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Abstract

tlemix implements a general framework for robustly fitting discrete mixtures of regres-
sion models in the R statistical computing environment. It implements the FAST-TLE
algorithm and uses the R package FlexMix as a computational engine for fitting mixtures
of general linear models (GLMs) and model-based clustering in R.
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1. Introduction

The initial approach to mixture analysis was first undertaken by the biometrician Karl Pearson
when he was given a data set by the famous zoologist Walter Frank Raphael Weldon in 1894.
In his extensive data analysis Pearson fitted a model consisting of two normal probability
density functions with different means (µ1 and µ2) and different variances (σ2

1 and σ2
2) in

proportions π1 and π2 to the data. Although he did not use maximum likelihood to fit the
model Pearson’s estimation involving the method of moments was nearly as accurate (see
McLachlan and Peel 2000).

Since then finite mixture models have found a variety of applications over almost 100 years,
but have experienced a significant boost in popularity during the last decade as available
computing power has been growing exponentially. In particular, the 1977 published approach
of the EM algorithm lead to increasing interest in finite mixture models as it tremendously
simplified the maximum likelihood estimation. This paper is therefore organised as follows:
First the basic concept of trimmed likelihood estimation as well as the FAST-TLE algorithm
implemented by tlemix are discussed. Section 3 then demonstrates how to use tlemix to
robustly fit finite mixture models.

2. Trimmed Likelihood Estimator

2.1. The Weighted Trimmed Likelihood Estimator

Let the observations y1, . . . , yn denote values generated by an arbitrary probability density
function ϕ(y; θ) with unknown parameter vector θ ∈ Θp ⊂ Rp. Then, according to Vandev
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and Neykov (1998), the Weighted Trimmed Likelihood Estimator (WTLE) is difined as

WTLE(k)(y1, . . . , yn) = θ̂WTLE = arg min
θ∈Θp

k∑
i=1

wν(i)f(yν(i); θ), (1)

where f(yν(1); θ) ≤ f(yν(2); θ) ≤ . . . ≤ f(yν(n); θ) for a fixed θ, f(yi; θ) = − log ϕ(yi; θ), yi ∈
IRq for i = 1, . . . , n are i.i.d. observations with probability density ϕ(y; θ), which depends on
an unknown parameter θ ∈ Θp ⊂ IRp, ν = (ν(1), . . . , ν(n)) is the corresponding permutation
of the indices, which depends on θ, k is the trimming parameter and the weights wi ≥ 0 for
i = 1, . . . , n are nondecreasing functions of f(yi, θ) such that at least wν(k) > 0.

The basic idea behind trimming in (1) is the removal of those n−k observations whose values
would be highly unlikely to occur if the fitted model was true.

The WTLE is a combinatorial estimator according to the representation

min
θ∈Θp

k∑
i=1

wν(i)f(yν(i); θ) = min
θ∈Θp

min
I∈Ik

∑
i∈I

wif(yi; θ) = min
I∈Ik

min
θ∈Θp

∑
i∈I

wif(yi; θ),

where Ik is the set of all k–subsets of the set {1, . . . , n}. Therefore, it follows that all possible
(n
k) partitions of the data have to be fitted by the MLE, and the WTLE is given by the

partition with the minimal negative log likelihood.

The WTLE accommodates different estimators depending on the weights. For instance, the
median likelihood estimator MedLE(k) defined by Vandev and Neykov (1993)

MedLE(y1, . . . , yn) == θ̂MedLE = arg min
θ∈Θp

med
i

(− ln ϕ(yi; θ)), (2)

is obtained by wν(i) = 0 for i = 1, . . . , k − 1, k + 1, . . . , n and wν(k) = 1, and the TLE defined
by Neykov and Neytchev (1990)

TLE(k)(y1, . . . , yn) = θ̂TLE = arg min
θ∈Θp

k∑
i=1

{
− ln(ϕ(y; θ))(i)

}
, (3)

is obtained if wν(i) = 1 for i = 1, . . . , k and wν(i) = 0 otherwise.

2.2. The FAST-TLE Algorithm

Recalling the definition of the WTLE in Eq. (1) it is assumed that minimisation is achieved
by subsampling the data. In view of the combinatorial nature of the algorithm, computing the
WTLE for large data sets can proceed very slowly. Fortunately, an approximate algorithm
called the FAST-TLE was developed by Neykov and Müller (2003). The basic idea of this
algorithm consists of carrying out finitely many times a two-step procedure: a trial step
followed by a refinement step. In the trial step a subsample of size k∗ is selected randomly
from the data sample. The model is fitted to these k∗ observations to get θ̂∗ a trial ML
estimate. The refinement step is based on the so called concentration procedure: (a) Set
θ̂(c) = θ̂(∗); (b) The cases with the k smallest negative log likelihoods evaluated on the current
estimate θ̂c are found; (b) Fitting the model to these k cases gives an improved fit and let
θ̂(imp) be the corresponding esitmate; (c) Set θ̂(c) = θ̂(imp). Repeating (b) and (c) yields an
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iterative process. The convergence is always guaranteed after a finite number of steps since
there are only finitely many k–subsets out of (n

k).

At the end of this procedure the solution with the lowest trimmed likelihood value is stored.
There is no guarantee that this value will be the global minimizer of (1) but one can hope
that it would be a close approximation to it. Note that in the normal linear regression and
multivariate normal cases this algorithm reduces to the concentration steps of the FAST-LTS
and FAST-MCD algorithms, respectively.

To assure the existace of a solution to the optimisation problem in Eq. (1), it is assumed
that k∗ ≥ d where d is the so called parameter of fulness of the set F = {f(yi, θ) =
− log ϕ(yi; θ), i = 1, . . . , n}. A recommendable value of k would be b(n + d + 1)/2c as it
would maximise the breakdown point of the WTLE estimator. Any value between d and n
can be chosen for k. If the expected percentage α of outliers in the data is a priory known, a
reasonable choice of k is bn(1− α)c to increase the efficiency of the WTLE. The subsample
size k∗ largely depends on the fullness parameter d and could be defined as k∗ = d + 1 in
order to increase the chance of drawing at least one outlier free subsample (see Neykov and
Müller 2003). In the mixture setting with g components, the trial sample size k∗ must be
at least g(p + 1) to overcome the degenerated case of unbounded likelihood. Thus a larger
trial sample size would increase the chance to allocate at least p + 1 cases to each mixture
component. If this is not the case, any program would fail to get an estimate that could serve
as a trial estimate. If this happens a new random subsample of k∗ observations is drawn and
supplied to the software estimation procedure.

Since the TLE trial and refinement steps are standard MLE procedures, the FAST-TLE al-
gorithm can be easily implemented using widely available MLE software. The current tlemix
version employs the program FlexMix of Leisch (1998) and Grün and Leisch (2008) to handle
the MLE computation. We remind that FlexMix has been developed in R (http://www.R-
project.org) as a computational engine for fitting arbitrary finite mixture models, in par-
ticular, mixtures of GLMs and model-based cluster analysis by using the EM algorithm.

3. Using tlemix

As a simple example we use the artificial data set gaussData included in the library tlemix
consisting of 80 observations from a mixture of two normal distributions. In order to analyse
the performance of the robust FAST-TLE algorithm 20 outliers were added.

First a model framework has to be created that will be passed to the TLE method as the data
set

> library(tlemix)

> data(gaussData)

We can fit this model in R using the following commands:

> est.tle <- TLE(y ~ x, family = "gaussian", data = gaussData,

+ Density = flexmix.Density, Estimate = flexmix.Estimate,

+ msglvl = 1, nc = 2, kTrim = 80, nit = 10)

The argument kTrim=80 could be omitted, but then too many data points would be trimmed.
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Moreover, the solution could be improved by increasing the number of iterations for instance
to nit=100. We can get a first look at the estimated parameters of mixture component 1 by

> parameters(est.tle@estimate, component = 1)

Comp.1
coef.(Intercept) 1.9712640
coef.x 0.9861527
sigma 0.1090606

and

> parameters(est.tle@estimate, component = 2)

Comp.2
coef.(Intercept) -1.9632369
coef.x -0.9709607
sigma 0.1009368

for component 2. A cross-tabulation of true classes and cluster memberships can be obtained
by

> table(gaussData$c, est.tle@tleclusters)

1 2
1 0 40
2 40 0
3 15 5

The summary method

> summary(est.tle)

Call:
TLE(formula = y ~ x, family = "gaussian", data = gaussData,

kTrim = 80, nit = 10, msglvl = 1, nc = 2, Density = flexmix.Density,
Estimate = flexmix.Estimate)

Call:
flexmix(formula = model, data = data.frame(data),

k = nk, cluster = cc, model = FLXglm(model, family = family),
control = control)

Cluster sizes:
1 2
40 40
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no convergence after 2 iterations

kTrim: 80 Number of Observations: 100 Number of Outliers: 20

gives the trimming parameter, the number of observations, the number of outliers and prints
the estimate object.

Calling the summary method for the flexmix object est.tle@estimate

> summary(est.tle@estimate)

Call:
flexmix(formula = model, data = data.frame(data),

k = nk, cluster = cc, model = FLXglm(model, family = family),
control = control)

prior size post>0 ratio
Comp.1 0.512 40 47 0.851
Comp.2 0.488 40 45 0.889

’log Lik.’ 16.79009 (df=7)
AIC: -19.58018 BIC: -2.905989

displays the estimated prior probabilities π̂k, the number of observations assigned to the
corresponding clusters, the number of observations where pnk > δ (with a default of δ = 10−4),
and the ratio of the latter two numbers.

For this example the method tleplot can be used to visualise the 2-dimensional data frame.
For each cluster identified by the method TLE a different colour is used for indication purposes.
Outliers are depicted as black triangles (see Figure 1).

> tleplot(est.tle, gaussData)

Additionally, the flexmix object can be plotted by

> plot(est.tle@estimate)

and will yield rootograms of the posterior class probabilities to visually assess the cluster
structure (see Figure 2).

Usually in each component a lot of observations have posteriors close to zero, resulting in a
high count for the corresponding bin in the rootogram which obscures the information in the
other bins. To avoid this problem, all probabilities with a posterior below a threshold are
ignored (we again use 10−4). A peak at probability 1 indicates that a mixture component is
well seperated from the other components, while no peak at 1 and/or significant mass in the
middle of the unit interval indicates overlap with other components.
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Figure 1: Mixture of two normal components with noise. Scatterplot with cluster member-
ships.
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Figure 2: Rootogram of the posterior class probabilites.
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