or K, it is often useful to convert

these covariance matrices to the corresponding correlation matrices. For Model 7, the bounds of the 95%

credible interval about Ψ’s off–diagonal correlation element are -0.749 and 0.656, which suggests that the

non–spatial correlation between the response surfaces is not significant. Therefore, Model 7 does not seem

to add additional insight or a consistently superior model DIC score over Model 6.

Table 1: Synthetic data model comparison using the DIC criterion. For each model both marginalized and

unmarginalized pD and DIC were calculated from three chains of 5,000 samples.

Marginalized Unmarginalized

Model Parameters pD DIC pD DIC

Model 1 τ2 3.049 993.013 – –

Model 2 φ, σ2 3.520 987.069 – –

Model 3 φ, σ2, τ2 4.515 979.409 233.626 1,643.619

Model 4 φ, σ2
m, τ2

m 5.382 966.157 256.186 1,537.190

Model 5 φ, A, τ2
m 6.464 958.586 260.640 1,450.184

Model 6 φm, A, τ2
m 6.141 957.195 236.838 1,492.053

Model 7 φm, A, Ψ 5.879 957.882 206.663 1,446.000

Under models with Ψ = 0, for instance Models 1 and 2, the unmarginalized target likelihood reduces to

the marginalized likelihood. Therefore, the unmarginalized DIC and associated statistics are omitted from

Table 1.

Table 2 provides parameter estimate summaries for Model 6. Because the synthetic data is only one

realization of the defined model, it would be a rare occurrence for the true parameters to fall outside of

the estimated 2.5%–97.5% percentiles (i.e., only a 5% chance). Indeed, Table 2 shows that the estimated

intervals cover the corresponding true parameters defined in Section 4.2. Further, converting the estimates

for the cross–covariance matrix K to the 50% (2.5%, 97.5%) percentiles of the posterior cross–correlation

matrix, we see that the off–diagonal element is -0.475 (-0.791, -0.095), again covering the true negative

association between the response surfaces of -0.707.

Figure 3 provides the interpolated surfaces of recovered random spatial effects E[W| Data]. Conditioning
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Table 2: Percentiles of the posterior distributions of the parameters in Model 6. β subscripts refer to

the response variable and parameter, respectively. Subscripts on K and Ψ refer to the covariance matrix

element. Subscripts on the spatial range parameters, φ, refer to the response variable. Summaries generated

from three chains of 4,000 samples.

Parameter Estimates: 50% (2.5%, 97.5%)

β1,0 1.086 (0.555, 1.628)

β2,0 -0.273 (-1.619, 1.157)

K1,1 1.801 (0.542, 6.949)

K2,1 -1.784 (-3.604, -0.357)

K2,2 8.253 (4.645, 13.221)

Ψ1,1 7.478 (3.020, 10.276)

Ψ2,2 2.276 (0.832, 5.063)

φ1 1.024 (0.243, 2.805)

φ2 0.193 (0.073, 0.437)

only on the models’ intercept terms, that are constant across the domain, causes the mean random effect

surfaces to look nearly identical to the observed surfaces Figure 1.

Figure 3: Interpolated surfaces of the recovered random spatial effects for Model 6, E[W| Data].

17



4.5 Prediction using sp.predict

The sp.predict function will predict W∗ and Y∗ for any set of n∗ new sites, given a ggt.sp return

object and the coordinates and covariates of the new sites. Following the methods detailed in Section 3.2,

sp.predict returns samples from the joint posterior predictive distribution of the set of new sites. This

process is illustrated using the ggt.sp return object, ggt.Model.6, and the 100 prediction sites in Figure

1(a) (i.e., sites denoted by a triangle symbol). The code below calls the sp.predict function.

sp.pred <-

sp.predict(ggt.Model.6, pred.coords=coords, pred.covars=covars)

In the above code, the pred.coords value is the n∗ × 2 matrix of new coordinates and pred.covars is the

n∗× p design matrix X∗. This multivariate design matrix can be created by passing a list of the m models’

design matrices to the mk.mv.X function provided in spBayes. The sp.predict function also accepts start,

thin, and end to control the sample interval over which the predictions are calculated.

Figure 4(a) provides an interpolated surface generated from each new point’s mean predicted random

spatial effect, E[W∗ |Data]. Without covariates, prediction relies on the strength of the estimated spatial

dependence among observed sites and the intercept term which serves as a constant offset across the domain.

Both predicted surfaces in Figure 4(a) show substantial smoothing. Smoothing is exacerbated as spatial

range increases, as seen in the second response surface predictions. As noted in Table 2, neither intercept

term is significant; therefore, Figure 4(b) appears to be only marginally different than the surface of predicted

random effects.
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(a)

(b)

Figure 4: (a) Interpolated surfaces of the predicted random spatial effects for Model 6, E[W∗ |Data]. (b)

Interpolated surfaces of the posterior predictive distributions for Model 6, E[Y∗| Data].
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4.6 Forest inventory data

Maps of forest attributes are important for quantifying forest carbon dynamics, monitoring forest habitat

change, forecasting wood availability, and a host of other forest management and environmental initiatives.

The data used in the example below is taken from permanent georeferenced forest inventory plots on the

USDA Forest Service Bartlett Experimental Forest (BEF) in Bartlett, New Hampshire. The 1,053 hectare

BEF covers a large elevation gradient from the village of Bartlett in the Saco River valley at 207 meters to

about 914 meters above sea level. For this illustration, the focus is on predicting the spatial distribution of

basal area and total tree biomass per hectare across the BEF.

Basal area is the cross–sectional area of a tree stem 1.37 meters above the ground and is measured as

square meters per hectare. Tree biomass is measured as the weight of all above ground portions of the tree,

expressed here as metric tons per hectare. Within the data set, basal area (BA) and biomass (BIO) per

hectare are recorded at 300 forest inventory plots. Satellite imagery and other remotely sensed variables

have proved useful regressors for predicting these attributes. One spring 2002 date of 30×30 Landsat 7

ETM+ satellite imagery was acquired for the BEF. The image was transformed to tasseled cap components

of brightness (1), greenness (2), and wetness (3) using data reduction techniques. The three resulting

spectral variables are labeled TC1, TC2, and TC3. In addition to these spectral variables, digital elevation

model data was used to produce a 30×30 elevation (ELEV) layer for the BEF. The centroids of the 300

georeferenced inventory plots were intersected with the elevation (ELEV) and spectral variables.

To demonstrate parameter estimation and prediction, we selected randomly 150 inventory plots for model

construction and left the remaining 150 for subsequent predictive mapping. For reference, the 150 model

points in Figure 5(a) are used to produce an interpolated surface for each of the two response variables,

Figures 5(b) and 5(c).

Previous results suggest that there is positive spatial and non–spatial association between the conditional

response surfaces (i.e., conditional on the regressors). Further, the univariate empirical semivariograms for

the response variables show some disparity between the spatial ranges, specifically, spatial dependence

among sites is smaller for measures of basal area per hectare. Therefore, we fit a non–separable spatial

regression with full spatial and non–spatial cross–covariance matrices, K and Ψ. Further, we assume that

spatial dependence can be modeled with the simple exponential correlation function. This specification

corresponds to Model 7 in Section 4.3.

As in the previous illustration, the univariate empirical semivariograms provide guidance for starting

values and prior hyperparameters. The ggt.sp directives for one of the six chains used for model parameter

estimation are detailed in the code blocks below. Again, defining priors is the first step in the modeling

process.
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(a)

(b) (c)

Figure 5: (a) Forest inventory plots across the Bartlett Experimental Forest. The 300 plots were divided

randomly into 150 plots used for parameter estimation denoted with solid dot symbols (•) and the remaining

150 used for prediction marked with triangle symbols (M). Plots (b) and (c) are interpolated surfaces of

basal area per hectare and metric tons of biomass per hectare, respectivly.

K.Psi.prior <- prior(dist="IWISH", df=2, S=matrix(c(100, 0, 0, 2600), 2, 2))

phi.prior <- prior(dist="LOGUNIF", a=0.0015, b=0.03)

The inverse–Wishart prior is used for both cross–covariance matrices. The empirical semivariograms suggest

that the nugget and partial sill are about equal for each response variable (i.e., ∼ 100 for basal area and
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∼ 2600 for biomass). The vague scale matrix defined for the common inverse–Wishart centers each response

on the suggested values but does not impose any off–diagonal association. The noninformative prior on the

spatial range parameters corresponds to an interval of 100 to 2,000 meters.

The following code block defines the starting values of K1/2 and Ψ1/2; Metropolis–Hastings tuning

values; update method for the β; the number of samples to take; and the regression model for each response

surface.

K.Psi.starting <- matrix(c(10, 80, 0, 10), 2, 2)

var.update.control <-

list("K"=list(sample.order=0, starting=K.Psi.starting,

tuning=diag(c(0.15, 1.75, 0.15)), prior=K.Psi.prior),

"Psi"=list(sample.order=1, starting=K.Psi.starting,

tuning=diag(c(0.15, 1.75, 0.15)), prior=K.Psi.prior),

"phi"=list(sample.order=2, starting=0.006,

tuning=0.5, prior=list(phi.prior, phi.prior)))

beta.control <- list(update="GIBBS", prior=prior(dist="FLAT"))

run.control <- list("n.samples"=10000, "sp.effects"=TRUE)

resp.1 <- BA~ELEV+TC1+TC2+TC3

resp.2 <- BIO~ELEV+TC1+TC2+TC3

Finally these directives are passed to the ggt.sp function along with additional arguments which define

the model plot coordinates and the desired spatial correlation function.

ggt.chain.1 <-

ggt.sp(formula=c(resp.1, resp.2), run.control=run.control,

coords=coords, var.update.control=var.update.control,

beta.update.control=beta.control,

cov.model="exponential")

4.7 Forest inventory data analysis results

For parameters estimation, six MCMC chains were run for 10,000 iterations. The six chains allowed for

dispersed parameter starting values and because we are interested in the influence of the prior specification
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on parameter estimates, each chain received a different inverse–Wishart hyperparameter scale matrix. As

seen in the synthetic data set analysis, chain mixing occurred within 1,000 iterations. Therefore, 54,000

samples were retained for posterior analysis. Visual interpretation of the changes and resulting parameter

estimates suggest that for this data set, the inverse–Wishart scale hyperparamter has negligible influence

on chain convergence.

Table 3 provides the credible intervals for each parameter in the model. These intervals show that

several regressors help explain the variation in both basal area and biomass per hectare. The significance of

the off–diagonal elements K2,1 and Ψ2,1 suggests that there is positive spatial and non–spatial association

between the conditional response surfaces. Additional insight is gained by converting these off–diagonal

covariances to correlations, specifically 0.886 (0.241, 0.952) and 0.84 (0.111, 0.941) are the 50% (2.5%,

97.5%) percentiles of the K2,1 and Ψ2,1 elements, respectively. The spatial range estimates in Table 3 do

not support a distinction between the responses’ spatial dependence structure, therefore, the separable form

of this model might be considered.

Given the parameters posterior samples, we can now turn to predicting basal area and biomass for the

holdout set of sites marked with triangle symbols in Figure 5(a). Alternatively, we could make predictions

for each 30× 30 meter pixel in the image stack of derived satellite spectral components and ELEV variable.

Again, the predictions are made using the sp.predict function and passing in the ggt.chain.1 object

returned from ggt.sp along with the new sites’ coordinates and covariates.

BA.X <- cbind(rep(1, 150), ELEV, TC1, TC2, TC3)

BIO.X <- cbind(rep(1, 150), ELEV, TC1, TC2, TC3)

pred.covars <- mk.mv.X(list(BA.X, BIO.X))

sp.pred <- sp.predict(ggt.chain.1, start=5000, thin=5,

pred.coords=coords,

pred.covars=covars)

The sp.pred object contains the posterior predictive samples for W∗ and Y∗. These samples were used to

produce the point estimate surfaces in Figure 6. Additionally, we could map some function of the posterior

samples. For example, we might map the range between the upper and lower 95% credible interval of Y∗

to understand how uncertainty in prediction varies across the domain.
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(a)

(b)

Figure 6: (a) Interpolated surfaces of the predicted random spatial effects for basal area per hectare (left

plot) and metric tons of biomass per hectare (right plot), E[W∗ |Data]. (b) Interpolated surfaces of the

posterior predictive distributions for basal area per hectare (left plot) and metric tons of biomass per hectare

(right plot), E[Y∗| Data].
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Table 3: Percentiles of the posterior distribution of model parameters. β subscripts refer to the response

variable and parameter, respectively. Subscripts on K and Ψ refer to the covariance matrix element.

Subscripts on the spatial range parameters, φ, refer to the response variable model. Summaries generated

from six chains of 9,000 samples.

Parameter Estimates: 50% (2.5%, 97.5%)

β1,0 -66.912 (-147.658, 14.279)

β1,ELEV -0.011 (-0.030, 0.007)

β1,TC1 1.287 (0.366, 2.184)

β1,TC2 -1.051 (-1.638, -0.419)

β1,TC3 1.502 (0.690, 2.293)

β2,0 -312.771 (-838.557, 207.984)

β2,ELEV -0.076 (-0.198, 0.041)

β2,TC1 6.899 (1.072, 12.701)

β2,TC2 -4.063 (-7.835, -0.083)

β2,TC3 6.036 (0.884, 11.141)

K1,1 85.346 (14.806, 152.670)

K2,1 519.223 (20.078, 930.767)

K2,2 3920.109 (316.533, 6863.146)

Ψ1,1 71.814 (13.653, 142.901)

Ψ2,1 359.778 (11.178, 838.964)

Ψ2,2 2686.357 (415.428, 5916.541)

φ1 0.013 (0.003, 0.029)

φ2 0.017 (0.005, 0.029)
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5. SUMMARY

There is a need within the scientific community for software tools capable of efficiently fitting complex

co–varying point level Gaussian spatial process models. The generalized template introduced in Section 3

allows univariate and multivariate Gaussian models to be cast in a common framework. This facilitates

model parameter estimation and predictive inference implemented in the spBayes package. As detailed in

the formal spBayes documentation, the ggt.sp functions accepts the set of usual covariance functions for

modeling spatial dependence, and prior distributions for the variance and covariate parameters.

Although the illustrations presented here consider only bivariate processes, ggt.sp and the support

functions easily accommodate any number of response variables and associated covariates. Computing time

is the only restriction. The computational burden for implementing our template will explode with a large

number of locations. This is known as the so–called “big–N” problem in spatial statistics and is an area of

active research. Strategies for addressing this problem involve representing the spatial process W(s) over a

smaller set of representative locations (called knots).

We hope future releases of spBayes will continue to help fulfill multivariate spatial process modeling

needs. In the near-term, we plan to include facilities for modeling big-N problems, spatially varying regres-

sors, multi–resolution or spatially nested models, and non-Gaussian response models.
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14âĂŞ18.

Schabenberger, O., and Gotway, C.A. (2004). Statistical Methods for Spatial Data Analysis (Texts in

Statistical Science Series). Boca Raton: Chapman and Hall/CRC.

Spiegelhalter, D.J., Best, N.G., Carlin, B.P., and van der Linde, A. (2002). Bayesian measures of model

complexity and fit (with discussion and rejoinder). Journal of the Royal Statistical Society, Series B,

64, 583–639.

Stein, M.L. (1999). Interpolation of Spatial Data: some theory for kriging. New York: Springer.

Wackernagel, H. (2003). Multivariate Geostatistics: An Introduction with Applications. 3rd ed. Berlin:

Springer-Verlag.

27


